Markov Decision Processes Lecture Notes 09

Policy Gradient Methods
Authors: Benjamin Van Roy November 17, 2025

Reinforce is a simple algorithm that adjusts a policy to increase probabilities assigned to actions that
result in desirable outcomes and decrease probabilities of actions that result in undesirable outcomes. We
will begin by studying the algorithm in the simple context of multi-armed bandits.

1 Multi-Armed Bandits

Consider a decision problem where we must choose among a finite set A of actions. And upon choice of an
action Ag, we observe a random reward R;. Then, we choose A; and observe a reward Rs. And so on. We
assume that, for each action a € A, the distribution over rewards that results from that action is fixed across
time.

Such a decision problem is often referred to as a bandit. The term bandit is a somewhat antiquated
reference to slot machines, which “steal” money from the player. Think of each action a € A as an arm of a
slot machine. Each time an arm A; is pulled, a reward R;;; is generated. Over many turns, a player may
learn which arm to pull to generate the largest reward on average.

1.1 Reinforce

The algorithm we consider maintains a parameterized policy 7y, which assigns a probability my(a) to each
action a € A. We denote the parameter vector at time ¢ by ;. Action A; is sampled from mg,. Upon
observation of the resulting reward R;,1, the parameters are updated according to

01 =0, + iy Riy1Volnmg, (Ay), (1)

where o is a step size. This update rule is intuitive: the larger (or smaller) the value of R;y; the more
it increases (or decreases) the probability g, (A:) assigned to the action A;. In this way, the algorithm
reinforces actions with desirable outcomes. The reward R;,; serves as a reinforcement signal.

1.2 An Example: Gibbs Distribution

To offer a simple example, consider a parameterized policy that samples actions according to a Gibbs

distribution:
ela

mo(a) = S (2)

€0
a’eA
Think of each parameter 6, as a score assigned to action a. Actions with higher scores are more likely to be
sampled by the policy.
The gradient of the log-probability mg(a) can be written as

Volnmg(a) =Vy (9,1 —1In Z e W) (3)

a’eA

SR S > el (4)

Za”EA eea” ’
a’eA

=1, — Z Wg(a/)la/. (5)

a’€A

For each action a, this is the one-hot vector, offset by a vector that depends on 6 but not a such that the
expectation across actions is zero. With this expression, the parameter update (1) becomes

o, _{ Onatai(l—m(a))Rip if a =4 (6)
t+l,a = 0¢.0 — cyma, (@) Rit1 otherwise.

Consider a concrete case where A = {0, 1}, and actions generate Bernoulli rewards with success probabil-
ities pg = 0.6 and p; = 0.4. Hence, the optimal action is 0. Figure 1 plots results from applying reinforce
with a step size of 0.05. As iterations progress, the action probability concentrates on the optimal action.
The score of the optimal action also increases over iterations.

1.0 A

o
o

o
o

Pextreward = 0.6 Pextrewara = 0.6

Pextreward = 0.4 Pextreward = 0.4

i
action score

action probability

—2 4

0.0

T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

timestep timestep

Figure 1: Probs and scores.

1.3 The Policy Gradient

Let r(a) = E[Ri4+1]A: = a] denote the average reward generated by action a. Consider a parameterized
policy 7y such that mg(a) > 0 for all # and a. The average reward attained by a parameterized policy 7y is

Ao = Z mo(a)r(a). (7)
acA

Reinforce improves the average reward by approximately following the policy gradient VyAg. To understand
how this works, note that the policy gradient can be written as

VQ)\Q :Vg Z 71'9(&)7”(0,) (8)

a€A
=) r(a)Vemy(a) (9)
acA
= mo(a)r(a Voms(a)
= X mlarle) (10)
=" m(a)r(a)VoInm(a) (11)
acA
Hence,
Vo, Ao, = E[E[Ry41|Ai| Vg, InTp, (Ar)[0:] = E[Ry 11V, In g, (Ar)|64] (12)

In other words, the expectation of the reinforce update R;y1Vylnmy, (A;) is the policy gradient. Scal-
ing by a suitable step size induces the averaging needed so that the trajectory followed by the algorithm
approximates a flow along the policy gradient.

1.4 Baselining

Consider a variation of the two-armed bandit discussed earlier, but with reward probabilities py = 0.96 and
p1 = 0.94. The optimal action remains action 0, but both actions deliver reward 1 with high probability.

