MS&E 310, Fall 2017
Linear Programming
Prof. Yinyu Ye

Lorenzo Limonta — Project 4

Theroetical Solution

Question 1

Let’s formulate the explicit update for x; and x, for the following LP problem

minimizey, x, c’'x;
st. Ax;=Db
X1 — X9 = 0
X9 Z 0

From the above system we have the following Lagrangian function:

B
L(Xl,Xg,A,l[,) = CTX1 — AT (Axl - b) — II’T (Xl — Xg) —+ 5 (||AX1 — b||g + ||X1 — X2||g)
Rewriting it without the norm 2, we have:

L(x1, %2, A) = c'x; — AT (Ax; — b) — pu” (x; — x3) +

5
3

2
(x] ATAx; — 2b" Ax; + b'b + x| X1 + X3 X5 — 2X] X2) 2)

Let’s look then at the update scheme:

e Update variable xy:
xF! = arg min L (x;, x5,)

In the writing above x5, A, g are constant. Thus, to find the analytical value for
x; we simply take the derivative of our Lagrangian w.r.t to it.

S?L:C—AT/\—,U,—Fﬂ[(ATA)XI—ATb—FXl—XQ} =0
1

- [(ATA) X1 +X1} :X2+ATb+ % (AT)\—F[II—C)

This gives our analytical solution for x; under the assumption that (ATA + 1) is
invertible

= (ATA+ 1) |xb 4+ ATb + % (ATA 4+ —c) (3)

2/35 MS&E 310 — Lorenzo Limonta — Project 4

e Update variable x5:

x5 = arg min LT (xT!, xy, AF)

This time A, g, x; are constants, with x; being the updated value found in eq. 3.

As before, to find the new updated value we proceed by taking the derivative of
the Lagrangian w.r.t. x

OL
a—x2:p,+§[2x2—2xl] =0
Which gives us:
k
xht = max {0, xV! — %}Z (4)

Equations 3, 4 are therefore our explicit formula for the iterative xs

Question 2

Let’s now develop the explicit formula for the dual problem. From our original LP
problem, we have the following dual:

maxmimizey g b’y
st. Aly+s=c (5)
s>0

The above system thus gives us the following Lagrangian:
L(y.s,A) = by = A" (ATy +s—c) + gHATy +s—c|f3

Which can be explicitly rewritten as

L(y,s,A) = —bly = AT (A'y +s—c)
6
- g (yTAA"y +s"s+ c"c+2y" As — 2s"c — 2y" Ac) ©)

Looking at the update scheme we have:

e Update variable y:

y" ™ = arg min L%(y,s", A¥)

In the writing above s, A, are constant. Thus, to find the analytical value for y
we simply take the derivative of our Lagrangian w.r.t to it.

MS&E 310 — Lorenzo Limonta — Project 4 3/35

g—i =—b—AX+ B (AA"y + As — Ac) =0
= (AAT)y:Ac—AS—i-%(b—i-A)\)
Our updated y**+! is:
Y = (4AT) 7Y | Ae - Ash + % (b + ANY) (7)

e Update variable s:
sF = arg min Ly, s, A¥)

In the writing above y**!, X, are constant. Thus, to find the analytical value for
s we simply take the derivative of our Lagrangian w.r.t to it.

oL
gz—/\+ﬁ(s+ATy—c):O
= s:c—ATy+é

g
Our updated s is given by:

X)

Sk:-i—l — max {O,C—ATyk+1 +
Question 3.4

For reference, we rewrite the problem when a barrier function is added. Notice the
change in coefficient from p in the guidelines to £ in our formulation.

Primal problem

minimize, ¢’ — fz In(z;)x;
J
st. Ax=Db 9)
x>0
Where the lagrangian is
L(x1, X0, A\, pt) = chl—gz In(z;)=A" (Azy —b)—p” (x; — XQ)+§ (J|Ax1 — b|[3 + ||x1 — x2[[3)
J

The above representation doesn’t have an analytical close form solution, therefore
when updating our variables with the same scheme as in question 1, an additional nu-
merical minimization technique will be needed. In our case, we choose matlab fmincon.

4/35

MS&E 310 — Lorenzo Limonta — Project 4

Question 5

Dual problem

maxmimize, s b’y + ¢ Z In(s;)
J

st. Aly+s=c (10)
s>0
With its Lagrangian being:
B
L(y,s,\) = —bly — §Zln s;) = AT (ATy +s—c) + §||ATy—|—s—cH§

Just like with the primal, the above representation doesn’t have an analytical close
form solution. We again chose matlab fmincon for the minimization needed when
updating our variables.

