
Markov Decision Processes Lecture Notes 07

Linear Programming
Authors: Benjamin Van Roy November 3, 2025

1 The Optimal Discounted Value Function

Consider an MDP (S,A, P), a reward function r, and a discount factor γ. We study the linear program

minV
∑

s∈S V (s)
s.t. V (s) ≥ r(s, a) + γ

∑
s′∈S Pass′V (s′) ∀s ∈ S, a ∈ A.

(1)

As we will see, the unique optimal solution is V∗,γ .

1.1 Concise Expression

The linear program (1) can be expressed in a more concise manner in terms of a nonlinear optimization
problem. This is because the feasible region identified by one linear constraint per state-action pair can
instead be identified by one nonlinear constraint per state. This leads to the optimization problem:

minV
∑

s∈S V (s)
s.t. V (s) ≥ maxa∈A

(
r(s, a) + γ

∑
s′∈S Pass′V (s′)

)
∀s ∈ S. (2)

The reason (2) is equivalent to (1) is that requiring V (s) to be larger than some action-dependent quantity
for each action is equivalent to requiring that it be larger than the maximum over those quantities. Note that
the right-hand-side of each constraint in (2) can be rewritten as (TV)(s). Hence, the optimization problem
can be expressed very concisely as

minV
∑

s∈S V (s)
s.t. V ≥ TV.

(3)

1.2 Analysis of the Optimal Solution

The following theorem establishes that the unique solution is V∗,γ .

Theorem 1. Fix a finite-state finite-action MDP (S,A, P), a reward function r : S×A → R, and a discount
factor γ ∈ [0, 1]. V∗,γ is the unique optimal solution to the linear program (1).

Proof. Recall that the feasible set be written as V ≥ TV . By monotonicity,

V ≥ TV ≥ T 2V ≥ · · · ≥ V∗,γ .

Further, since V∗,γ = TV∗,γ , V∗,γ is in the feasible set. The result follows.

1.3 Toy Example

To offer a more concrete understanding of how the linear program leads to an optimal value function,
consider the simple MDP illustrated in Figure 1. There are two states S = {1, 2}. There are two actions
A = {stay, move}. The stay action self-transitions with probability 1− ϵ, while the move action transitions
to the other state with probabilty 1 − ϵ. The reward is r(s, a) = 1 if s = 1 and r(s, a) = 0 if s = 2. Let
ϵ = 0.1 and γ = 0.9. The optimal policy chooses stay at state 1 and move at state 2.

1

Figure 1: A simple MDP with two states and two actions. In each state, the stay action leads to a self-
transition with probability 1− ϵ. The reward is 1 when at the first state and 0 when at the second.

For this simple MDP, the linear program (1) can be written concretely as

minV V (1) + V (2)
s.t. V (1) ≥ 1 + γ(1− ϵ)V (1) + γϵV (2)

V (1) ≥ 1 + γϵV (1) + γ(1− ϵ)V (2)
V (2) ≥ γϵV (1) + γ(1− ϵ)V (2)
V (2) ≥ γ(1− ϵ)V (1) + γϵV (2).

(4)

For each state, there is one linear constraint per action. Figure 2 illustrates the feasible region. There is
one line per constraint. The shaded grey area is the feasible region. The objective selects the vertex closest
to the origin, which is where the blue and red lines meet. These lines correspond to the first and fourth
constraints, which are associated with state-action pairs (1, stay) and (2, move). Since these constraints are
binding at the optimal solution V∗,γ , the actions are greedy with respect to V∗,γ . Therefore, it is optimal to
select stay at state 1 and move at state 2.

Figure 2: The feasible region for the simple MDP with ϵ = 0.1 and γ = 0.9.

1.4 Queueing Example

Figure 3 plots an optimal solution to the linear program for the queueing example studied in previous
lectures, which allows up to twenty customers to wait in the queue. This recovers the same optimal value
function V∗,γ as we obtained, for example, via policy iteration.

2

Figure 3: Discounted optimal value function for the queueing system, computed via linear programming.

1.5 State-Relevance Weights

The objective
∑

s∈S V (s) of the linear program (1) sums values across states and thus treats each state
identically. Intuitively, one may think that it is more important to get values at some states right more than
others. This suggests weighting state-values in this objective. In particular, consider a weighted objective∑

s∈S w(s)V (s), where w ∈ RS
++ is a vector of state-relevance weights.

