Markov Decision Processes Lecture Notes 06

Policy Iteration
Authors: Benjamin Van Roy October 20, 2025

1 Policy Evaluation

Consider an MDP (S, A, P), reward function r, and discount factor v € [0,1). Recall from Theorem 5 of
Lecture 04 that, for any stationary policy 7, Vi , is the unique solution to the system of equations

V(s) = Z w(als) <r(s, a) + vy Z PaSS/V(S/)> Vs € S. (1)

acA s’eS

This is a system of linear equations and can be written more concisely by defining a matrix P, and vector
. In particular, let elements of the matrix be Prse = >, 4 m(a|s)Pass and components of the vector be
r7(8) = Y qeam(a|s)r(s,a). Then the linear system of equations (1) can be written as

V=r+~P;V. (2)

The process of computing V; - is sometimes called policy evaluation. This is because V; , expresses the
performance of the policy 7 for each possible starting state. The function V; - is the unique solution to (2)
and hence can be computed by solving a system of |S| linear equations. This can be done by inverting a
matrix to obtain Vy ., = (I — vP;) " 'r; or by more computationally efficient algorithms for solving linear
systems of equations.

Figure 1 plots two value functions for the queueing example of Lecture 04, which allows up to twenty
customers to wait in the queue. These functions are obtained by solving (2) for two different policies: one
that only ever uses the fast mode of service and one that only ever uses the slow mode of service.

—2000 A
— Vastls)

— Veiowls)
—3000

—4000 4

—5000 A

value

—6000

—7000 4

T T T T T T T T T T T T
8 9 1011121314 1516 17 18 19 20

queue length

Figure 1: Discounted value functions for fast-only and slow-only policies in the queueing system.

2 Policy Iteration

In principle, one could find an optimal policy by evaluating each stationary deterministic policy and choosing
one that dominates all others. For example, we could populate Figure 1 with all such curves, and one will
attain the maximum among curves simultaneously across states. However, the computational requirements
of this process would be prohibitive, even for state spaces of modest size.

Policy iteration (Algorithm 1) provides a more efficient process of searching through policies. While value
iteration is initialized with a value function, policy iteration is initialized with a policy. Each iteration entails
first evaluating the iterate m; to obtain the value function Vi, 5. Then, the next iterate mj1 is chosen to
be greedy with respect to V7, .

Algorithm 1 discounted policy iteration
choose an initial policy mg
for k=0,...,K—1do
evaluate V7, .
let 741 be a deterministic stationary policy that is greedy with respect to Vi,

Figure 2 plots value functions generated by applying policy iteration to the queueing system. The initial
policy is chosen to be the one that always uses the slow mode of service. Each policy m; turns out to be
characterized by a threshold: the slow mode of service is chosen when the queue length is less than the
threshold and the fast mode when the queue length equals or exceeds the threshold. As can be seen from the
plot of thresholds, the policy converge in just six iterations. It is common in practical problems for policy
iteration to generate near-optimal policies within a small number of iterations. However, relative to value
iteration, the computation required per iteration is much larger.

20.0

17.5 1

— Vpls) 15.0 4

vi(s)
— Vi(s)
— V3(s)
—_— Va(s)
— Vs(s)

Vi(s)
— Vyls)
—7000 Vg(s)

— Va(s)

12.5

10.0 1

7.59

policy threshold

5.0

2.5

— T T T T T T T T T
012 3 456 78 910111213 141516 1718 19 20 0 2 4 6 8 10

queue length iteration

Figure 2: Policy iteration for the queueing system. The threshold indicates the minimum queue length at
which the fast mode of service is applied

Let us now develop a deeper understanding of why each policy iteration ought to improve a policy and
why this process converges. To do so, we first establish an abstract property of Bellman operators.

Theorem 1. (monotonicity of T') Fiz a finite-state finite-action MDP (S, A, P), a reward function r :
S x A— R, and a discount factor v € [0,1]. For all V,V' € RS, if V. < V' then TV < TV'.