Choosing the first formulation for our multi-block ADMM, we can re-write its algorithm
in a similar fashion to what done in question 2:

e Update variable y;:

y'IIH_1 = arg ITliIl Ld(Yla ygv Ska Ak)

oL
dy,
1
- (AlAiF) y1 = Aic— AlAgh — Ais + E (b1 + A1)

—b1 — AlA + 5 (AlA’{yl + AlAgyz + Als — A1C> =0

Our update for y,; then becomes:

Y = (4,47 7Y | Aje — A ATyE — Ajsh 4 = (b1+A1A) (11)

B
e Update variable y,:

y5 T = arg min LY (yi™, y,, 8", AF)

- = —bQ — Ag)\ + ﬂ (A2A5y2 + AQA,{yl + AQS — AQC) =0

1
— (AQA) Yo = Asc — A2A{Y1 — Ags + B (by + A2X)

Our update for y, then becomes:

il = (4, AT) -1 Agc — A ATy Ays” +5 (b + A:XY) (12)

MS&E 310 — Lorenzo Limonta — Project 4 5/35

e Update variable s:

s = arg min L4(y* 1 yht s AF)

oL
5 =-A+8(Ay; +Aly,+s—¢) =0
A
— s:g—l—c—AlTyl—AQTy2
Thus, our update for s will be:
/\k
s"! = max {0, 7 +c — ATyk+t _ ATyhrn (13)
e Update variable A:
)\kJrl — Ak . 6 (A yk+1 + A yk+1 + Sk+1 . C) (14>

Given equations 11-14 we can now easily solve our block 3 ADMM

Multi-Block

We can easily generalize our three blcok ADMM to a multi-block one as follows. Let
the problem be

maxmimizey, s Z szYi
ZAiTyi—l—s:c (15)
s>0

We can then write the following Lagrangian function:

L(y;,s,A) = ZbTyl AT (ZATyZ+S—C>+§IIZAZ-TY¢+S—CII§

Our ADMM then becomes:

e Update variable y,

= () VS [- ATy — st L (0 4]
J#i
y;=y; ifj>u
k+1

y; =y, ifj<i

6/35

MS&E 310 — Lorenzo Limonta — Project 4

e Update variable s

e Update variable A

AP
k+1 T k+1
S = max 10, +c E Ay;

N2 A= |37 (At + st

%

(17)

(18)

yyye
Sticky Note
Good derivations on multi-block

MS&E 310 — Lorenzo Limonta — Project 4 7/35

Practical Implementation - Validation

Let’s first look at a toy model to validate our code

minimize — 5x1 + 429 + 0x3 + 02y
s.t. 6x1 +4xo + 23 + 0y = 24
1+ 229+ 023+ 124 =6
1 >0

(19)

The above problem has primal solution x; = 3, x5 = 1.5, x3 = 0, x4 = 0 which gives f,;,=-21

Throughout the validation process — unless stated otherwise — we will use three stopping
criteria: norm 2 difference between exact solution and numerical solution (|| fezact — fa,.l|2)s
norm 2 difference between solutions at two iterative steps (|| fz, ., — fz,||2, referred to as cri-
terion 1, and norm 2 difference between the variables value at each iteration (||zxi1 — zkl|2,
referred to as criterion 2. Since for a general problem the exact solution is not known a priori,
we do this to establish a baseline validity on the convergence of each of the two criteria.

The following constants will be used throughout our validation process:
- =05

Tolerance = le-14

er:tact_fk||2

|fexact|

Max-iter = 108

- Error:

Question 1
Re-writing the problem in matrix form similarly to eq. 1, we have:

minimize‘ -5 4 0 O ‘ X1

e 4ol |
Sl 20 11T 6
Xl—XQZO
ngo

Let’s look at the solution for the primal problem, with and without pre-conditioner.

Tab. 1 and fig. 1 show that the solution without preconditioner requires less iterations than
the one with preconditioner but the preconditioned solution satisfies both criterion 1 and
2 simultaneously. The decrease in performance of the pre-condtioned case in this situation
needs further investigation, as no reasonable explanation can be proposed.

yyye
Comment on Text
Good observation

8/35 MS&E 310 — Lorenzo Limonta — Project 4

Toy problem primal solution
Stopping Criterion | Required Tol | Computed Tol | Iter | Time (s) | Pre-Conditioner
le-14 0 121 | 0.002186933
[|fezact = faull2 le-14 3.5527e-15 | 185 | 0.003334006 v
le-14 0 123 | 0.001967325
1 fares = falle le-14 7.1054e-15 187 1 0.002997109 v
[ER—TY le-14 0 143 | 0.002194761
le-14 7.3726e-15 187 1 0.002857202 v

Table 1: We show the results from the implementation of our toy problem. While the non-
preconditioned case is solved with fewer iterations, convergence in both metric is not achieve
at the same time. Computation time is averaged over 1000 tries.

