
Markov Decision Processes Lecture Notes 02

Dynamics
Authors: Benjamin Van Roy September 24, 2025

1 Trajectories

Given a finite-state MDP (S,A, P), an initial state S0, and a policy π, we can simulate a trajectory
S0, A0, S1, A1, S2, A2, Given a history Ht = (S0, A0, . . . , St), the next action and state are generated
by:

1. sampling an action At ∼ π(·|Ht);

2. sampling a next state St+1 ∼ (PAt,St,s : s ∈ S).

Alternatively, if an MDP is specified by a tuple (S,A,W, f, ν), the next action and state are generated by:

1. sampling an action At ∼ π(·|Ht);

2. sampling a disturbance Wt+1 ∼ ν(·|St, At);

3. sampling a next state St+1 = f(St, St,Wt+1).

1.1 The Markov Property

Consider a stochastic process X0, X1, X2, . . . that takes values in a set X . This process is said to satisfy the
Markov property if, for all t and Y ⊆ X ,

P(Xt+1 ∈ Y|X0, . . . , Xt) = P(Xt+1 ∈ Y|Xt). (1)

Intuitively, the stochastic process is Markov if, given Xt, previous samples X0, . . . , Xt−1 would not further
inform predictions about Xt+1.

Must a state sequence S0, S1, S2, . . . generated by an MDP (S,A, P) and a policy π satisfy the Markov
property? Not necessarily. This is because the choice of next action At can depend on previous history
S0, A0, . . . , St−1, At−1 in addition to the current state St. For example, consider the routing environment
described in Section 1.2.2 of Lecture Notes 01. Recall that, for this environment, S = A = V, where V is
the set of vertices in the graph. Consider a policy that, at vertex St, samples randomly among actions that
do not return to the previous vertex. In other words π(· |Ht) ∼ unif(a ∈ A : a ̸= St−1). Under this policy,
given St, knowing St−1 would improve our prediction of St+1. Hence, the state sequence does not satisfy
the Markov property.

The state sequence of an MDP (S,A, P) does satisfy the Markov property if actions are selected by a
stationary policy π. If the state and action spaces are countable, this can be verified via the tower property:

P(St+1 = s|S0, . . . , St) =
∑
a∈A

P(At = a|S0, . . . , St)P(St+1 = s|S0, . . . , St, At = a)

=
∑
a∈A

π(a|St)PaSts

=
∑
a∈A

P(At = a|St)P(St+1 = s|St, At = a)

= P(St+1 = s|St).

1

This argument can be extended to uncountable state and action spaces.
Under a stationary policy π, the sequence of state-action pairs also satisfies the Markov property. For

countable state and action spaces, this can be verified via Bayes’ rule. In particular, letting Xt = (St, At)
and x = (s, a),

P(Xt+1 = x|X0, . . . , Xt) =P(St+1 = s,At+1 = a|S0, A0, . . . , St, At)

=P(At+1 = a|S0, A0, . . . , St, At, St+1 = s)P(St+1 = s|S0, A0, . . . , St, At)

=π(a|s)PaSts

=P(At+1 = a|St+1 = s, St, At)P(St+1 = s|St, At)

=P(St+1 = s,At+1 = a|St, At)

=P(Xt+1 = x|Xt).

Again, the argument can be extended to uncountable state and action spaces.

1.2 Transition Matrices and Kernels

For an MDP (S,A, P) with countable state and action spaces, the sequence of states under a stationary
policy follows a Markov chain with transition matrix Pπ. Components are given by

Pπss′ =
∑
a∈A

π(a|s)Pass′ . (2)

For an MDP (S,A, f, ν) with an uncountably infinite state space, individual transition probabilities do
not suffice to characterize dynamics. For example, if S = R and, conditioned on St and At, the next state
distribution is Gaussian then the probability assigned to each next state is zero. In order to characterize
dynamics we can instead use a transition kernel defined by

Pa(B|s) = ν({w ∈ W : f(s, a, w) ∈ B}|s, a). (3)

For each action a ∈ A and set B ⊆ S of possible next states, this is the probability that St+1 will be an
element of B. Technically, for each s ∈ S and a ∈ A, Pa(·|s) is a probability measure. The sequence of states
under a stationary policy π is then a Markov process with transition kernel defined by

Pπ(B|s) =
∫
a∈A

π(da|s)Pa(B|s). (4)

1.3 Examples

We provide examples of policies and state trajectories for a few MDPs.