Probabilities 7y, (0) of choosing the optimal action as parameters are adapted by reinforce are plotted
in Figure 2 (red). The trajectory is erratic and does not reliable converge on an optimal policy. The erratic
behavior stems from chattering of parameters due to the fact that each time an action is selected and a
reward of 1 is observed, its score is increased while the score of the other action is decreased. This erratic
behavior can be abated if the step size is reduced to a very small value, which can lead to the desired
convergence through at a very slow convergence rate.

o o °
Y (=1 @
; f i

action probability

o
[N
L

— m(0) without baseline
—— m(0) with ave baseline

T T T T T T
0 2000 4000 6000 8000 10000

timestep

Figure 2: Without and with baseline.

One way to operate effectively with a larger step size and maintain fast and reliable convergence is to
baseline rewards. Baselining involves subtracting from reward a statistic reduces their magnitudes. With
baselining, the algorithm becomes

9t+1 =0; + Oét(Rt+1 — Bt)VQ In o, (At), (13)

where B; is a baseline. Figure 2 (green) plots results where B; = %2221 Ry, is the running average of
rewards. This trajectory reliably converges to 1 and at a reasonable rate.

It is worth noting that a baselined reinforcement signal R, — B; remains in expectation a policy gradient.
In particular, for any B; that is determined by 6; and the history H;, we have

E[(Riy1 — Bi)Ve, Inmg, (Ar)|0:, Hi] =E[Ri11Ve, Inmy, (A¢)|0:] — E[B; Ve, Inmg, (Ar)|0r, Hy] (14)

=V, No, — Bt Z 7, (a)Vg, Inmg, (a) (15)
acA

ZVQt)\gt - Bt Z V@tﬂ'et (a) (16)
acA

ZVGt)\at - Btvgt Z o, (a‘) (17)

acA
=V, Ao, — B:Vp,1 (18)
=V, o, - (19)

2 Average Return

The reinforce algorithm extends naturally to optimization of average return in a unichain MDP (S, A, P)
with a reward function r : S x A — R.

2.1 The Policy Gradient Theorem

Consider a policy 7y that satisfies mp(a|s) > 0 for all 6, s, and a. Recall that, for each policy 7, Q. denotes
the relative action value function, which solves

Q(s,a) =r(s,a) — A\x + E Py mgﬁQﬂ(s',a') Vs € S,a€ A,
a/
s'eS

where A, is the average return

Ag = Z Z,U,g(S,(l)?"(S,(l). (20)

seSacA
As shown by Sutton et al. [1999], Konda and Tsitsiklis [1999],
Voo = Z Z 1o (8,a)Qn, (s,a)Volnmg(als). (21)
s€eSacA

This formula is often referred to as the policy gradient theorem.

2.2 Reinforce for Maximizing Gain

The policy gradient theorem (21) motivates a version of the reinforce algorithm that uses the action value
as a reinforcement signal:

0t+1 = et —+ OétQﬂ—et (St, At)v@, lnﬂ'gt (At|St) (22)

Similarly with the multi-armed bandit, this update rule can be very slow without baselining. A natural
baseline is the value Vy,(S;). This gives rise to an update of the form

9t+1 = 9,5 + O[t(Qﬂgt (St, At) — Vﬂ—gt (St))Vg ln 7T0(At|St). (23)

These algorithms are reminiscent of policy iteration. Recall that policy iteration operates by replacing
an iterate m with a new policy 7’ that is greedy with respect to Q. In a similar spirit, these policy gradient
algorithms in tend to increase probabilities of actions a with larger action values Qr,, (St,a) and decrease
probabilities of actions with smaller action values.

2.3 Rollouts

An impediment to using either (22) or (23) as an update rule is that it requires knowledge of Qx,, (S, A:)
and/or Vi, (St). One way to address that is by simulating rollouts that can be used to generate estimates
Qi ~ Qny, (St, A¢) and/or Vi ~ Virg, (St) of the value and action value.