Question 1 objective function value
-20.5 T T T T T T

-10

|
n
=]

—

-21.51

|
N
N

-22.5

Objective function value

Objective function value
g8 & &5 8

|
N
=]

Number of iterations

I I I I I I
0 20 40 60 80 100 120 140

|
®
S

Question 1 objective function value with preconditioner

.

I
20

I
40

I I I
60 80 100

I
120

I I I
140 160 180 200

Number of iterations

Figure 1: We show the convergence of ADMM for the problem solved when in form of eq.
1 with and without preconditioner. For the simple toy problem we obtain convergence rate
much faster for the non-preconditioned problem. Nonetheless, the pre-condition solution

looks ”smoother”.

Question 2

Writing out the dual of eq.19 as shown in eq.5 we obtain the following system of equation

minimize‘ 24 6 ‘ y

6 1
0|1 2lyts=
sty gy ts=

01

s>0

The exact solutions for the dual are given by y; = —0.75, y, = =0.5,y; =0, y, =0s; =0,

So — O, S3 = 075, sq4 = 0.5.

MS&E 310 — Lorenzo Limonta — Project 4

9/35

Question 2 Dual objective function value

Objective function value

10

Objective function value

10 20 30

40 50 60 70

Number of iterations

80 920

Question 2 Dual objective function value with preconditioner

10

20 30 40 50

60 70 80 90

Number of iterations

Figure 2: We show the convergence of ADMM for the dual problem solved when in form of
eq.b with and without preconditioner. The convergence rate of the two problem is substan-

tially the same.

Tab.2 and fig.2 show the results for this situation. We can see how solving the dual problem
with pre-conditioning on the primal doesn’t significantly modify our results. With the same
number of iteration, the pre-conditioned one is slightly faster due to the easiness in (pre)
computing its inverse. (N.B. the inverse in eq.7 is precomputed as it is a constant throughout

the process)

Toy problem dual solution

Stopping Criterion | Required Tol | Computed Tol | Iter | Time (s) Pre-Conditioner
le-14 7.1054e-15 81 | 0.002186933
| feract = faill2 le-14 0 85 | 0.003334006 v
le-14 7.1054e-15 82 | 0.001480335
1o = faullo le-14 7.1054e-15 85 | 0.001523686 v
le-14 3.7942e-15 82 | 0.001405075
i1 = ol le-14 6.4047¢-15 | 82 | 0.001404704 v

Table 2: We show the results from the implementation of our toy problem for the dual.
As expected, there is no substantial difference when preconditioning. Computation time is
averaged over 1000 tries.

10/35 MS&E 310 — Lorenzo Limonta — Project 4

Question 3 Primal objective function value Question 3 Objective function value with preconditioner
-20 . . . : . . . -10
o1 -20
(0] (0]
= =
© © -30
> _oo >
C [
il il
-6' -06 -40
S - S
o "o 50
= =
O -24 ©
L 9O 60
Qo Ne)
(@) (@)
-25r _70
o6 ‘ ‘ ‘ ‘ ‘ ‘ 80 ‘ ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35
Number of iterations Number of iterations

Figure 3: We show the convergence of ADMM for the primal problem solved with a barrier
function. Preconditioning our problem seem to cause the convergence to take much longer.

Question 3

Let’s look at the performance when implementing the interior-point case. To amplify the
effects of adding a barrier, we will choose a relatively high value of £=0.9. (N.B. ¢ stands in
for the p in the prompt, as u has been used as one of the Lagrangian multipliers in section
one)

Primal problem

Toy problem primal with barrier, £= 0.9

Stopping Criterion | Required Tol | Computed Tol | Iter | Error (%) | Pre-Conditioner
le-8 0 16 1.2798
[1Feiis = Faull: le-8 0 35 | 1.2802 v
[T le-8 0 16 1.2798
le-8 0 35 1.2802 v

Table 3: We show the results from the implementation of our toy problem with barrier
function and a relatively large value for the barrier coefficient. Again, the preconditioned
case seem to be taking significantly longer to solve than the non-preconditioned one.

As shown in fig.3, we are solving a slightly modified problem where our final objective value
will not be -21. Depending on the value of £, the solution for the interior point ADMM will
converge to different values. Tab.3 shows the necessary iterations to converge to the optimal
solution of our problem. It seem that preconditioning worsen the convergence rate of our
solver. Another factor that strongly influences the rate of convergence are the starting value
of our arg min Lagrangian. The further away from the optimal solution of each iteration, the
noisier the inner optimization will be. This translates in inaccurate values for our variables
at each iteration, which will cause the process to take longer to converge.

yyye
Comment on Text
Good point

MS&E 310 — Lorenzo Limonta — Project 4

11/35

30

Question 3 Dual objective function value

20

-10

e

Objective function value

10

Objective function value

5 10 15 20

25 30 35 40

Number of iterations

45 50

Question 3

Dual function value with preconditioner

5k

Number of iter

10

15
ations

20 25

Figure 4: We show the convergence of ADMM for the primal problem solved with a barrier
function. As with the previous case, preconditioning doesn’t change the time required to

reach a solution.

