
Markov Decision Processes Lecture Notes 08

Q-Learning
Authors: Benjamin Van Roy November 5, 2025

1 Real-Time Value Iteration

Real-time value iteration is a version of asynchronous value iteration that selects states to update via sim-
ulating a trajectory of state-action pairs. Q-learning can be viewed as a variation that avoids computing
expectations required to apply value iteration updates. We begin by reviewing asynchronous value iteration
and then move on to real-time value iteration and Q-learning. We will restrict attention to discounted return,
with a discount factor γ ∈ [0, 1), though ideas we cover extend to total return and average and relative return.
We will drop subscript γ, for example, from Q∗,γ , with an understanding that we are working exclusively in
this lecture with discounted return.

1.1 Asynchronous Value Iteration

Asynchronous value iteration is expressed by Algorithm 1. In each iteration, the algorithm updates values
at states within a specified set Bk, leaving others unchanged. As we established in Lecture 05, if each state
s ∈ S appears in the sequence B1, B2, B3, . . . infinitely often, then the sequence V0, V1, V2 converges to V∗.
This follows from the fact that the Bellman operator T is a contraction with respect to ∥ · ∥∞ and V∗ is its
uique fixed point.

Algorithm 1 asynchronous value iteration

given state update sets B0, B1, B2, . . .
given initial value function V0

for k = 0, 1, 2, 3, . . . do
for s ∈ S do

if s ∈ Bk then
Vk+1(s)← (TVk)(s)

else
Vk+1(s)← Vk(s)

1.2 The Real-Time Value Iteration Algorithm

While asynchronous value iteration in each iteration updates values across a set Bk of states, real-time value
iteration updates the value at a single state Sk. The sequence f states is generate via simulating a trajectory.
It is natural to think of this trajectory as evolving over time, so we index the states by t instead of k.
Algorithm 2 goes through the steps. The algorithm begins with some initial value function V0 and state S0.
At each time, the algorithm applies an action At that is greedy with respect to Vt, simulating a transition,
which arrives at the next state St+1. Note that in our description, we use two alternative ways of expressing
dynamics: P for transition probabilities and (f, ν) for state update function and disturbance distribution.
It is possible to describe the algorithm with just one or the other, but using both simplifies our description.

1

Algorithm 2 real-time value iteration

given initial value function V0

given initial state S0

for t = 0, 1, 2, 3, . . . do
At ∈ argmaxa∈A

(
r(St, a) + γ

∑
s′∈S Pass′Vt(s

′)
)

sample Wt+1 ∼ ν(·|St, At)
St+1 ← f(St, At,Wt+1)
for s ∈ S do

if s = St then
Vt+1(s)← (TVt)(s)

else
Vt+1(s)← Vt(s)

We know that asynchronous value iteration converges on V∗ if each state is updated infinitely often.
Hence, if the trajectory S0, S1, S2, . . . visits each state s ∈ S infinitely often then real-time value iteration
converges on V∗ as well. However, as we will discuss later, the algorithm converges on optimal actions under
weaker conditions.

1.3 Action Values

Value iteration and it asynchronous variants can be extended to operate on action values. We review that
here and devise a version of real-time value iteration that operates on action values. This version is more
similar to Q-learning, which we are building up to, because that algorithm works exclusively with action
values.

Recall that an action value function Q maps state-action pairs to real numbers. For each stationary
policy π, there is an action value function Qπ defined by

Qπ,γ(s, a) = r(s, a) + γ
∑
s′∈S

Pass′Vπ(s
′) ∀s ∈ S, a ∈ A. (1)

The action value Qπ(s, a) represents the expected discounted return starting at state s if action a is applied
and actions are selected by the policy π over each subsequent time step. The optimal action value function
Q∗ is defined by

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

Pass′V∗(s
′) ∀s ∈ S. (2)

We define a Bellman operators Fπ and F for action values:

(FπQ)(s, a) = r(s, a) + γ
∑
s′∈S

Pass′

∑
a′∈A

π(a′|s′)Q(s′, a′) ∀s ∈ S, a ∈ A. (3)

(FQ)(s, a) = r(s, a) + γ
∑
s′∈S

Pass′ max
a′∈A

Q(s′, a′) ∀s ∈ S, a ∈ A. (4)

The functions Qπ and Q∗ are fixed points:

FπQπ = Qπ and FQ∗ = Q∗. (5)

The Bellman operators Fπ and F enjoys properties similar to Tπ and T . For example, they are monotonic:
for all Q and Q′ such that Q ≤ Q′, we have FQ ≤ FQ′. And they are a contraction mappings: for all Q
and Q′, we have

∥FπQ− FπQ
′∥∞ ≤ γ∥Q−Q′∥∞ and ∥FQ− FQ′∥∞ ≤ γ∥Q−Q′∥∞.