1.3.1 Queueing

Recall the queueing system described in the Lecture 01 Notes. At each time, an additional customer arrives
with probability q. The station can operate in a fast or slow mode of service. If there are customers in the
queue, the fast mode removes one with probability pfast and the slow mode, pslow.

We modeled the queue length dynamics in terms of an MDP (S,A, P) with S = {0, 1, 2, . . .} and A =
{fast, slow}. Each state St is the current queue length, and the action At indicates whether the fast or slow
service mode is applied. Transition probabilities are as provided in Table 1.

Consider a simple policy that uses the slow mode if and only if the queue length is below a threshold.
This is a deterministic policy defined by

π(s) =

{
slow if s < θ
fast otherwise,

2

Pass′ s′ = s− 1 s′ = s s′ = s+ 1
s = 0 0 1− q q
s > 0 (1− q)pa qpa + (1− q)(1− pa) q(1− pa)

Table 1: Queue transition probabilities. The rows provide formulas that apply when s = 0 or s > 0,
respectively.

where θ is the threshold. Under this policy, state transition matrix is defined by

Pπ,0,s′ =

{
1− q if s′ = 0
q(1− pπ(s)) if s′ = 1,

and, for s > 0,

Pπss′ =

 (1− q)pπ(s) if s′ = s− 1
qpπ(s) + (1− q)(1− pπ(s)) if s′ = s
q(1− pπ(s)) if s′ = s+ 1.

Figure 6 plots state trajectories simulated with thresholds of θ = 0 and θ = 10. Queue lengths are volatile
due to random arrivals and service times. As one would expect, the queue lengths tend to be much shorter
with θ = 0 because in that case we always use the fast mode of service.

Figure 1: Queue length dynamics with policy thresholds of 0 (left) and 10 (right).

1.3.2 Pursuit

Consider a stochastic linear system that models pursuit of a target in one dimension, as introduced in
Lecture Notes 01. Those notes provided two mathematical formulations, and we will use the second one
here. That formulation involved two state variables. The first represented the difference xt,1 between the
location of the pursuer and that of the target. The second represented the velocity xt,2 of the pursuer. The
dynamics of these quantities were modeled by an MDP (X ,U ,W, f, ν) with X = R2, U = R, W = R2,
f(x, u, w) = Ax+Bu+ w, where

A =

[
1 1
0 1

]
B =

[
0

1/m

]
Σ =

[
σ2 0
0 0

]
.

Here, m denotes the mass of the pursuer and each action Ut denotes force applied to accelerate.
Consider a policy π(s) = −0.3mxt,1−0.5mxt,2. This policy tends to accelerate the pursuer by an amount

that decreases in both xt,1 and xt,2. This is intuitively desirable, since the pursuer needs to displace the

3

distance xt,1 to reach the target and should tend to decelate if the current velocity xt,2 is too large. Figure
2 plots simulated trajectories with σ2 = 0 and σ2 = 1. In the first case, where the target remains still, the
pursuer approaches the target, and thus distance and velocity vanish. In the second case, the target moves
randomly and thus we observe continual pursuit.

Figure 2: Pursuit dynamics without (left) and with (right) random noise.

1.3.3 Pair Writing

Consider a human who uses a chatbot as a companion in pairs writing. The human and chatbot take
turns writing sentences. The chatbot’s decision process can be modeled by an MDP (S,A,W, f, ν). The
state St encodes the sentences written thus far. The action At is the next sentence written by the chatbot.
The disturbance Wt+1 is the next sentence written by the human. Finally, St+1 = f(St, At,Wt+1) is
the concatenation of previous text St, the chatbot’s sentence At, and the human’s sentence Wt+1. Note
that S, A, and W are countable sets, each consisting of finite-length text strings. Figure 3 provides a
simulated trajectory as well as python code that produced it. A language model was used to generate
chatbot responses. Thus, this language model defines the policy π. Rather than requiring a human to write
the ’human’ sentences, for the purpose of this simulation, we used the language model in place of the human.
Hence, in this simulation, the language model also defines the disturbance distribution ν.

