
Markov Decision Processes Lecture Notes 06

Policy Iteration
Authors: Benjamin Van Roy October 20, 2025

1 Policy Evaluation

Consider an MDP (S,A, P), reward function r, and discount factor γ ∈ [0, 1). Recall from Theorem 5 of
Lecture 04 that, for any stationary policy π, Vπ,γ is the unique solution to the system of equations

V (s) =
∑
a∈A

π(a|s)

(
r(s, a) + γ

∑
s′∈S

Pass′V (s′)

)
∀s ∈ S. (1)

This is a system of linear equations and can be written more concisely by defining a matrix Pπ and vector
rπ. In particular, let elements of the matrix be Pπss′ =

∑
a∈A π(a|s)Pass′ and components of the vector be

rπ(s) =
∑

a∈A π(a|s)r(s, a). Then the linear system of equations (1) can be written as

V = rπ + γPπV. (2)

The process of computing Vπ,γ is sometimes called policy evaluation. This is because Vπ,γ expresses the
performance of the policy π for each possible starting state. The function Vπ,γ is the unique solution to (2)
and hence can be computed by solving a system of |S| linear equations. This can be done by inverting a
matrix to obtain Vπ,γ = (I − γPπ)

−1rπ or by more computationally efficient algorithms for solving linear
systems of equations.

Figure 1 plots two value functions for the queueing example of Lecture 04, which allows up to twenty
customers to wait in the queue. These functions are obtained by solving (2) for two different policies: one
that only ever uses the fast mode of service and one that only ever uses the slow mode of service.

Figure 1: Discounted value functions for fast-only and slow-only policies in the queueing system.

1

2 Policy Iteration

In principle, one could find an optimal policy by evaluating each stationary deterministic policy and choosing
one that dominates all others. For example, we could populate Figure 1 with all such curves, and one will
attain the maximum among curves simultaneously across states. However, the computational requirements
of this process would be prohibitive, even for state spaces of modest size.

Policy iteration (Algorithm 1) provides a more efficient process of searching through policies. While value
iteration is initialized with a value function, policy iteration is initialized with a policy. Each iteration entails
first evaluating the iterate πk to obtain the value function Vπk,γ . Then, the next iterate πk+1 is chosen to
be greedy with respect to Vπk,γ .

Algorithm 1 discounted policy iteration

choose an initial policy π0

for k = 0, . . . ,K − 1 do
evaluate Vπk,γ

let πk+1 be a deterministic stationary policy that is greedy with respect to Vπk,γ

Figure 2 plots value functions generated by applying policy iteration to the queueing system. The initial
policy is chosen to be the one that always uses the slow mode of service. Each policy πk turns out to be
characterized by a threshold: the slow mode of service is chosen when the queue length is less than the
threshold and the fast mode when the queue length equals or exceeds the threshold. As can be seen from the
plot of thresholds, the policy converge in just six iterations. It is common in practical problems for policy
iteration to generate near-optimal policies within a small number of iterations. However, relative to value
iteration, the computation required per iteration is much larger.

Figure 2: Policy iteration for the queueing system. The threshold indicates the minimum queue length at
which the fast mode of service is applied

Let us now develop a deeper understanding of why each policy iteration ought to improve a policy and
why this process converges. To do so, we first establish an abstract property of Bellman operators.

Theorem 1. (monotonicity of T) Fix a finite-state finite-action MDP (S,A, P), a reward function r :
S ×A → R, and a discount factor γ ∈ [0, 1]. For all V, V ′ ∈ RS , if V ≤ V ′ then TV ≤ TV ′.

Proof. First note that, for all a ∈ A and s, s′ ∈ S, γPass′V (s′) ≤ γPass′V
′(s′) because the discount factor

γ and the probability Pass′ are nonnegative. Hence, γ
∑

s′∈S Pass′V (s′) ≤ γ
∑

s′∈S Pass′V
′(s′). It follows

2

that, for all s ∈ S,

(TV)(s) =max
a∈A

(
r(s, a) + γ

∑
s′∈S

Pass′V (s′)

)

≤max
a∈A

(
r(s, a) + γ

∑
s′∈S

Pass′V
′(s′)

)
=(TV ′)(s).

