Markov Decision Processes Lecture Notes 03

Objectives
Authors: Benjamin Van Roy September 29, 2025

1 Reward

For an MDP (S, A, P), different policies can generate different dynamics. To choose among them, we need
an objective that expresses preferences. We will specify objectives using reward functions.

A reward function r : § x A — R maps state-action pairs to scalar rewards. This function assigns a
numerical value r(s, a) that indicates the desirability to being in a state s and taking action a. Let us provide
a few examples.

1.1 Tetris

Recall the MDP (S, A, P) specified in Lecture Notes 01 to model the game of Tetris. Each state s encodes
a board configuration and the action set is A = {left, right, drop, none}. There are multiple natural reward
functions. One natural choice would be to take r(s,a) to be the number of rows of the Tetris board that
would be eliminated by taking the action a at state s. Another choice could be to assign a very large negative
reward if (s,a) leads to termination of the game, and zero reward otherwise.

1.2 Queueing

In Lecture 01, we specified an MDP (S, A, P) to model a queueing system. Each state is a queue length and
the action indicates whether to apply a fast or slow mode of service. In such a system its natural to want to
minimize wait times. One way to do that is by attributing a negative reward to having each customer wait
at each time. The sum of these negative rewards at any given time is simply the queue length. Hence, we
could take the reward r(s, a) to be the number of waiting customers, which is the negative queue length —s.

1.3 Investment and Consumption

The investment process described in Lecture Notes 01 modeled the dynamics of wealth. While one could
argue that an investor prefers more to less, a holistic model should view wealth as a means used to satisfy
ends through its use for consumption. We now consider a model that endogenizes consumption decisions
and attributes reward to consumption.

To keep things simple let us assume there is only one risky security. Hence, decisions allocate wealth
between a riskless security, a risky security, and consumption. In particular, the MDP (S, A4, W, f,v) has
S=R,,A={a€R?:a>0,a; +az <1}, and W = R,. The state expresses current wealth, the action
provides fractions allocated to the risky asset and to current consumption. The disturbance is the return of
the risky security. The return of the riskless security is a fixed constant z. The state update function is

f(s,a,w) = z(1 —ag)s + (w — 2)ags.

One might consider attributing reward to the quantity of wealth consumed, in which case the reward
function would be
r(s,a) = ags.

However, as we will see in the next homework assignment, this incentivizes behavior that risks dire levels of
future consumption. Taking reward instead to be

r(s,a) = u(azs),



for a suitable concave increasing utility function w incentivizes more sensible behavior.

1.4 Revenue Management

Revenue management systems are deployed widely across the transportation and entertainment industry to
manage automated sales, for example, of flight tickets. Here we consider a simple example.

Suppose a vendor sells tickets to a concert. They begin with Sy tickets. While each ticket are indistin-
guishable to the vendor, they can increase their earnings via price differentiation. In particular, to segment
customers, they sell two classes of tickets — standard and VIP — at prices psq < pvip- Customer’s perceive a
difference in status, perhaps signaled through red carpet access and glass of champagne offered to VIP ticket
holders.

At each time ¢, the vendor receives a request for either a standard or VIP ticket, or neither. Let ¢gq
and gyip be the probabilities of the first two events and 1 — gstq — qvip, the third. The vendor’s decision at
each time indicates whether or not they are willing to accept a standard ticket request if one arrives. Any
tickets not sold by time T" become worthless since the concert takes place then and there will therefore be
no further ticket requests.

This revenue management system can be modeled by an MDP (S, A, P). The state and action spaces
are S = {0,1,2,...}? and A = {accept, reject}. At each time t < T, S;1 is the number of unsold tickets,
St2 = T —t is the remaining time, and A; indicates whether a request for a standard ticket should be
accepted. It is straightforward to provide expressions for transition probabilities. A natural reward function
expresses the expected revenue over the next time step:

QstdPstd + QvipPvip if s2 > 0,a = accept
T(S, a) = QvipPvip if Sog > O, a = reject
0 if SS9 = 0.