Proof. First note that, for all a € A and 5,8 € S, YP,ssV(s') < yP,ssV'(s") because the discount factor
v and the probability P,ss are nonnegative. Hence, v>_ s Puss'V(s') < 7> g Pass'V'(s'). It follows

that, for all s € S,

(TV)(s) = max (r(s, a)+ v Z Pass/V(s')>

s'eS

gmaj((r(s, a) + 7 Z Pass’V/(S/)>

ac
s'eS

=(TV’)(s).
The result follows. O

An analogous result applies to T;. We omit the proof, which would be very similar to the proof of
Theorem 1.

Theorem 2. (monotonicity of T,) Fiz a finite-state finite-action MDP (S, A, P), a reward function
r: S xA— R, and a discount factor v € [0,1]. For all policies 7 and V,V' € RS, if V. < V' then
T,V <T.V'.

Each iteration of the policy iteration algorithm applies a policy improvement step. The policy improve-
ment theorem establishes that each policy improvement step can not reduce the expected discounted return
from any state and, unless the policy is already optimal, improves the expected discounted return from one
or more states.

Theorem 3. (policy improvement) Fiz a finite-state finite-action MDP (S, A, P), a reward function
r:Sx A= R, and a discount factor v € [0,1]. For any stationary policies 7, if 7' is greedy with respect to
Vi then

L Ve < Vi,

2. if Voy =V then Vi = Vi .
Proof. We drop v from the subscripts to reduce clutter. Note that

V7'r = T7rV7'r < TV7T = T7r/v7ra

where the first equality follows from Bellman’s equation, the inequality follows from monotonicity, and the
final equality follows from the fact that 7’ is greedy with respect to . It follows from that

V7r S Tw’Vw S Tg/Vw S Tg/Vw S S V7r’7

where the inequalities starting with the second follow from monotonicity. Further, if V; = V., then this
sequence of inequalities implies that V; = T,V = TV,.. The equation V; = TV, is the Bellman equation,
whose unique solution is V. Hence, if V; = V,» then V, = V.. O

We can use the policy improvement theorem to establish finite-iteration convergence of policy iteration.

Theorem 4. (policy iteration) Fiz a finite-state finite-action MDP (S, A, P), a reward function r :
S x A — R, and a discount factor v € [0,1]. For any stationary policy o, there exists a finite k such that
VTUm‘Y = V*,”/'

Proof. We drop ~ from the subscripts to reduce clutter. By the policy improvement theorem, for all &,
Vie < Voo and, unless Vi, = Vi, Vi, # Vi .. It follows that V; is a monotonically nondecreasing
sequence of functions and that, if the sequence converges, it converges to V,. Since each policy 7y is a
deterministic stationary policy and there are a finite number of deterministic stationary policies, the sequence
must converge. The result follows. O

3 Approximate Policy Iteration

When an MDP has too many states — take the game of Tetris, for example — it is not possible to store
one value per state. In such cases, one might instead approximate the value function using a parameterized
family of functions. In particular, suppose Vy : S — R is a function parameterized by a vector § € RE.
Then, while we can not store a value function V; ,, we might approximate it reasonably well by selecting a
suitable vector § such that Vj ~ Vi e

Algorithm 2 presents an approximate version of policy iteration that generates iterates via approximate
policy evaluation. This leaves open the question of how 6 is chosen in each iteration. We will discuss that
further later.

Algorithm 2 discounted approximate policy iteration
choose an initial policy mg
for k=0,..., K —1do
identify @ such that Vy = Vi,
let w41 be a deterministic stationary policy that is greedy with respect to Vo

Figure 3 plots iterates generated from applying approximate policy iteration to our queueing system.
The parameterized family of functions is taken to be

‘79(8) =0y + 015+ 9252.