The result follows.

An analogous result applies to Tπ. We omit the proof, which would be very similar to the proof of
Theorem 1.

Theorem 2. (monotonicity of Tπ) Fix a finite-state finite-action MDP (S,A, P), a reward function
r : S × A → R, and a discount factor γ ∈ [0, 1]. For all policies π and V, V ′ ∈ RS , if V ≤ V ′ then
TπV ≤ TπV

′.

Each iteration of the policy iteration algorithm applies a policy improvement step. The policy improve-
ment theorem establishes that each policy improvement step can not reduce the expected discounted return
from any state and, unless the policy is already optimal, improves the expected discounted return from one
or more states.

Theorem 3. (policy improvement) Fix a finite-state finite-action MDP (S,A, P), a reward function
r : S ×A → R, and a discount factor γ ∈ [0, 1]. For any stationary policies π, if π′ is greedy with respect to
Vπ,γ then

1. Vπ,γ ≤ Vπ′,γ ,

2. if Vπ,γ = Vπ′,γ then Vπ,γ = V∗,γ .

Proof. We drop γ from the subscripts to reduce clutter. Note that

Vπ = TπVπ ≤ TVπ = Tπ′Vπ,

where the first equality follows from Bellman’s equation, the inequality follows from monotonicity, and the
final equality follows from the fact that π′ is greedy with respect to π. It follows from that

Vπ ≤ Tπ′Vπ ≤ T 2
π′Vπ ≤ T 3

π′Vπ ≤ · · · ≤ Vπ′ ,

where the inequalities starting with the second follow from monotonicity. Further, if Vπ = Vπ′ then this
sequence of inequalities implies that Vπ = Tπ′Vπ = TVπ. The equation Vπ = TVπ is the Bellman equation,
whose unique solution is V∗. Hence, if Vπ = Vπ′ then Vπ = V∗.

We can use the policy improvement theorem to establish finite-iteration convergence of policy iteration.

Theorem 4. (policy iteration) Fix a finite-state finite-action MDP (S,A, P), a reward function r :
S × A → R, and a discount factor γ ∈ [0, 1]. For any stationary policy π0, there exists a finite k such that
Vπk,γ = V∗,γ .

Proof. We drop γ from the subscripts to reduce clutter. By the policy improvement theorem, for all k,
Vπk

≤ Vπk+1
and, unless Vπk

= V∗, Vπk
̸= Vπk+1

. It follows that Vπk
is a monotonically nondecreasing

sequence of functions and that, if the sequence converges, it converges to V∗. Since each policy πk is a
deterministic stationary policy and there are a finite number of deterministic stationary policies, the sequence
must converge. The result follows.

3

3 Approximate Policy Iteration

When an MDP has too many states – take the game of Tetris, for example – it is not possible to store
one value per state. In such cases, one might instead approximate the value function using a parameterized
family of functions. In particular, suppose Ṽθ : S → R is a function parameterized by a vector θ ∈ RK .
Then, while we can not store a value function Vπ,γ , we might approximate it reasonably well by selecting a

suitable vector θ such that Ṽθ ≈ Vπ,γ .
Algorithm 2 presents an approximate version of policy iteration that generates iterates via approximate

policy evaluation. This leaves open the question of how θ is chosen in each iteration. We will discuss that
further later.

Algorithm 2 discounted approximate policy iteration

choose an initial policy π0

for k = 0, . . . ,K − 1 do
identify θ such that Ṽθ ≈ Vπk,γ

let πk+1 be a deterministic stationary policy that is greedy with respect to Ṽθ

Figure 3 plots iterates generated from applying approximate policy iteration to our queueing system.
The parameterized family of functions is taken to be

Ṽθ(s) = θ0 + θ1s+ θ2s
2.

