
Markov Decision Processes Lecture Notes 05

Value Iteration
Authors: Benjamin Van Roy October 13, 2025

1 Bellman Operators

Bellman operators offer concise notation for expressing Bellman’s equation as well as steps of planning
algorithms. For a fixed policy π, we have a Bellman operator Tπ : RS 7→ RS , defined by

(TπV)(s) =
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

Pass′V (s′)

)
,

for all s ∈ S. Then, there is the optimal Bellman operator T : RS 7→ RS , defined by

(TV)(s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

Pass′V (s′)

)
.

Each of these operators also depends on the MDP (S,A, P) and the discount factor γ ∈ [0, 1], though our
notation does not explicitly convey that dependence.

With this notation, Bellman equations satisfied by discounted value functions can be written concisely
as

Vπ,γ = TπVπ,γ and V∗,γ = TV∗,γ . (1)

Similarly, for total value functions, we have

Vπ,τ = TπVπ,τ−1 and V∗,τ = TV∗,τ−1. (2)

for τ = 1, 2, . . . , T . We will discuss Bellman equations for gain/bias later.

2 Total Value Iteration

The value iteration algorithm generates value functions via a process sometimes referred to as backward
induction. To produce total value functions, this involves initializing with Ṽ0 = 0 and generating iterates
k = 1, 2, . . . according to Ṽk+1 = T Ṽk. Each iterate satisfies the Bellman equation (1) by construction.
Hence, V∗,T = ṼT . Algorithm 2 more concretely presents this procedure for computing V∗,0, . . . , V∗,T .

Algorithm 1 total value iteration

Ṽ0(s)← 0 for all s ∈ S
for k = 1, . . . , T do

Ṽk+1(s)← maxa∈A(r(s, a) +
∑

s′∈S Pass′ Ṽk(s
′)) for all s ∈ S

A similar procedure computes Vπ,0, . . . , Vπ,T . In particular, initialize with Ṽ0 = 0 and generate iterates

k = 1, 2, . . . according to Ṽk+1 = TπṼk.

1

2.1 Example: Shortest Path

Let us work through the special case of a shortest path problem. Such a problem is characterized by an
undirected graph (V, E), origin and destination nodes vorgn, vdest ∈ V, and distances d : E → [0, dmax].

To formulate this in terms of an MDP (S,A, P), let S = V, A = V, and Pass′ = 1a(s
′). Take the reward

function to be

r(s, a) =

 −d(s, a) + 1a(vdest)|V|dmax if (s, a) ∈ E , s ̸= vdest
0 if s = a = vdest
−∞ otherwise.

Figure 1 provides an instance of a graph. Taking the origin and destination to be states 1 and 7, value
iteration delivers the numbers in Table 1. The upper-leftmost cell provides the minimal total value starting
at the initial state, which is 60. This the reward of 70 for reaching the destination minus the distances to
node 3 then 4 then 7, which is 3 + 2 + 5 = 10.

Figure 1: A shortest path problem.

state V∗,7 V∗,6 V∗,5 V∗,4 V∗,3 V∗,2 V∗,1 V∗,0
1 60 60 60 60 60 59 -1 0
2 60 60 60 60 58 -2 -1 0
3 63 63 63 63 63 63 -2 0
4 65 65 65 65 65 65 65 0
5 62 62 62 62 62 -3 -2 0
6 64 64 64 64 64 64 -1 0
7 0 0 0 0 0 0 0 0

Table 1: Each column provides the optimal total value function for a particular horizon.

2.2 Example: Linear-Quadratic Control

The computational requirements per value iteration scale with the numbers of states and actions. However,
special structure in some MDPs and rewards function enables dramatically more efficient computation. There
are even some problems with infinite state and action spaces where value iteration can be efficiently applied.
One example is linear-quadratic control.