1.5 LLM Math

Suppose we want to produce a language model that solves challenging mathematical problems. With such
problems, it can be much easier to verify that a solution is correct based on the reasoning and final answer
than it is to produce the solution. We formulate here an MDP (S, A, P) that models dynamics and a reward
function 7 : § x A — R.

The action space is the set of tokens A = {1,...,M}. Each token could, for example, be an ASCII
character, except for token M, which indicates the end of a message. The state space & = U2 A" is the
set of token strings. The initial state Sy is a string that describes a math problem and ends with token M.
Each next state Siy1 = f(S, Az) is the concatenation of the previous string S; with the next token A;. A
stationary policy 7 selects the next action according to A;y; ~ mw(-|S¢). The reward r(S¢, A¢) is zero unless
Ay = M and the string S; provides a math problem followed by a verifiably correct solution.

2 Return

An effective action should be chosen not only for its impact on the immediate reward Ry = r(St, A;) but
also on subsequent rewards. To balance between rewards realized at different times, we need an operation
that combines them to produce a single scalar metric that expresses desirability of the sequence of rewards.
This scalar metric is often referred to as the return.



2.1 Total Return

With our revenue management system, for example, it is natural to simply sum rewards accrued through
the time T'. This gives rise to a metric
T—1
> R (1)
t=0

For the revenue management system, this is equivalent to the infinite sum E:io Ry+1 because Ry =0 for
t > T, since there are no ticket requests after time 7.

An infinite sum of nonzero rewards is typically unbounded. In particular, Zfi o Ri41 is typically oo or
undefined. While we may prefer sequences that lead to +oo, there could be very many, and as such, this
way of combining rewards does not sufficiently discriminate between trajectories: many that appear good at
all will be assigned a score of +oo.

2.2 Discounted Return

Discounting leads to an alternative approach for combining an infinite sequence of rewards. The discounted
sum of rewards takes the form?!

> A'Risa, (2)
=0

where v € [0,1) is a discount factor that expresses time preference. If rewards are bounded then the
discounted sum is finite.

To offer one intepretation of this discounted sum, suppose the agent will have a finite but unknown lifespan
T. In particular, let T be geometrically distributed, taking values in {1,2,3,...}, with mean 1/(1—+). Then,
the average over possible lifespans is

0o T-1 0o
D=V Ripr =D ' Riga (3)
T=1 =0 =0

Hence, discounting future rewards offers a natural way of weighting them based on the probability that the
agent survives long enough to enjoy them.

Our model of investment and consumption offers another context where discounting may be natural. One
may discount to model a random lifespan after which wealth cannot be consumed. Or one may discount to
reflect an individual’s personal preferences. For example, an individual could enjoy consuming more sooner
rather than later.

2.3 Average Return

MDPs are often used to model processes with very small time steps and where rewards remain relevant
over a long duration. For example, a typical Internet switch may operate at around 100MHz, with up to a
hundred million actions executed each second. And the throughput and delay achieved matter throughout
a very long duration. While such a system and its performance objectives can be modeled in terms of an
MDP and a reward function, how should rewards be combined over time? If we use the discounted return,
the discount factor ought to be very close to one. since it is not clear what specific value to choose, we might
as well consider the limit as the discount factor approaches one. This motivates the average return:?

[e%s) T—1
. 1
lim(1—7) Y Y Ripr = Jim > R (4)

1
ll =0 =0

1This limit is guaranteed to exist for a countable-state MDP and bounded reward function. Beyond that, other technical
conditions are required.

2These limits are guaranteed to exist and be equal for a finite-state MDP under a stationary policy. Beyond that, other
technical conditions are required.



The average return offers a useful objective in many environments. For example, for our queueing model,
minimizing the average queue length seems reasonable. And for our inventory model, minimizing average
cost seems reasonable.

But there are contexts where average return seems like a natural choice but does not quite suffice. To
offer an example, let us revisit Tetris. Average return offers a useful metric if the game lasts indefinitely. But
if it does not then the average return will be zero. And, among trajectories that earn zero average return,
we would naturally prefer those that accumulate greater reward. The average return does not distinguish
between such trajectories.