This affords a quadratic approximation to any value function. Each iterate in the figure is generated by
minimizing squared error:

θ ∈ argmin
θ∈R3

∑
s∈S

(Vπk,γ(s)− Ṽθ(s))
2.

The value functions converge. The policy threshold converges but to a value of 9, which differs from the
optimal value. As shown in Figure 2, the optimal threshold is 13. That being said, the performance of a
policy with threshold of 9 is almost as good as one with a threshold of 13. More broadly, approximate policy
iteration with suitable parameterized functions often can generate effective policies.

Figure 3: Approximate policy iteration for the queueing system, with quadratic function approximation.
The threshold indicates the minimum queue length at which the fast mode of service is applied

The aforementioned implementation of approximate policy iteration requires minimizing a sum of squared
errors across the state space. While this results in a value function that can be encoded in terms of only a

4

few parameters, the computational requirements scale with the number of states. This becomes prohibitive
when the state space is large, as is the case, for example, in the game of Tetris.

In Lecture 04, we introduced rollouts as a way of avoiding this dependence of compute on the number
of states. But rollouts, especially if they are iterated, give rise to prohibitive online computational require-
ments. By online here we mean computation that must occur as actions are selected and executed in a real
environment.

Rollouts can, however, be combined with approximate policy iteration to offer an algorithm that can be
applied effectively with large state spaces. In particular, consider using rollouts in each policy evaluation
step as follows. First, randomly sample N initial states. Then, from each of these states, simulate a rollout
Sn
0 , A

n
0 , S

n
1 , A

n
1 , . . . with actions selected by πk. Then, solve a least squares problem of the form

θ ∈ argmin
θ∈R3

N∑
n=1

(∞∑
t=0

γtr(Sn
t , A

n
t)− Ṽθ(S

n
0)

)2

.

As N grows, θ converges to a vector that minimized Eπk
[(Vπk,γ(S0)− Ṽθ(S0))

2]. This procedure may require
many simulations (large N) and thus a lot of computation. The good news, however, is that the number of
simulations required does not grow with the number of states |S|.

4 Gain/Bias

The concepts of policy evaluation, policy improvement, and policy iteration extend naturally from expected
discounted return to gain and bias.

4.1 Policy Evaluation

Evaluation amounts to computing the gain and bias of a policy π:

λπ(s) = lim
T→∞

Es,π

[
1

T

T−1∑
t=0

r(St, At)

]
(3)

Vπ(s) = lim
γ↑1

Es,π

[∞∑
t=0

γt(r(St, At)− λπ(St))

]
. (4)

4.1.1 Unichain Case

Let us first consider computation of these functions for a unichain MDP. That is, an MDP for which the
Markov process induced by any stationary policy has a single recurrent class. In this case, λπ(s) does not
depend on s, and thus we can treat λπ as a scalar rather than a function.

One might consider solving the equation

V = TπV − λ1.

Each solution takes the form (λπ, Vπ + α1) for some α ∈ R. Any value of α provides a solution. The reason
for this multiplicity of solutions is that Pπ1 = 1, and therefore, if (V, λ) solves V = TπV − λ1 then

V + α1 = TπV + αPπ1− λ1 = Tπ(V + α1)− λ1.

A solution of the form (λπ, Vπ + α1) suffices for policy improvement because the constant shift of α1
does not impact choice of a greedy policy. However, one can also hone in on (λπ, Vπ) by instead solving an
augmented linear system of equations, as presented in the following result.

5

Theorem 5. Fix a finite-state finite-action unichain MDP (S,A, P) and a reward function r : S ×A → R.
For any stationary policy π and solution (λ ∈ R, V ∈ RS , J ∈ RS) to

V =TπV − λ1 (5)

V =(I − Pπ)J, (6)

λ = λπ and V = Vπ.