While our point applies to linear-quadratic control more broadly, to keep our algebra simple, we will
restrict attention in this section to scalar state and action variables. In particular, dynamics evolve according
to

f(x, u, w) = ax+ bu+ w,

2

for fixed scalars a, b ∈ R, where w ∼ N (0, σ2). we take the reward function to be

r(x, u) = −x2 − cu2,

where c is a positive scalars.
What enables an efficient implementation of value iteration in spite of the infinite state and action spaces

is special structure retained by the value function. In particular, each kth iterate takes the form

Vk(x) = σ2
k−1∑
k′=0

ηk′ + ηkx
2,

for some scalar ηk. To see why, note that η0 = 0 and, for each k,

Vk+1(x) =(TVk)(x)

=max
u∈R

∫
1

σ
√
2π

e−
x2

2σ2 (r(x, u) + Vk(ax+ bu+ w))dw

=max
u∈R

∫
1

σ
√
2π

e−
x2

2σ2

(
−x2 − cu2 + σ2

k−1∑
k′=0

ηk′ + ηk(ax+ bu+ w)2

)
dw

=σ2
k∑

k′=0

ηk′ − x2 + ηka
2x2 +max

u∈R
((ηkb

2 − c)u2 + 2ηkabxu).

Setting the derivative to zero leads to

u = − ηkab

ηkb2 − c
x,

and therefore,

Vk+1(x) =σ2
k∑

k′=0

ηk′ − x2 + ηka
2x2 + (ηkb

2 − c)

(
ηkab

ηkb2 − c

)2

x2 − 2
η2ka

2b2

ηkb2 − c
x2

=σ2
k∑

k′=0

ηk′ − x2 + a2
(
ηk −

η2kb
2

ηkb2 − c

)
x2

=σ2
k∑

k′=0

ηk′ + ηk+1x
2,

for some ηk+1.
Given the special structure of Vk, we need to compute only the scalar ηk in each iteration. In particular,

ηk+1 ← −1 + a2
(
ηk −

η2kb
2

ηkb2 − c

)
.

Hence, computational requirements do not scale with the number of states (which is infinite).

3 Discounted Value Iteration

To produce a discounted value function, we initializing with some Ṽ0 and generating iterates k = 1, 2, . . .
according to Ṽk+1 = T Ṽk. As we will establish, if the discount factor is in [0, 1) and there are finite numbers
of states and actions, this sequence is guaranteed to converge on V∗,γ .

3

Algorithm 2 discounted value iteration

initialize with some Ṽ0

for k = 1, 2, 3, . . . do
Ṽk+1(s)← maxa∈A(r(s, a) + γ

∑
s′∈S Pass′ Ṽk(s

′)) for all s ∈ S

A similar procedure computes Vπ,0, . . . , Vπ,T . In particular, generate iterates k = 1, 2, . . . according to

Ṽk+1 = TπṼk.

3.1 Convergence Analysis

Convergence follows from the fact that, with a discount factor γ ∈ [0, 1), the Bellman operator T is a
contraction mapping with respect to the maximum norm.

Theorem 1. (contraction mapping) Fix a finite-state finite-action MDP (S,A, P), a reward function
r : S ×A → R, and a discount factor γ ∈ [0, 1). For all V, V ′ ∈ RS ,

∥TV − TV ′∥∞ ≤ γ∥V − V ′∥∞.

Proof. For all s ∈ S,

(TV)(s)− (TV ′)(s) =max
a∈A

(
r(s, a) + γ

∑
s′∈S

Pass′V (s′)

)
−max

a∈A

(
r(s, a) + γ

∑
s′∈S

Pass′V
′(s′)

)

≤max
a∈A

(
r(s, a) + γ

∑
s′∈S

Pass′V (s′)

)
−

(
r(s, a) + γ

∑
s′∈S

Pass′V
′(s′)

)
=γmax

a∈A

∑
s′∈S

Pass′(V (s′)− V ′(s′))

≤γmax
a∈A

max
s′∈S
|V (s′)− V ′(s′)|

=γ∥V − V ′∥∞.

The result follows.

And as we mentioned earlier the contraction property leads to a convergence result.

Theorem 2. (convergence) Fix a finite-state finite-action MDP (S,A, P), a reward function r : S ×A →
R, and a discount factor γ ∈ [0, 1). For any Ṽ0, the sequence Ṽ0, Ṽ1, Ṽ2, · · · generated according to Ṽk+1 = T Ṽk

converges on V∗,γ .

Proof. Recall that V∗,γ = TV∗,γ . For each k, we have

∥V∗,γ − Ṽk+1∥∞ = ∥TV∗,γ − T Ṽk∥∞ ≤ γ∥V∗,γ − Ṽk∥∞.

It follows that
∥V∗,γ − Ṽk+1∥∞ ≤ γk∥V∗,γ − Ṽ0∥∞,

and therefore, ∥V∗,γ − Ṽk+1∥∞ vanishes.