2 Probabilities and Expectations

Given an MDP (S,A, P), a policy π, and an initial state S0, we will often study events that are determined
by the realized infinite trajectory H∞ = (S0, A0, S1, A1, . . .). Such an event identifies a set E ⊆ (S × A)∞

of trajectories, where Z+ is the set of nonnegative integers. The event occurs if and only if H∞ ∈ E.
The event probability P(H∞ ∈ E) is the fraction of simulated trajectories that would lie in E. If it

is possible to determine whether H∞ ∈ E by observing a finite-length partial trajectory HT , then we can
estimate P(H∞ ∈ E) via Monte Carlo simulation.

For example, suppose we would consider the queueing system a failure if the queue length exceeds 20 at
some point within the first T = 1000 timesteps. Let E be the set of trajectories that constitute failures.
Then, there is a set ET such that H∞ ∈ E if and only if HT ∈ ET . Hence, the probability of failure is
P(HT ∈ ET). This probability can be estimated by simulating many trajectories of length T and taking the
estimate to be the fraction that lie in ET .

Figure 6 plots failure probabilities estimated using 1000 simulated trajectories. Estimates are generated
for policy thresholds θ varying from 0 to 20. This plot can inform design of a policy. For example, to trade
off between cost of service and failure probability, one might choose the largest threshold that keeps the
failure probability below some value, say, 10%.

4

Figure 3: Pair writing with a chatbot.

Expectations can be estimated in a similar way. For example, E[g(HT)] can be estimated by simulating
many trajectories of length T , applying the function g to each, and averaging the resulting values.

Figure 6 plots the expected queue length E[ST] as a function of T , with policy thresholds 0 and 10. In
each case, the initial expected length is E[S0] = 0 = S0 and the expected length converges. The limit is
larger when the policy threshold is 10. This is intuitive because, when the policy threshold is 0, the fast
service mode is always applied.

3 State Probabilities

In this section, as with much of this course, we will focus on finite MDPs – those with finite state and action
spaces. This is because much can be learned from the finite case, and dealing with infinite MDPs requires
more advanced mathematical analysis that can encumber that learning. But we will continue to study
examples with infinite spaces when infinite MDPs allow for more intuitive models. And we will occasionally
discuss how results established for finite MDPS extend to infinite ones.

Fix a finite MDP (S,A, P) and a stationary policy π. This MDP and policy induce a Markov process
(S, Pπ). Fix an initial state S0, and let µt(s) = P(St = s). This is the probability that the state is s
at time t and can be estimated by simulating trajectories of length t and calculating the fraction the end
in state s. We denote the set of probability mass functions over a finite or countable state space S by
∆S = {µ ∈ [0, 1]S :

∑
s∈S µ(s) = 1}. Hence, µt ∈ ∆S .

3.1 The Forward Equation

State probabilities satisfy the forward equation

µt+1(s
′) =

∑
s∈S

µt(s)Pπss′ ∀s′ ∈ S. (5)

5

Figure 4: Failure probability as a function of the policy threshold.

Figure 5: Expected queue length with policy thresholds of 0 (left) and 10 (right).

This is intuitive: the probability of being in state s′ at time t + 1 is the sum over s of the probability of
being in state s at time t times the probability of transitioning from s to s′.

Figure 6 plots µt for various values of t, for the special case of our queueing system, with policy thresholds
of 0 and 10, initialized with S0 = 0 and thus µ0(s) = 10(s). The probability distributions become more
diffuse over time, converging to a steady state distributions. The steady state distribution assigns higher
probabilities to shorter queues when the threshold is 0 rather than 10. This makes sense because when the
threshold is 0, the system always applies the fast service mode. With a threshold of 10, there is a kink in
steady state distribution due to the switching behavior from slow to fast service.