It is easy to verify that the proof of Theorem 1 goes through for any (positive) state relevance weights.
Hence, the optimal solution to a weighted optimization problem

minV
∑

s∈S w(s)V (s)
s.t. V ≥ TV,

(5)

is again V∗,γ . As such, state-relevance weights do not change the optimal solution.
Figure 2 facilitates interpretation of this property in our toy MDP. If we draw a negative weight vector −w

but originating at the optimal vertex of the feasible region, we see that the vector points outside the feasible
region. Hence, there is no vector V within the feasible region that obtains a smaller weighted-objective value.

1.6 Tetris

Farias and Van Roy [2006] applied a variation of the linear program to a version of Tetris. In this version,
tetrominoes are positioned by rotation and translation as they fall onto a wall made up of previous ones. Each
tetromino is made up of four equally-sized bricks, and the Tetris board is a two-dimensional grid, ten-bricks
wide and twenty-bricks high. Each tetromino takes on one of seven possible shapes. A point is received for
each row constructed without any holes, and the corresponding row is cleared. The game terminates once
the height of the wall exceeds 20. The objective is to maximize the expected number of points accumulated
over the course of the game. A representative mid-game board configuration is illustrated in Figure ??.

To model this game as an MDP, we take the state St to encodes the wall configuration and the shape of
the falling tetromino. The action At encodes the rotation and translation applied to the falling tetromino.
It is natural to consider the reward associated with a state-action pair to be the number of points received
as a consequence of the action. However, Farias and Van Roy [2006] obtained better results by taking the
reward to be the height of the current wall, and a reward of −20/(1− γ) upon termination. They took the
objective to be discounted expected return with this reward function, with discount factor γ = 0.9. With
this formulation, an optimal policy maximizes the number of rows cleared prior to termination with a greater
emphasis on the immediate future, due to discounting.

3

Figure 4: Tetris board.

In principle, we could solve the linear program (1) to obtain an optimal policy for Tetris. However, this
would not be computationally feasible, as this linear program would present too many constraints, and its
objective would require summing over too many values.

In a spirit similar to approximate policy iteration, we consider a parameterized value function. In
particular, let

Ṽθ(s) =

K∑
k=1

ϕk(s), (6)

where K = 22 and ϕ1, . . . , ϕK are fixed functions defined as follows:

• ϕ1, . . . , ϕ10 map the state to the height of each of the ten columns,

• ϕ11, . . . , ϕ19 map the state to the absolute difference between heights of successive columns,

• ϕ20 maps the state to the maximum column height,

• ϕ21 maps the state to the number of ‘holes’ in the wall,

• ϕ22 is equal to one at every state.

While use of a parameterized approximation allows us to express the value function via a vector θ ∈
R22, the objective

∑
s∈S Ṽθ(s) still requires summing over too many terms. However, if we apply state

relevance weights w ∈ RS
++ that sum to one, we can approximate the weighted objective

∑
s∈S w(s)Ṽθ(s)

via Monte Carlo sampling. In particular, sample M states s1, . . . , sM iid from w, which can be interpreted a
probability distribution since components are positive and sum to one. Then, use an approximate objective∑M

m=1 w(m)Ṽθ(sm).
The aforementioned Monte Carlo approach gives rise to an objective that we can easily compute. But

another issue is that, for the game of Tetris, the linear program presents too many constraints. We address
this by approximating the feasible region. In particular, we retaining only constraints associated with the
sampled states s1, . . . , sM and relax the remaining constraints.

Rather than literally specify state relevance weights w, we sampled states by simulating the game and
using every 90th state visited over the course of play. We began with a simulation under a simple heuristic
policy arrived at by hand-selecting parameters θ ∈ R22 and applying greedy actions with respect to Ṽθ. We
also tried “bootstrapping” this process. In particular, after solving the approximate linear program to obtain
new parameters θ ∈ R22, we would simulate again and solve another linear program. This process can be
repeated any number of times.

Figure 5 plots the average score attained by greedy policies. The horizontal axis indicates the number of
bootstrapping iterations applied to arrive at the policy. There are two curves. One presents averages over
many runs. The other presents results from the best run. Each point in each curve is the result of simulating
many games under a fixed policy and averaging scores.

4

Figure 5: Results from applying the linear programming approach to Tetris.