2

As such, value iteration converges: for all Q,

lim
k→∞

F k
πQ = Qπ and lim

k→∞
F kQ = Q∗.

Algorithm 3 is a variation of real-time value iteration that operates on action values.

Algorithm 3 real-time value iteration with action values

given initial value function Q0

given initial state S0

for t = 0, 1, 2, 3, . . . do
At ∈ argmaxa∈A Qt(St, a)
sample Wt+1

St+1 ← f(St, At,Wt+1)
for s ∈ S do

if (s, a) = (St, At) then
Qt+1(s, a)← (FQt)(s, a)

else
Qt+1(s, a)← Qt(s, a)

1.4 Optimism

It follows from the contraction property that, if every state-action pair is updated infinitely often, Algorithm
3 converges on Q∗. However, there is no guarantee that the simulated trajectory will visit each state-action
pair infinitely often.

One might hope that the trajectory will at least settle on the behavior of an optimal policy. That is, as
time progresses, the trajectory only selects optimal actions and remains in states that would be visited by
an optimal policy. But even that is not the case. In fact, it is possible that optimal actions are never even
tried.

To see why optimal actions may never be tried, consider the simple example illustrated in Figure 1. There
is only one state. One action generates reward of 1 and the other generates 0. The initial value estimate
for the second action is correct: Q(s, a) = 0 = Q∗(s, a). The value estimate for the first action is wrong:
Q0(s, a) = −1 ̸= 1/(1−γ) = Q∗(s, a). Real time real-time value iteration would only ever execute the second
action. Each update would leave the initial value estimates unchanged.

Figure 1: An optimal action may never be tried if the initial value estimate is pessimistic.

This example illustrates an important observation: a pessimistic initial value estimate can discourage
trying an action. If that action is optimal, not trying it is problematic. This motivates a requirement: that
the initial value estimates be optimistic. In particular, consider requiring that Q0 ≥ Q∗. For reasons we
will later explain, under this condition, the trajectory generated by real-time value iteration will eventually
select only optimal actions.

3

1.5 Example: Slippery Path

To further digest the workings of real-time value iteration, let us consider its application to a simple ’slippery
path’ MDP, which models a grid world illustrated in Figure 2 (left). A car starts in the upper left corner and
tries to get to the lower right as quickly as possible. After reaching the lower right corner, the car restarts
in the upper left. In each timestep, the car chooses between two actions right and down. In either case,
the car moves in the desired direction with probability 1 − pslip(s). Note that pslip(s) varies with the state
s, which identifies the current location of the car within the grid. Figure 2 (right) provides slip probabilities
at each state. If the car fails to move in the selected direction, it remains in the same state.

0.2 0.5 0.5 0.5 0.5

0.2 0.2 0.5 0.5 0.5

0.5 0.2 0.2 0.2 0.2

0.5 0.5 0.5 0.5 0.2

0.5 0.5 0.5 0.5

Figure 2: The slppery path environment (left) and slip probabilities (right).

A reward of 1 is received when at the lower right cell, where the finish line is. Otherwise, a reward
of 0 is received over each time step. We use a discount factor γ = 0.99. We initialize the value function
to Q0(s, a) = 10 for all state action pairs. Figure 3 plots the cumulative reward (left) and an exponential
moving average of rewards (right) over time steps. The rate at which rewards accrue increases quickly and
then tapers off.

Figure 3: Performance of real-time value iteration in the slippery path environment.

1.6 Why does this work?

Some analysis that offers insight into why RLSVI with optimistic initialization “works.” One important
observation is that if we initialize with optimistic values then values remain optimistic. The following result
formalizes the claim.

4

Lemma 1. (RTVI optimism) Fix an MDP (S,A, P), a reward function r : S × A → R, and a discount
factor γ ∈ [0, 1). If Algorithm 3 is invoked with optimistic initial values Q0 ≥ Q then, for all t, Qt ≥ Q∗.