This affords a quadratic approximation to any value function. Each iterate in the figure is generated by
minimizing squared error:

0 € argmin Z(Vﬂkﬁ(s) —Va(s))%
OER3 =5
The value functions converge. The policy threshold converges but to a value of 9, which differs from the
optimal value. As shown in Figure 2, the optimal threshold is 13. That being said, the performance of a
policy with threshold of 9 is almost as good as one with a threshold of 13. More broadly, approximate policy
iteration with suitable parameterized functions often can generate effective policies.

~1000 -
20.0
—2000 -
o 17.54
—3000 - O |
& 150
w 7]
& —e000 1 E 12.5
— ~
© = 10.0 |
> -5000 - >
Y s
—6000 - re)
Q. 5.0
~7000 - 254
———— 0.0 +— ; ; ; ; ;
012345678 91011121314 151617 18 19 20 0 2 4 6 8 10
queue length iteration

Figure 3: Approximate policy iteration for the queueing system, with quadratic function approximation.
The threshold indicates the minimum queue length at which the fast mode of service is applied

The aforementioned implementation of approximate policy iteration requires minimizing a sum of squared
errors across the state space. While this results in a value function that can be encoded in terms of only a

few parameters, the computational requirements scale with the number of states. This becomes prohibitive
when the state space is large, as is the case, for example, in the game of Tetris.

In Lecture 04, we introduced rollouts as a way of avoiding this dependence of compute on the number
of states. But rollouts, especially if they are iterated, give rise to prohibitive online computational require-
ments. By online here we mean computation that must occur as actions are selected and executed in a real
environment.

Rollouts can, however, be combined with approximate policy iteration to offer an algorithm that can be
applied effectively with large state spaces. In particular, consider using rollouts in each policy evaluation
step as follows. First, randomly sample N initial states. Then, from each of these states, simulate a rollout
Sy, AL, ST, AT, . .. with actions selected by 7. Then, solve a least squares problem of the form

N 0o 2
6 € argmin Z <Z Yr(Sy, AY) — ‘70(53)> .
OeR? n=1 \t=0

As N grows, 6 converges to a vector that minimized Er, [(Vz, ~(S0) — Va(S0))?]. This procedure may require
many simulations (large N) and thus a lot of computation. The good news, however, is that the number of
simulations required does not grow with the number of states |S].

4 Gain/Bias

The concepts of policy evaluation, policy improvement, and policy iteration extend naturally from expected
discounted return to gain and bias.

4.1 Policy Evaluation

Evaluation amounts to computing the gain and bias of a policy =:

1 T-1
Ar(s) = Jim By | 2> r(Si, A (3)
t=0
Va(s) = 1’%111& m lz v (r(Sh, Ay) — AW(St))] (4)
t=0

4.1.1 Unichain Case

Let us first consider computation of these functions for a unichain MDP. That is, an MDP for which the
Markov process induced by any stationary policy has a single recurrent class. In this case, A;(s) does not
depend on s, and thus we can treat A; as a scalar rather than a function.

One might consider solving the equation

V=T,V — AL

Each solution takes the form (A, V; 4+ al) for some o € R. Any value of « provides a solution. The reason
for this multiplicity of solutions is that P,1 = 1, and therefore, if (V,\) solves V =T,V — A1 then

V4al=T,V+aP1l—Al=T(V+al)— AL

A solution of the form (A;,V,; + al) suffices for policy improvement because the constant shift of al
does not impact choice of a greedy policy. However, one can also hone in on (A;, V) by instead solving an
augmented linear system of equations, as presented in the following result.

Theorem 5. Fiz a finite-state finite-action unichain MDP (S, A, P) and a reward functionr : S x A — R.
For any stationary policy ™ and solution (A € R,V € RS, .J € RS) to

V =T,V -\ (5)
V =(I - P,)J, (6)
A=A andV =V_.

Equation (6) serves to rule out V; + a1 for o # 0. To see why, note that I — P, has a right eigenvector
of 1 with eigenvalue 0. Hence, the range of I — P, rules out constant offsets. At the same time, V; is within
the range because,

I —P)WVy=(I—P)limS AP, — A1) = 1 — Apl,
(1= PolVe = (1= Pl > Pl o)
and it follows that
(I—=Pp)> PiVe=> PLI—P)Vy=1m» +'PL(r, — A1) = V.
t=0 t=0 M
Hence, (Ar, Va, > iy PLVz) solves (5-6).