To remedy this, it is common to use a second metric, which we will call the relative return. The relative
return is defined by

lim Z ’yt (Rt+1 — /\), (5)
711 e

where X is the average return. Intuitively, the relative return measures the extent to which rewards are above
or below the long-term average before the running average converges. The relative reward serves to break
ties. When two trajectories share the same average return, the one with greater relative reward is preferred.

If the Tetris game ends then A = 0 and the relative return is the total return. If the game never ends then
it is natural to prefer trajectories with larger average return and, if required, break ties based on relative
return.

3 Expected Return

We have discussed forms of return, which combine rewards across a trajectory. While returns offer metrics
for choosing between trajectories they do not suffice when it comes to choosing between policies. This is
because rewards are realized after a policy is chosen. The choice must be based on expectations about the
future.

3.1 Expected Total Return

We could, for example, take the expectation of total return:

T—1
E Ry
=0

This represents an integral over probability-weighted trajectories. The subscripts Sy and 7 specify the initial
state and the policy used to select actions. This expectation depends on the initial state and policy. The
expected total return can be used as an objective for selecting between policies. Each policy yields a different
expectation, and larger values are preferred.

(6)
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3.2 Expected Discounted Return

Taking the expectation of discounted return leads to a second objective:

3.3 Gain and Bias

Finally, another useful objective is the expected average return, also called the gain:

1 T-1
lim Esyx |7 > Revi
t=0

T—o0




A policy that maximizes the gain is said to be gain-optimal. The expected relative return, also called the
bias, is defined by

o0
lim ESOJT Z Pyt(RH-l - )‘So,ﬂ') ’ (9)
11 e
where Ag,  is the gain. We can define a lexicographic objective that is optimized by choosing from among
gain-optimal policies one that maximizes the bias. Such a policy is referred to as bias-optimal. The bias
serves to break ties between gain-optimal policies.

3.4 Concrete Notation

We have expressed expected returns via somewhat abstract notation. Each expectation can be approximated
via simulating trajectories and averaging returns. When state and action spaces are finite and policies
are stationary, such expectations can alternatively be computed via matrix operations. Expressing the
expectations in terms of more concrete matrix notation makes that clear. We now define such notation.

Consider an MDP (S, A, P) with finite S and A. Without loss of generality, let S = {1,...,|S|} and
A={1,...,|A}. For any stationary policy 7, let P be a matrix with elements Prso = >, 4 m(als) Poss-
Let rr be a vector with components r., = > . 4 7(a|s)r(s,a). We then have

T-1 17 T-1
]ESO,TA' Z Rt+1 = Z (P;'Tﬂ)so ) (10)
t=0 i t=0
ESO,W Z’thtJrl = Z’}/t (P;Tﬂ')su y (11)
t=0 1l =0
= 7 =
Tlim Esy,x T Riyq :Thm T (Pﬁrﬂ)s , (12)
- t=0 | el o
lim By Z'Vt(RtJrl —Aso,n) | = liHllZWt ((Rﬁ”)so - )‘SOJT) ) (13)
¥t = | ¥t =0

where Ag,  is the gain.

4 State-Action Probabilities

Expressing expected returns in terms of state-action probabilities can offer additional insight. In this section,
we will study such expressions for infinite-horizon objectives. We restrict attention to MDPs with finite state
and action spaces and policies that are stationary. Concepts we study extend to infinite state and action
spaces, under suitable technical assumptions. The restriction to stationary policies is warranted because, as
we will see in future lectures, in most contexts of interest, for each of our infinite-horizon objectives, there
exists an optimal policy that is stationary.

4.1 Average Return

In this section, we will make a simplifying assumption that each stationary policy n induces a Markov
process (S, P;) with a single recurrent class of states. While ideas extend more generally, they become more
complicated in the absence of this assumption.