Proof. It suffices to show that the update Qt+1(St, At)← (FQt)(St, At) retains optimism. This follows from
monotonicity: if Qt ≥ Q∗ then FQt ≥ FQ∗ = Q∗.

Let

(Fs,aQ)(s, a) =

{
(FQ)(s, a) if (s, a) = (s, a)
Q(s, a) if (s, a) ̸= (s, a).

Each real-time value iteration update can be written as Qt+1 = FSt,At
Qt. It is easy to show that, for each s

and a, the operator Fs,a is monotonic. We state this as a lemma, though we omit the proof, which is almost
identical to the proof that F is monotonic.

Lemma 2. (RTVI monotonicity) Fix an MDP (S,A, P), a reward function r : S × A → R, and a
discount factor γ ∈ [0, 1). If Q ≤ Q′ then, for all s ∈ S and a ∈ A, Fs,aQ ≤ Fs,aQ

′.

The following result establishes that real-time value iteration eventually generates optimal actions. It
imposes an assumption that is stronger than optimism.

Theorem 3. (RTVI monotonic convergence) Fix an MDP (S,A, P), a reward function r : S ×A → R,
and a discount factor γ ∈ [0, 1). If Algorithm 3 is invoked with initial values Q0 such that Q0 ≥ FQ0 then
there exists some time τ such that At ∈ argmaxa∈A Q∗(St, a) for all t ≥ τ .

Proof. Suppose Qt ≥ FQt. This implies that Qt ≥ Fs,aQt for all s ∈ S and a ∈ A. We have

Qt+1 = FSt,At
Qt ≥ FQt ≥ FFSt,At

Qt = FQt+1,

where the first inequality follows from the fact that Qt ≥ FQt, and the second inequality follows from
monotonicity of F and the fact that Qt ≥ FSt,At

Qt. It follows from induction that Qt ≥ FQt for all t.
Hence, we have a nonincreasing sequence of functions bounded below byQ∗. This sequence must converge.

Let Q be the limit of convergence and let X ⊆ S×A be the set of state-action pairs that are visited infinitely
often. It follows that there is a time τ such thatAt ∈ argmaxa∈A Q(St, a) and (St, At) ∈ X for all t ≥ τ . Let π
denote the corresponding greedy policy. It follows that, for t ≥ τ , Q(St, At) = (FQ)(St, At) = (FπQ)(St, At)
and PAtSts = 0 for s /∈ X . Hence, (FπQ)(St, At) does not depend on values at state-action pairs outside of X ,
and therefore, Q(St, At) = (FπQ)(St, At) implies Q(St, At) = Qπ(St, At). In other words, Q(s, a) = Qπ(s, a)
for all (s, a) ∈ X . Since Q∗(s, a) ≤ Q(s, a) and Qπ(s, a) ≤ Q∗(s, a), we have Qπ(s, a) = Q∗(s, a) for
(s, a) ∈ X . Hence, π takes optimal actions.

The proof under the weaker condition that Q0 ≥ Q∗ rather than Q0 ≥ FQ0 is more complicated. The
argument can be extracted from the analysis of Dong et al. [2022]. I could also write down a simpler, albeit
still somewhat complicated, analysis if there is sufficient interest.

2 Q-learning

Each update applied by real time value iteration takes the form

Qt+1(St, At)← r(St, At) + γ
∑
s∈S

PAtSts max
a∈A

Q(s, a). (6)

Computing the right hand side requires summing over possible next states. When the state space is very
large, this becomes computationally onerous. Q-learning overcomes this issue by using Qt(St+1, a) as an
approximation of the expectation. Consider an update of the form

Qt+1(St, At)← r(St, At) + γmax
a∈A

Qt(St+1, a). (7)

5

If transitions are deterministic then this update is equivalent to real-time value iteration. However, if
transitions are stochastic, these updates could generate values that chatter erratically and endlessly. This
is because the single sample Qt(St, a) is typically a very noisy approximation of its expectation. As we will
see, Q-learning addresses this by using a step size to smooth across updates.