Equation (6) serves to rule out Vπ + α1 for α ̸= 0. To see why, note that I − Pπ has a right eigenvector
of 1 with eigenvalue 0. Hence, the range of I −Pπ rules out constant offsets. At the same time, Vπ is within
the range because,

(I − Pπ)Vπ = (I − Pπ) lim
γ↑1

∞∑
t=0

γtP t
π(rπ − λπ1) = rπ − λπ1,

and it follows that

(I − Pπ)

∞∑
t=0

P t
πVπ =

∞∑
t=0

P t
π(I − Pπ)Vπ = lim

γ↑1

∞∑
t=0

γtP t
π(rπ − λπ1) = Vπ.

Hence, (λπ, Vπ,
∑∞

t=0 P
t
πVπ) solves (5-6).

4.1.2 Multichain Case

Let us now relax the unichain assumption so that λπ is a function of state. In this case, λπ and Vπ can be
obtained by solving further augmented linear system of equations, as presented in the next result.

Theorem 6. Fix a finite-state finite-action MDP (S,A, P) and a reward function r : S ×A → R. For any
stationary policy π and solution (λ ∈ RS , V ∈ RS , J ∈ RS) to

λ =Pπλ (7)

V =TπV − λ (8)

V =(I − Pπ)J. (9)

λ = λπ and V = Vπ.

Equation (7) ensures that the gain from any state is equal to the expectation of the gain starting at
the next state. This equation was not needed for the unichain case because it is satisfied by all constant
functions and therefore would not have imposed any additional constraint on the set of solutions.

4.2 Policy Improvement

The following result pertains to a policy improvement step that applies to multichain MDPs.

Theorem 7. (policy improvement) Fix a finite-state finite-action MDP (S,A, P), a reward function
r : S × A → R, and a stationary policy π. For each s ∈ S, let A∗(s) = argmaxa∈A

∑
s′∈S Pass′λπ(s

′).
Choose a determistic stationary policy π′ such that

π′(s) ∈ max
a∈A∗(s)

(
r(s, a)− λπ(s) +

∑
s′∈S

Pass′Vπ(s
′)

)
,

with preference for π′(s) = π(s). If π′ ̸= π then one of the following to statements holds:

1. λπ ≤ λπ′ and there exists s ∈ S such that λπ(s) < λπ′(s).

2. λπ = λπ′ , Vπ ≤ Vπ′ , and there exists s ∈ S such that Vπ(s) < Vπ′(s).

Unichain MDPs can be viewed a special case where the gain function λπ does not depend on the state.
In that case, the policy improvement step simplifies because, for all s ∈ S, A∗(s) = A.

6

4.3 Policy Iteration

Repeated application of policy evaluation and improvement gives us a policy iteration algorithm.

Algorithm 3 gain-bias policy iteration

choose an initial policy π0

for k = 0, . . . ,K − 1 do
evaluate (λπk

, Vπk
)

for s ∈ S, A∗(s) = argmaxa∈A
∑

s′∈S Pass′λπk
(s′)

choose a deterministic stationary policy πk+1 such that

πk+1(s) ∈ max
a∈A∗(s)

(
r(s, a)− λπk

(s) +
∑
s′∈S

Pass′Vπk
(s′)

)
with preference for πk+1(s) = πk(s)

Theorem 8. (policy iteration) Fix a finite-state finite-action MDP (S,A, P) and a reward function
r : S × A → R. For any initial stationary policy π0, there exists a finite k such that iterates generated by
Algorithm 3 satisfy λk+1 = λk.

Together with Theorem 7, the fact that there are a finite number of deterministic stationary policies
implies that there is some k after which subsequent iterates are all equal to πk. It is easy to see that under
this policy πk, the gain λπk

and bias Vπk
satisfy the Bellman equations of Theorem 9 from Lecture 04 notes.

It follows from that theorem that λπk
= λ∗ and πk is gain-optimal.

Figure 4 plots bias functions generated by applying policy iteration to the queueing system, as well as
associated thresholds. The initial policy is chosen to be the one that always uses the slow mode of service.
Note that bias functions do not progress monotonically. But, as show in Figure 4, the bias functions do.

Figure 4: Bias functions from policy iteration for the queueing system. The threshold indicates the minimum
queue length at which the fast mode of service is applied

7

8