3.2 The Balance Equation

Consider a Markov process (S, Pπ) induced by an MDP (S,A, P) with finite state and actions paces and
stationary policy π. Given an initial state S0, let µ∞ = limt→∞ µt denote the vector of limiting probabilities,
if that exists. Limiting probabilities, if they exist, satisfy the balance equation

µ(s′) =
∑
s∈S

µ(s)Pπss′ ∀s′ ∈ S, (6)

which is obtained by taking limits of the left and right hand sides of the forward equation. We refer to any
state distribution µ that solves this equation as a steady state distribution. Such a solution is also commonly
referred to as an invariant distribution.

6

Figure 6: Queue length probability distributions with policy thresholds of 0 (left) and 10 (right).

It is natural to wonder whether a steady state distribution exists and, if so, whether it is unique. In
particular, whether there exists a unique solution to

µ(s′) =
∑
s∈S

µ(s)Pπss′ ∀s′ ∈ S, (7)

within ∆S .

3.2.1 Existence

Recall that the limiting distribution µ∞, if one exits, constistutes a steady state distribution. However, a
limiting distribution need not exist when dynamics exhibit periodicity. To understand why, consider the
Markov chain of Figure 7. If S0 = 1 then each St = 1 when t is even and St = 2 when t is odd. As such
µt(1) is 1 if t is even and 0 if t is odd. Thus, the limit µ∞ does not exist.

Figure 7: A periodic Markov chain.

What is guaranteed to exist is the Cesàro limit:

µ = lim
t→∞

1

T

T−1∑
t=0

µt. (8)

7

And this solves the balance equation, since

µ(s) = lim
T→∞

1

T

T−1∑
t=0

µt(s)

= lim
T→∞

1

T − 1

T−1∑
t=1

µt(s)

= lim
T→∞

1

T − 1

T−1∑
t=1

∑
s′∈S

µt−1(s
′)Pπs′s

=
∑
s′∈S

Pπs′s lim
T→∞

1

T − 1

T−1∑
t=1

µt−1(s
′)

=
∑
s′∈S

Pπs′s lim
T→∞

1

T

T−1∑
t=0

µt−1(s
′)

=
∑
s′∈S

µ(s′)Pπs′s.

Hence, there always exists a steady state distribution.

3.2.2 Uniqueness

The steady state distribution is not necessarily unique. To see why, consider the Markov chain in Figure 8.
The Cesàro limit defined by Equation (8) depends on the initial state S0. In particular, it is easy to verify
that

µ =

 [0 1/2 1/2]⊤ if S0 = 1,
[0 1 0]⊤ if S0 = 2,
[0 0 1]⊤ if S0 = 3.

As we established earlier, each Cesàro limit constitutes a steady state distribution. As such, there are at
least three distinct solutions. In fact, there are many more, because any convex combination of these three
solutions are also steady state distributions.

Figure 8: A Markov chain with multiple recurrent classes.

A recurrent class is a set S̃ of states such that if St ∈ S̃ then every state in S̃ will be visited infinitely
often and no state outside S̃ will be visited after time t. In the example of Figure 8, there are two recurrent
classes: {2} and {3}. This example highlights the fact that, when there are multiple recurrent classes, there
are multiple steady state distributions. Further, if a Markov chain has a single recurrent class S̃ then there
is a unique steady state distribution.

4 Infinite MDPs

While a steady state distribution exists for any finite state Markov chains, there are infinite state Markov
chains with no steady state distribution. For example, when dynamics are unstable, there is no steady state

8

distribution. Figure 9 illustrates such instability arising in models we formulated earlier for a queueing system
and for pursuit dynamics. The queueing system becomes unstable, with queue length growing unbounded
over time, if we set the policy threshold to infinity, meaning that we only ever use the slow service mode.
With this slow mode, on average, the number of customers arriving per unit time exceeds the number served.
Pursuit dynamics become unstable if the pursuer overaccelerates. To produce the instability illustrated in
the plot, we increased acceleration by between four and five times.

A sufficient condition for existence of a steady state distribution is that there is a positive recurrent state.
A positive recurrent state is a state that will be visited infinitely often if visited at all and for which the
expected return time is finite.

Figure 9: Instability arising in queueing and pursuit.

9