2.1 The Q-Learning Algorithm

Q-learning uses a “smoothed” update formula, which can be written as

Qt+1(St, At)← (1− αt)Qt(St, At) + αt

(
r(St, At) + γmax

a∈A
Qt(St+1, a)

)
. (8)

The scalar αt is a step size, which reduces the magnitude of the change in value relative to (7). Indeed,
the new value Qt+1(St, At) is a convex combination between the previous value Qt+1(St, At) and the target
r(St, At) + γmaxa∈A Qt(St+1, a).

The action At+1 is greedy with respect to Qt+1. If St+1 ̸= St then Qt+1(St+1, ·) = Qt(St+1, ·) and,
therefore, Qt(St+1, At+1) = maxa∈A Qt(St+1, a). And if αt is small, which is typically the case, even if
St+1 = St, Qt+1(St+1, ·) ≈ Qt(St+1, ·) and, therefore, Qt(St+1, At+1) ≈ maxa∈A Qt(St+1, a). As such, it
feels natural to use a slightly modified update:

Qt+1(St, At)← (1− αt)Qt(St, At) + αt (r(St, At) + γQt(St+1, At+1)) , (9)

or, equivalently,

Qt+1(St, At)← Qt(St, At) + αt (r(St, At) + γQt(St+1, At+1)−Qt(St, At)) . (10)

The quantity r(St, At) + γmaxa∈A Qt(St+1, a
′) − Qt(St, At) is called a temporal difference. It represents

the difference between two predictions: Qt(St, At) is a prediction of future return starting at time t, while
r(St, At)+ γQt(St+1, At+1) is a more informed prediction of the same future return but based on knowledge
of the transition to state St+1. This update formula can be interpreted as nudging the value up if the more
informed prediction is larger and down otherwise.

This update formula leads to Algorithm 4. This version of Q-learning resembles real-time value iteration
except that it avoids taking the expectation

∑
s∈S PAtSts maxa∈A Qt(s, a), using instead the single-sample

estimate Qt(St+1, At+1).

Algorithm 4 Q-learning

given initial value function Q0

given initial state S0

for t = 0, 1, 2, 3, . . . do
At ∈ argmaxa∈A Qt(St, a)
sample Wt+1

St+1 ← f(St, At,Wt+1)
Qt+1(St, At)← Qt(St, At) + αt(r(St, At) + γQt(St+1, At+1)−Qt(St, At))

Some insight into Q-learning is offered by results pertaining to a more general algorithm – asynchronous
stochastic value iteration – which is presented as Algorithm 5. This algorithm uses the same sort of update
rule as Q-learning but does not necessarily update states along a single simulated trajectory. Instead, like
asynchronous value iteration, any sequence of updates is allowed. Results in Jaakkola et al. [1993], Tsitsiklis
[1994] provide sufficient conditions for convergence of Qk to Q∗. Based on those results, it suffice for each
state-action pair to be updated infinitely often and for the step size sequence to satisfy

∑
k αk = ∞ and∑

k α
2
k <∞.

6

Algorithm 5 asynchronous stochastic value iteration

given state-action update sets B0, B1, B2, . . .
given initial action value function Q0

for k = 0, 1, 2, 3, . . . do
for (s, a) ∈ S ×A do

if (s, a) ∈ Bk then
sample next state s′ = f(s, a,W), where W ∼ ν(·|s, a)
Qk+1(s, a)← Qk(s, a) + αk(r(s, a) + γmaxa∈A Qk(s

′, a′)−Qk(s, a))
else

Qk+1(s, a)← Qk(s, a)

2.2 Example: Slippery Path

Figure 4 plots results from applying Q-learning, with a fixed step size of αt = 0.1, to the slippery path
environment. As with real-time value iteration, the performance improves in early training. But the pace
of improvement is about an order of magnitude slower with Q-learning. The highest level of performance is
similar to that reached by real-time value iteration. However, the exponential moving average generated by
Q-learning is more volatile.

Figure 4: Performance of Q-learning in the slippery path environment.

2.3 Smoothing with a Step Size

Q-learning uses a step size to smooth noisy updates. To understand why this works, let us think about
a simpler contexts that suffice to capture the key insights. To start with, consider an iid scalar sequence
X1, X2, . . . with finite mean X∗ = E[Xk] and finite variance E[X2

k]. A common law of large numbers ensure
that the sample average

XT =
1

T

T∑
t=1

Xt

converges on X∗.
One can alternatively express the sample average via a iteration

Xt+1 = Xt +
1

t+ 1
(Xt+1 −Xt).