2 Gain and Bias

Consider a unichain MDP (S,A, P). Recall that the discounted value relates to gain and bias via a Laurent
expansion:

V∗,γ(s) =
1

1− γ
λ∗ + V∗(s) +O(1− γ).

Based on this, we can intuit a linear program that produces the optimal gain λ∗. To do this, we first rewrite
(1), replacing V (s) with 1

1−γλ+ V (s) +O(1− γ)):

minλ,V
∑

s∈S(
1

1−γλ+ V (s) +O(1− γ))

s.t. 1
1−γλ+ V (s) +O(1− γ) ≥ r(s, a) + γ

∑
s′∈S Pass′(

1
1−γλ+ V (s) +O(1− γ)) ∀s ∈ S, a ∈ A.

Letting γ approach 1 and rearranging terms, this linear program becomes

minλ,V λ
s.t. V (s) ≥ r(s, a) +

∑
s′∈S Pass′V (s)− λ ∀s ∈ S, a ∈ A.

We can write this concisely as
minλ,V λ
s.t. V ≥ TV − λ.

(7)

The optimal objective is λ∗, and each optimal solution takes the form (λ∗, V∗ + η1) for some η ∈ R.

3 The Primal

Duality theory establishes that for each linear program, there is a dual with the same optimal objective
value. For example, the so-called standard form linear program and its dual are given by:

maxx∈RN c⊤x
s.t. Ax = b

x ≥ 0

miny∈RM b⊤y
s.t. A⊤y ≥ c

(8)

5

They duality theorem indicates that the maximal value delivered by the primal is equal to the minimal value
delivered by the dual. By interpreting linear programs we have considered so far in this lecture as such
duals, we can derive interesting primals. The primal linear programs involve maximizing expected return
over state distributions.

3.1 Average Expected Return

For the case of expected average return, we make the following associations between (7) and the standard
form dual in (8):

y ↔
[

λ
V

]
b ↔

[
1
0

]
A⊤

a ↔
[
1 (I − Pa)

]
ca ↔ r(·, a),

taking the matrix A⊤ and vector c to be stacking of matrices (A⊤
a : a ∈ A) and (ca : a ∈ A), respectively.

Then, the primal can be written as

maxµ
∑

s∈S
∑

a∈A µ(s, a)r(s, a)
s.t.

∑
a′∈A µ(s′, a′) =

∑
s∈S

∑
a∈A µ(s, a)Pass′ ∀s′ ∈ S∑

s∈S
∑

a∈A µ(s, a) = 1
µ(s, a) ≥ 0 ∀s ∈ S, a ∈ A.

(9)

Under the unichain assumption, the constraints ensure that the feasible set comprises of all state-action
distribution µπ that can be attained by stationary policy. The objective is the expected average return
under that policy. Hence, the maximal value is λ∗.

3.2 Discounted Expected Return

A similar exercise produces a primal for the discounted version of the linear program. In this case, we make
the association

y ↔ V b ↔ 1 A⊤
a ↔ I − γPa ca ↔ r(·, a).

The primal can be written as

maxµ
∑

s∈S
∑

a∈A µ(s, a)r(s, a)
s.t.

∑
a′∈A µ(s′, a′) = 1 + γ

∑
s∈S

∑
a∈A µ(s, a)Pass′ ∀s′ ∈ S

µ(s, a) ≥ 0 ∀s ∈ S, a ∈ A.
(10)

To interpret the constraints, consider a change of variables: µ(s, a) = µ̃(s, a)|S|/(1 − γ) and P̃ass′ = (1 −
γ)/|S|+ γPass′ . The equality constraints become∑

a′∈A
µ̃(s′, a′) =

1− γ

|S|
+ γ

∑
s∈S

∑
a∈A

µ(s, a)Pass′ ∀s′ ∈ S.

Together with the nonnegativity constraint, these equality constraints ensure that the feasible set is the set
of all state-action distributions of an MDP (S,A, P̃) that can be attained by stationary policies. We’ve
shown in a previous homework that these are multiples discounted state-action frequencies. It follows that
the objective of (10) is a multiple of the expected discounted return.

References

Vivek F Farias and Benjamin Van Roy. Tetris: A study of randomized constraint sampling. In Probabilistic
and randomized methods for design under uncertainty, pages 189–201. Springer, 2006.

6