4.1.1 A Balance Equation for State-Action Probabilities

Under our assumption, the gain Ag, » does not depend on Sy, so we write it simply as A,. Further, each
stationary policy 7 induces a steady-state distribution u, that uniquely solves

pu(s') = Z Z 11(8) Prss (14)

sES acA

within As. The gain under 7 can then be written as

An = ZHW(S) Z m(als)r(s,a) = Z Z tir (s, a)r(s, a), (15)

sES acA s€SacA

where, with some abuse of notation, we define state-action probabilities jir(s,a) = pr(s)m(als).
The state-action probabilities u, uniquely solve a balance equation

Z u(s' a') = Z Z w(s,a)Passy  Vs' €S (16)

a’eA sES acA

within Agx 4. Further, any u that solves this equation is induced by some policy 7. Hence, there is a policy
7 with gain A, if and only if there is a solution to (16) such that Ax = > s> ,c 4 i(s,a)r(s,a).

4.1.2 Geometry of State-Action Probabilities

As we have explained, p solves the balance (16) if and only if there is a stationary policy 7 such that p = p.
The set of solutions is the intersection of a unit simplex and solutions to a linear system of equations. Hence,
it is defined by linear constraints and thus a polytope. Let us denote this polytope by P.

It can be shown that p is a vertex of P if and only if g = p, for some deterministic stationary policy .
Hence, vertices map to deterministic policies while other elements of the polytope map only to stochastic
policies.

Because p € P if and only if y = u, for some stationary policy 7w, we have

max Ar = IilEa?))(Z Z (s, a)r(s,a). (17)

seES acA

Hence, the maximal gain can be obtained by solving a linear program. Further, if we were to use the simplex
method, that would deliver a vertex solution p,. This vertex is equal to p, for some deterministic stationary
policy . Hence, under our assumptions there must always be a deterministic stationary policy that is
optimal.

4.2 Discounted Return

Concepts we have presented in the context of average return extend to discounted return. In particular,
maximizing discounted return is equivalent to maximizing average return with a modified transition matrix:
P+ (1— ’y)llgo. This gives rise to a modified balance equation:

Z u(s'sa") = 'yz Z (s, a)Passs + (1 —7)1g,(s') Vs’ €8. (18)

a’€eA sES acA

For any stationary policy m, there exists a unique solution to this balance equation. This solution is given
by

Nﬂ'(sa CL) = (1 - V)ESO,W [Z ’Yt]-s,a(St,At) (19)

t=0




The expected discounted return of a policy 7 can be written as

= Z Z tr(s,a)r(s,a). (20)

s€ES acA

(1 - V)ESU,W

D A'r(Si, Ar)
t=0

The maximal expected discounted return can be obtained by solving a linear program:

max > pls,a)r(s,a), (21)

s€SacA

where the polytope P is comprised of solutions to balance equation (18) that lie within the Agsx4. An
element p € P is a vertex if and only p = p, for some deterministic policy .

5 Pathological Cases

What we have covered in this lecture suggests that, given an MDP and a reward function, there is always a
stationary deterministic policy that is optimal. While that is typically the case, it is not always the case. For
example, there are pathological cases where no policy maximizes expected return. These pathological cases
are of interest to mathematicians who aim to develop coherent foundations for the field. But they almost
never arise in practical contexts. To give a sense for such pathological cases, let us discuss a couple in this
section.

A first example illustrates how there may be no policy that maximizes expected return. While we could
construct such an example with other notions of return as well, we will focus on total return. Consider an
MDP (S, A, P) with a single state S = {1} and a countably infinite action space A = {1,2,...}. Let the
reward function be defined by 7(s,a) =1 — 1/a. Consider an objective of maximizing expected total return
over a single time period: Eg, »[r(So, Ao)]. For any action a, the action a’ = a + 1 earns larger reward.
Similarly, forany policy 7, the policy 7’ defined by #'(1|h) = 0 and 7’(a + 1|h) = 7w(a|h), for a € A, earns
larger expected reward. It follows that no policy maximizes expected return.

In a second example, involving the same MDP and reward function, there is an optimal policy but no
stationary policy that is optimal. An optimal policy is given by m(alh) = length(h) + 1. In other words,
select actions Ag = 1, Ay = 2, Ay = 3, and so on. This policy attains a gain of Ag, » = 1, which must be
optimal because that is the largest possible per-time-step reward. However, it is not a stationary policy. For
any stationary policy 7, there is another stationary policy 7’ defined by #'(1|s) = 0 and 7'(a + 1|s) = w(als)
that attains larger gain.