This iteration can be interpreted as nudging Xt toward Xt+1 with a step size of αt = 1/(t + 1). A more
general update rule

Xt+1 = Xt + αt(Xt+1 −Xt)

7

offers flexibility in the choice of step size. A more general law of large numbers ensures convergence of this
sequence to X∗ if

∑
t αt = ∞ and

∑
t α

2
t < ∞. Note that these conditions are satisfied by αt = 1/(t + 1).

But they allow for many alternatives. There are even laws of large numbers that ensure convergence on X∗
for step sizes that are stochastic, with αt possibly depending on X1, . . . , Xt.

In this iterative update, it is natural to think of X∗ as a target, since we nudge Xt toward a noise estimate
of it. This target is fixed. In Q-learning, on the other hand, the target is FQt since we move Qt toward a
noisy estimate of that. F is a contraction with fixed point Q∗. So we can think of FQt as an intermediate
target that ultimately gets us to Q∗. This raises the question of whether taking a target to be the value
supplied by a contraction mapping retains convergence guarantees. As we will discuss, more general laws of
large numbers address this.

The sample mean iteration can be rewritten as

Xt+1 = Xt + αt(X∗ +Wt+1 −Xt),

where Wt+1 = Xt+1 −X∗ is zero-mean noise. Consider a more general form of update

Xt+1 = Xt + αt(f(Xt) +Wt+1 −Xt),

where f is a contraction mapping with fixed point X∗ and contraction factor γ ∈ [0, 1). Since the argument
is scalar, this means that, for all x, x′ ∈ R, |f(x)− f(x′)| ≤ γ|x− x′|. There are laws of large numbers that
guarantee convergence on X∗ so long as

∑
t αt = ∞ and

∑
t α

2
t < ∞. The convergence results of Jaakkola

et al. [1993], Tsitsiklis [1994] represent generalizations of this sort of law of large numbers.
In practice, Q-learning is often executed with step size that do not vanish and thus

∑
t α

2
t =∞. A special

case of this is a fixed step size, as we used in the slippery path simulation of the experiment. With a fixed
step size, we generally do not expect convergence. However, as in the case of the slippery path experiment,
performance often still improves and if successful, the algorithm chatters near optimal performance. There
is theory suggesting that, when this happens, the mean squared error of value estimates is of order O(α2

t).
Smaller step sizes reduce the pace of learning but in the long term reduce mean squared error.

2.4 Optimism

The convergence analyses of Jaakkola et al. [1993], Tsitsiklis [1994] require that each state-action pair is
updated infinitely often. Our version of Q-learning 4 updates state-action pairs along a simulated trajectory.
This does not generally include each state-action pair infinitely often. A different kind of analysis is required
to ensure some sort of convergence.

Q-learning can be thought of as a noisy version of real-time value iteration. The latter can fail to converge
if the initial value function is not optimistic. Hence, an analysis of Q-learning ought to also rely on optimism.

If we initialize real-time value iteration with an optimistic value function Q0 ≥ Q∗ then value functions
Qt remain optimistic for all t. This is not the case, however, with Q-learning. The reason is that updates
are noisy and can produce pessimistic values by chance. To guarantee convergence, we need to maintain
optimism. This can be done by adding an appropriately sized optimistic boost to each update, as shown
in Algorithm 6. Dong et al. [2022] establish results that guarantee convergence on optimal behavior under
suitable assumptions on the initial value function, optimistic boosts, and the step sizes.

Algorithm 6 Q-learning

given initial value function Q0

given initial state S0

for t = 0, 1, 2, 3, . . . do
At ∈ argmaxa∈A Qt(St, a)
sample Wt+1

St+1 ← f(St, At,Wt+1)
Qt+1(St, At)← Qt(St, At) + αt(r(St, At) + γQt(St+1, At+1) + ∆t −Qt(St, At))

8

2.5 ϵ-Greedy Exploration

As we have discussed, optimism can induce convergent behavior while focusing computation on updating of
state-action pairs that matter. An alternative approach that induces convergence involves dithering. This
involves randomly perturbing actions so that each is occasionally tried. If the MDP is communicating (it
is possible to get from any state to any other state) and step sizes do not vanish too quickly, dithering can
ensure that each state-action pair is update infinitely often.