An extreme version of this is where a single rollout is used as an estimate of Qr,, (St, At). In particular,

simulate a trajectory Sy, Ag, S1, A1, ... under policy mp, initialized with Sy = Sy and Ay = Ag and, given
the rewards Ry, Ro, ..., let
o0
Qi =Y (Rip1—),
k=0

where \ = limg o0 % ZkK:_Ol Rk+1- The policy parameters can then be updated according to

Orp1 =0, + atQtVGt In 7y, (A¢]St).

2.4 Value Function Approximation via Temporal-Difference Learning

An alternative is to retain and update an approximation of Qr,. In particular, we can use a parameterized
policy @, and at each time update the parameters ¢ based on observed actions, state transitions, and

rewards, steering the current approximation Q,pt toward the action value function Q,, of the current policy.
Then, we can apply an update of the form

Or11 =0 + (sz EHEDY Wg(aSt)th(St,a)> Vo, Inmg, (Ar]S}). (24)
acA

Temporal-difference learning provides an algorithm for updating ;.

diy1 = Revy — M+ Qu, (Sev1, Arv1) — Qu, (St Ay), (25)
Vg1 = Ye + Bedir1 Ve, QN’L/)t(Sta Ay), (26)
A1 = A + Bediga. (27)

Here, d¢41 is a temporal difference,); is an estimate of the gain, and f; is a step size.

3 Total Return

The algorithmic ideas we have discussed carry over to maximization of total return over a horizon T.

3.1 Policy Gradient Algorithm

When using a policy gradient algorithm to maximize total return, it is often convenient to update parameters
once per simulated episode. By episode, we mean a single trajectory Sg, Ag ..., S7_1, Ar_1, S7. Given policy
parameters 6, and such a simulated episode, we consider the update rule

T-1

Oy =00+ 0 Y Qry, (S, Ar) Vo, In o, (Ar|Sy). (28)
t=0

As in the previous section, an obstacle to applying this update rule is that the value function is not available.
Again, this can be addressed by using estimates, either based on rollouts or an incrementally updated
parameterized approximations to the action value function.

Since the policy mp, remains unchanged over the ¢ episode, it is natural to use as a rollout starting at
(St, Ay) the rewards of Ryy1,...,Rp—1 from the same simulated trajectory. This gives rise to an estimate

Q: = Zg;tl Ri41 and an update rule

T-1

Ors1 =00+ Z Q:Vo, Inmg, (A]Sy). (29)
=0

One can also design more efficient policy gradients that approximte the baselined version of (30) :

T-1

Oop1 = 0r + r Y (Qng, (St, Ar) = Vi, (51)) Vo, In g, (Ar|Se). (30)
=0

3.2 Application to Language Models

Versions of reinforce are used in training today’s language models. For example, in training language
models to generate satisfactory responses where they do not already do so, especially when satisfactory
responses are difficult to generate but easy to verify. For example, suppose that there are challenging math
problems of a particular kind that are not successfully solved by a language model. Suppose humans also
find it difficult to produce correct solutions but easy to check whether a given solution is correct. Then,
through repeated trial and error a policy gradient method can train the language model to generate correct
solutions.

Figure 3 illustrates a prototypical large language model (LLM). A context window of N tokens is taken
as input, and a predictive distribution of the next token is generated as output. Tokens are elements of a
vocabulary, typically consisting of words, punctuation, or other special symbols used to inform the LLM.

\A 4

next
token .
probabilities

YYVVVVYY

tt tttt tt last

previous tokens em%)aggc{ing

Figure 3: An autoregressive language model.

The LLM can be thought of as implementing a policy for an MDP. The state S; is the context window
and the action A; is the next token. The LLM generates a distribution 7y (:|S;) from which A; is sampled.
The parameters 6 are the weights and biases in the neural network that implements the LLM. The next
state Sy11 is produced by dequeueing the least-recent token from the context and enqueueing A;.

Reinforce can be applied to train the LLM over episodes. For example, in each ¢th episode, the initial
context window Sy could express a math problem, and then 7y, can be used to generate a sequence of T'
tokens Ag,...,Ar_1. A reward signal Rp might then indicate whether the sequence provides a correct
answer to the math problem.

References

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In S. Solla, T. Leen, and K. Miiller, editors,
Advances in Neural Information Processing Systems, volume 12. MIT Press, 1999.

Richard S Sutton, David A McAllester, Satinder P Singh, and Joseph Stone. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural Information Processing
Systems, volume 12, pages 1050-1056, 1999.