Analogous results pertain to Tπ. We state them without proof.

Theorem 3. (contraction mapping) Fix a finite-state finite-action MDP (S,A, P), a reward function
r : S ×A → R, a discount factor γ ∈ [0, 1), and a stationary policy π. For all V, V ′ ∈ RS ,

∥TπV − TπV
′∥∞ ≤ γ∥V − V ′∥∞.

Theorem 4. (convergence) Fix a finite-state finite-action MDP (S,A, P), a reward function r : S ×A →
R, a discount factor γ ∈ [0, 1), and a stationary policy π. For any Ṽ0, the sequence Ṽ0, Ṽ1, Ṽ2, · · · generated
according to Ṽk+1 = TπṼk converges on Vπ,γ .

4

3.2 Example: Queueing

Recall our queueing example from Lecture 04, which allows a maximum of twenty customers waiting in the
queue. If a customer arrives when the queue is full, that customer abandons and this incurs a cost of 500.
This is large relative to the cost of service, which is 30 for the fast mode and 0 for the slow mode. Each
waiting customer incurs one unit of cost per time step.

Over each time step, a customer arrives with probability 0.5. If a customer is present then their service
is completed over the next time step with probability 0.7 or 0.4, depending on whether the fast mode or slow
mode of service is deployed.

Expected discounted return, with a discount factor of γ = 0.99, is maximized by a policy that uses the
slow mode of service when there are no more than 12 waiting customers and, otherwise, the fast mode.

Figure 2 plots the value function Ṽk produced for values of k that are multiples of 25. We initialize with
Ṽ0 = 0 and all rewards are negative, so the values decrease as k increases. The sequence appears to converge,
as differences between iterates are vanishing.

Figure 2: Optimal discounted value functions for a queueing system.

3.3 Example: Linear-Quadratic Control

We considered ealier in these notes total value iteration for a simple linear-quadratic control problem. Iterates
took the form Ṽk = σ2

∑k−1
k′=0 ηk′ + ηkx

2, with ηk updated according to

ηk+1 ← −1 + a2
(
ηk −

η2kb
2

ηkb2 − c

)
.

Discounted value iteration generate iterates of the form Ṽk = σ2
∑k−1

k′=0 γ
k−k′

ηk′ + ηkx
2, with a modified

update formula:

ηk+1 ← −1 + γa2
(
ηk −

η2kb
2

ηkb2 − c/γ

)
.

5

One may be tempted to solve a fixed point equation of the form

η∗ = −1 + γa2
(
η∗ −

η2∗b
2

η∗b2 − c/γ

)
(3)

to obtain the optimal discounted value function. Indeed, there is a scalar η∗ that solves this equation for
which

V∗,γ(x) =
γσ2η∗
1− γ

+ η∗x
2.

However, Equation (3) is equivalent to a quadratic equation and typically has two solutions, one positive
and the other negative. It is the negative solution that provides the parameter η∗ for the optimal discounted
value function.

This example highlights technical complexities that can arise with infinite state spaces. While much
insight developed for finite state spaces extends to infinite state spaces, the extensions often require technical
assumptions.

4 Distributed and Asynchronous Computation

Once useful feature of discounted value iteration is that it can be applied in a distributed and asynchronous
manner. Suppose, for example, you have access to a large number of CPUs. Say, enough to allocate one
per state. Then, you could apply each CPU to update the value of one state according to V (s) := (TV)(s).
Even if some CPUs update more frequently than others, this mode of asynchronous value iteration will
converge on the optimal value function. The following theorem captures this robustness of value iteration
to asynchronous value iteration.

Theorem 5. (convergence) Fix a finite-state finite-action MDP (S,A, P), a reward function r : S ×A →
R, and a discount factor γ ∈ [0, 1). If S0,S1, . . . is a sequence of subsets of S such that each element s ∈ S
appears infinitely often then, for any Ṽ0, the sequence Ṽ0, Ṽ1, Ṽ2, · · · generated according to

Vk+1(s) =

{
(TVk)(s) s ∈ Sk
Vk(s) s /∈ Sk.

(4)

converges on V∗,γ .

Proof. Recall that V∗,γ = TV∗,γ . Since T is a contraction mapping, for each V and s ∈ S,

|V∗,γ(s)− (TV)(s) ≤ γ∥V∗,γ − V ∥∞.