While this can be quite inefficient relative to approaches that more judiciously apply computation, dither-
ing is used widely due to its simplicity and robustness. Algorithm 7 presents Q-learning with the most
common form of dithering, which is called ϵ-greedy exploration. While each version of Q-learning that we
discussed earlier always takes a greedy action, ϵ-greedy exploration takes a greedy action with probability
1− ϵ. With probability ϵ, an action is selected uniformly at random from A.

Algorithm 7 Q-learning with a ϵ-greedy exploration

given initial value function Q0

given initial state S0

for t = 0, 1, 2, 3, . . . do

At ∼
{

unif(A) with probability ϵ
argmaxa∈A Qt(St, a) otherwise

sample Wt+1

St+1 ← f(St, At,Wt+1)
Qt+1(St, At)← Qt(St, At) + αt(r(St, At) + γQt(St+1, At+1)−Qt(St, At))

2.6 Parameterized Value Functions

We have discussed in previous lectures approximate version of policy iteration and linear programming
that work with parameterized value functions. Likewise, Q-learning is often used with parameterized value
functions. Consider an parameterized value function Qθ : SA → R. Each parameter vector θ ∈ RK identifies
an action value function.

Algorithm 8 presents a version of Q-learning that updates parameters θ and selects actions via ϵ-
greedy exploration. The temporal difference provides a reinforcement signal used to nudge θ. The gradient
∇θQθ(St, At) is the direction that θ should be nudged to maximally increase the action value. This gradient
serves to direct the change in response to the reinforcement signal and to scale its intensity.

Algorithm 8 Q-learning with a parameterized approximator

given initial parameters θ
given initial state S0

for t = 0, 1, 2, 3, . . . do

At ∼
{

unif(A) with probability ϵ
argmaxa∈A Qθ(St, a) otherwise

sample Wt+1

St+1 ← f(St, At,Wt+1)
θ ← θ + αt∇θQθ(St, At)(r(St, At) + γQθ(St+1, At+1)−Qθ(St, At))

A tabular representation Qθ is one where each parameter expresses the value of one state-action pair.
If we index components of θ by state-action pairs, we can write Qθ(s, a) = θs,a. Such a representation
should be equivalent to one where we encode the Q-function exactly. It is interesting to note that, with a
tabular representation, the update used for a parameterized Q-function reduces to the one used by the exact

9

Q-learning update. In particular, for a tabular representation

(∇θQθ(s, a))s′,a′ =

{
1 if (s, a) = (s′, a′)
0 otherwise.

Hence,
Qθ(St, At)← Qθ(St, At) + αt(r(St, At) + γQθ(St+1, At+1)−Qθ(St, At)),

while values for other state-action pairs remain unchanged. This is equivalent to the update used, for
example, in Algorithm 7.

3 DQN for Atari

The application of Q-learning to Atari video games more than a decade ago garnered a lot of interest [Mnih
et al., 2013, 2015]. Indeed, it ignited credence in the coming of artificial general intelligence, which until
then was viewed as a distant possibility. In this section, we describe the application domain, parameterized
value function, algorithm used for computing parameters, and results.

3.1 Atari

Mnih et al. [2013, 2015] experimented with 49 games from the Atari arcade learning environment [Bellemare
et al., 2013]. These games were played via the Atari 2600 video game console, which was developed in 1977.
Figure 5 depicts the console and screenshots of representative games.

Figure 5: The Atari video game console and screenshots of representative games.

The challenge was to develop an algorithm that, using taking screenshots as input and applying actions of
a joystick interface, could learn to play any of these games from scratch to attain human-level performance.
The results of Mnih et al. [2015] demonstrated this possibility using a version of Q-learning.

10

3.2 MDP

Images rendered by the Atari console are 210x160 pixel with 128-color palatte. In order to reduce this
complexity, the system preprocessed each image by cropping, downscaling, and extracting the Y-channel.
This resulted in an 84x84 lossy encoding for each image. Images were generated at a rate of 60Hz.

To formulate an MDP (S,A, f, ν) for each game, the timestep was taken to be the duration of four frames
or, equivalently, 1/15th of a second. Each state St was taken to be the most recent four 84x84 images. Each
action At identifies one of 9 joystick positions and whether or not the button is pressed, as illustrated in
Figure 6. Hence, |A| = 18. In simulating game dynamics, the joystick configuration is assumed to be fixed
over the four consecutive frames. Each game’s MDP has a terminal state that indicates end of the game.