4.1.2 Multichain Case

Let us now relax the unichain assumption so that A; is a function of state. In this case, A, and V, can be
obtained by solving further augmented linear system of equations, as presented in the next result.

Theorem 6. Fix a finite-state finite-action MDP (S, A, P) and a reward function r : S x A — R. For any
stationary policy ™ and solution (A € RS,V € RS, J € R®) to

A=P.\ (7)
V =T,V — A (8)
V =(I — P,)J. (9)

A=A andV =V,.

Equation (7) ensures that the gain from any state is equal to the expectation of the gain starting at
the next state. This equation was not needed for the unichain case because it is satisfied by all constant
functions and therefore would not have imposed any additional constraint on the set of solutions.

4.2 Policy Improvement

The following result pertains to a policy improvement step that applies to multichain MDPs.

Theorem 7. (policy improvement) Fiz a finite-state finite-action MDP (S, A, P), a reward function
r:SxA—= R, and a stationary policy w. For each s € S, let A.(s) = argmax,c 4 > . cg Pass' Ar(s).
Choose a determistic stationary policy ' such that

7'(s) € max (r(&a) — A(s) + Z Pass’VTr(S/)> ,

ac€Ax(s) oy
with preference for w'(s) = w(s). If ©’ # 7 then one of the following to statements holds:
1. Ap < Ay and there exists s € S such that Az (s) < Az ().
2. Ap = A, Ve < Vi, and there exists s € S such that Vi (s) < Vi (s).

Unichain MDPs can be viewed a special case where the gain function A, does not depend on the state.
In that case, the policy improvement step simplifies because, for all s € S, A.(s) = A.

4.3 Policy Iteration

Repeated application of policy evaluation and improvement gives us a policy iteration algorithm.

Algorithm 3 gain-bias policy iteration
choose an initial policy mg
for k=0,...,K—1do
evaluate (Ar,, Vr,)
for s € S, Ai(s) = argmax,c 4 > ocs Pass' Ay, (s")
choose a deterministic stationary policy 741 such that

Trt1(8) € max (r(& a) — Ar.(s) + Z Poss' Vi, (3/)>

a€A,(s) oy

with preference for m11(s) = m(s)

Theorem 8. (policy iteration) Fix a finite-state finite-action MDP (S, A, P) and a reward function
r: S xA— R. For any initial stationary policy my, there exists a finite k such that iterates generated by
Algorithm 8 satisfy Ag+1 = .

Together with Theorem 7, the fact that there are a finite number of deterministic stationary policies
implies that there is some k after which subsequent iterates are all equal to 7. It is easy to see that under
this policy 7, the gain A,, and bias V;, satisfy the Bellman equations of Theorem 9 from Lecture 04 notes.
It follows from that theorem that A;, = A\, and 7 is gain-optimal.

Figure 4 plots bias functions generated by applying policy iteration to the queueing system, as well as
associated thresholds. The initial policy is chosen to be the one that always uses the slow mode of service.
Note that bias functions do not progress monotonically. But, as show in Figure 4, the bias functions do.

10000 A
201
8000 1
T
] O 154
6000 =
[y]
% 4000 - E
o < 10
= 20001 >
=
] O -
° o
—2000 1
o
012345678 9101112131415 1617 1819 20 0 2 a 6 8 10
queue length iteration

Figure 4: Bias functions from policy iteration for the queueing system. The threshold indicates the minimum
queue length at which the fast mode of service is applied

value

00|
20|
— Aols)
— Al
—40 4 — Azls)
— Ale)
— Aule)
07 — Asle)
— Asls)
—60 — Ayls)
Asls)
— Asle)
=70 1

T T T T T T T
9 101112 1314 1516 17 18 19 20

67 8
gueue length