It follows that, for all s ∈ Sk,
|V∗,γ(s)− Vk+1(s)| ≤ γ∥V∗,γ − Vk∥∞.

Because each state appears infinitely often in the sequence S0,S1, . . ., we can choose indices k0 = 0, k1, k2, k3, . . .
such that within each interval ki, . . . , ki+1 − 1, each state appears at least once. It is easy to see then that,
for all i and s ∈ S

|V∗,γ(s)− Vki+1
(s)| ≤ γ∥V∗,γ − Vki

∥∞.

The result follows.

This result can be generalized to show that value iteration is tolerant to communication delays. In
particular, if it takes time to relay updated values from one CPU to another so that each uses outdated
values, value iteration still converges on the optimal discounted value function. Bertsekas and Tsitsiklis
[1989] elaborate on this and provides more comprehensive theoretical results.

Even with a single processor, asynchronous application of value iteration can accelerate convergence. A
special case of this is Gauss-Seidel value iteration, which updates a the value function at a single state at

6

a time. To contrast, the standard version of value iteration that updates values at all states in parallel is
called Gauss-Jacobi value iteration.

Figure 3 plots iterates generated by Gauss-Seidel versus Gauss-Jacobi value iteration. The latter makes
more progress with each sweep through the state space.

Figure 3: Gauss-Jacobi (left) vs Gauss-Seidel (right) value iteration for the queueing system. Iterates 1
through 1000, with every 25th iterate plotted.

For some problems, the difference in convergence rate between Gauss-Seidel and Gauss-Jacobi value
iteration can be dramatic. An example of this is the river swim environment, illustrated in Figure 4. In this
environment, a large reward is earned when arriving at the rightmost state. But a small cost is incurred for
each rightward transition.

Figure 4: A river swim environment.

Figure 5 plots iterates produced by Gauss-Seidel and Gauss-Jacobi value iteration. The former converges
after one sweep through the state space. The latter requires as many iterations as there are states.

5 Gain and Bias via Value Iteration

There are versions of value iteration designed to compute gain and bias functions. One version, which is
studied in [Bertsekas, 2011], generates a sequence of total value functions:

Jk+1 ← TJk.

Then, gain and bias functions are given by

λ̃k+1 = Jk+1 − Jk and Ṽk = Jk − kλ̃k.

Figure 6 plots gain and bias functions generated in this way for the queueing system.
As established in [Bertsekas, 2011], when periodicity is not a concern, this leads to a gain/bias optimal

policy.

7

Figure 5: Gauss-Jacobi (left) vs Gauss-Seidel (right) value iteration for river swim. Iterates 1 through 10.

Theorem 6. (convergence) Fix a finite-state finite-action MDP (S,A, P), a reward function r : S ×A →
R, and an initialization J0 ∈ RS . Let J1, J2, . . . be a sequence such that Jk+1 = TJk for all k. Let
Ṽ = limk→∞(Jk − kλ∗). If every gain optimal stationary policy is aperiodic then λ̃ = limk→∞(Jk+1 − Jk)
and Ṽ = limk→∞(Jk − kλ∗) satisfy the optimality equations:

λ(s) =max
a∈A

∑
s′∈S

Pass′λ(s
′) ∀s ∈ S (5)

V (s) = max
a∈A∗(s)

(
r(s, a)− λ∗(s) +

∑
s′∈S

Pass′V (s′)

)
∀s ∈ S, (6)

where A∗(s) is the set of actions that attains the maximum in (5).

It follows from this result that λ̃ = λ∗ and any policy that attains that maximum in (6) is gain and bias
optimal.

It would be nice to have a version of value iteration that works even in the face of periodicity. While we
haven’t seen an analysis of this algorithm in the literature, we conjecture that the following will do the job.
First, let γ0, γ1, γ2, . . . be a decreasing sequence of scalars in (0, 1] for which

∑
k γk = ∞ and

∑
k γ

2
k < ∞.

Then, let
Jk+1 ← γkJk + (1− γk)TJk,

and
λ̃k+1 = Jk+1 − Jk and Ṽk = Jk − kλ̃k.

References

Dimitri Bertsekas. Dynamic programming and optimal control, volume 2. Athena scientific, 2011.

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-Hall,
Englewood Cliffs, 1989.

8

Figure 6: Gain and bias functions for a queueing system. Every 25th iterate is plotted.

9