Figure 6: 18 actions afforded by the Atari joystick.

3.3 Reward

The reward signal was taken to be 1 if the score increases over the next time step, -1 if it decreases, and 0
otherwise. Hence, the reward function r(St, At) in our notation would be the expected value of this reward
over the next time step condtioned on the state.

A reason for using this discrete reward signal rather than actual game score increases was that the
magnitudes of scores vary dramatically across games. This made it difficult to design a single algorithm that
could learn to play all games using score increases as reward signals.

3.4 Value Function Architecture

The value function is represented by a convolutional neural network, as illustrated in Figure 7. The neural
network takes the state St as input and generates 18 outputs, one per action, each expressing an action value
Qθ(St, a) for one of the 18 actions a ∈ A. Millions of parameters are stored in θ.

3.5 Algorithm

Parameters are updated over episodes, each spanning the start to the end of a game. A variation of Q-
learning, called DQN and presented as Algorithm 9, is used. DQN incorporates some new features motivated
by observations and computational considerations that surfaced during the course of empirical research.
These new features include:

• a replay buffer: the one million most recent transitions of the form (St, At, Rt+1, St+1) are buffered in
D,

• target value function: parameters θ̂ of a target value functions are only occasionally updated,

• minibatches: instead of updating at one state-action pair at a time, update for a minibatch B of size
32, sampled uniformly from D,

11

Figure 7: The convolutional neural network used to represent an action value function.

• RMSprop: this adaptive step size gradient descent algorithm was used,

• annealing: ϵ was annealed linarly from 1.0 to 0.1 over one milion games and then remained at 0.1
thereafter.

The discount factor was set at γ = 0.99.

Algorithm 9 Deep Q-learning with Experience Replay

given initial state S0

initialize replay buffer D with capacity N
initialize with random weights θ
θ̂ ← θ ▷ target
for ℓ = 0, 1, 2, 3, . . . do ▷ episodes

t← 0
while St ̸= terminal do

execute At ∼
{

unif(A) with probability ϵ
argmaxa∈A Qt(St, a) otherwise

observe Rt+1 and St+1

insert (St, At, Rt+1, St+1) in D
sample a minibatch B ⊆ D
perform a gradient step to reduce

∑
(s,a,r,s′)∈B(y −Qθ(s, a))

2

where

y ←
{

r(s, a) + γmaxa∈A Qθ̂(s
′, a′) if s′ ̸= terminal

r(s, a) otherwise
t← t+ 1
every C times steps, θ̂ ← θ ▷ update target

Note that if the gradient step were to simply used a fixed step size across time and parameters, the
update for s ̸= terminal would take the form

θ ← θ + α
∑

(s,a,r,s′)∈B

∇θQθ(s, a)

(
r(s, a) + γmax

a∈A
Qθ̂(s

′, a′)−Qt(s, a)

)
,

akin more familiar versions of Q-learning.

12

3.6 Results

Figure 8 from [Mnih et al., 2015] provides representative plots indicating how DQN improves the game
performance. For each game, DQN is initialized and then updates parameters over the course of many
episodes of that game. Performance improves with the number of episodes.

Figure 8: Progress in performance over episodes applying DQN.

Figure 9, also from [Mnih et al., 2015], compares performance against another algorithm and also indicates
how DQN after a large number of episodes fares relative to expert human players. DQN outperformed expert
humans in most of the games.

References

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evaluation
platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, June 2013. ISSN
1076-9757. doi: 10.1613/jair.3912. URL http://dx.doi.org/10.1613/jair.3912.

Shi Dong, Benjamin Van Roy, and Zhengyuan Zhou. Simple agent, complex environment: Efficient rein-
forcement learning with agent states. Journal of Machine Learning Research, 23(255):1–54, 2022.

Tommi Jaakkola, Michael Jordan, and Satinder Singh. Convergence of stochastic iterative dynamic pro-
gramming algorithms. Advances in neural information processing systems, 6, 1993.

13

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

John N Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine learning, 16(3):185–202,
1994.

14

Figure 9: DQN performance relative to another algorithm and relative to expert human players.

15