Dual problem

Toy problem dual with barrier, é= 0.9

Stopping Criterion | Required Tol | Computed Tol | Iterations | Error (%) | Pre-Conditioner
le-8 0 46 17.6692
[1Fenss = Faullo le-8 0 46 17.6692 v
[2kss — 2]l le-8 0 46 17.6692
le-8 0 46 17.6693 v

Table 4: We show the results from the implementation of our toy problem with barrier
function and a relatively large value for the barrier coefficient. As before, preconditioning
doesn’t affect our solution.

As seen in question 3, pre-conditioning doesn’t modify the solution of our dual problem sig-
nificantly, therefore we will not implement it when looking at bigger problems. Interestingly
to notice, both stopping criteria are satisfied at the same iteration in the dual. The high
value of ¢ causes our interior point method to converge to a solution far from optimal

12/35 MS&E 310 — Lorenzo Limonta — Project 4

Question 4 Primal objective function value Question 4 Objective function value with preconditioner
-20 T T T T T T T -10 T T T T T T T
B M\ 2
(0] (0]
=] =)
© © -30
>, >
C [
il il
© i
5 = 5
2 2w
= =
O -24 ©
2 -2 60
Qo Ne)
(@) (@)
-25 _70
o6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 80 ‘ ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of iterations Number of iterations

Figure 5: We show the convergence of ADMM for the primal problem solved with an outer
iteration barrier function. Unlike in previous situations, where our objective value would
oscillate around our solution, it decreases smoothly while converging to the exact values.
This is due to the iterative decreasing value of &.

Question 4

Let’s look at the performance when implementing the case with decreasing barrier function.
To magnify its effects, we choose relatively big starting value for £: 0.9 and v = 0.9.

Primal problem

This time around, our performance is much better than before. We converge approximately
to the exact solution of negative 21, and we do so in a reasonable number of iterations.
The reason is rather simple: as the log approaches infinity it’s coefficient approaches zero,
nullifying its effects.

Once again, we want to point out the sensitivity of the convergence rate to the inner mini-
mization algorithm and its starting value. Depending on the chosen conditions it may takes
longer to solve the inner arg min problem.

Toy problem primal with barrier, é= 0.9,y= 0.9

Stopping Criterion | Required Tol | Computed Tol | Iterations | Error (%) | Pre-Conditioner
le-8 0 76 0.0255
[1Fenss = Faull2 le-8 0 79 0.0212 v
les — 2xll2 le-8 0 76 0.0255
le-8 0 79 0.0212 v

Table 5: We show the results from the implementation of our toy problem for an outer
iteration barrier function. We use a relatively large value for ¢ and gamma to magnify the
effects of this method.

yyye
Comment on Text
Good finding

MS&E 310 — Lorenzo Limonta — Project 4 13/35

Question 4 Dual objective function value Question 4 Dual function value with preconditioner

30 T T T T T T T T T 10 T T T T T T T
20 1 5{

(0] (0]

= =

© [CR

> 10 >

c c

il il

=1 = _5H

[&] [&]

c oH c

2 2

[} o -107]

= =

© -10] ©

Q2 QD 15

Qo Ne)

(e} O
,zo’\/f] 720\/_7

20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160
Number of iterations Number of iterations

Figure 6: We show the convergence of ADMM for the dual problem solved with a barrier
function. We witness a smooth approach to our solution.

Dual problem

Toy problem dual with barrier, é= 0.9,y= 0.9

Stopping Criterion | Required Tol | Computed Tol | Iterations | Error (%) | Pre-Conditioner
le-8 5.9969e-09 189 2.0589e-04
1 foes = Fulle le-8 1.2974e-09 155 2.3224e-04 v
le-8 0 108 0.0015
ger = will: le-8 0 109 0.0014 v

Table 6: We show the results from the implementation of our toy problem for an outer
iteration barrier function. We use a relatively large value for ¢ and gamma to magnify the
effects of this method.

14/35 MS&E 310 — Lorenzo Limonta — Project 4

Changes of 3,7~

Let’s analyze the performance of our interior point ADMM for different values of 3,y when
£=0.9. For brevity, we will do so for the primal problem, with stopping criteria based on the
absolute error being above 0.00125 (i.e. ||fs,.; — fresae|l2 = 1le — 3). In order to amplify
the effects of our choice of 3,7, rather than accurate guesses for the inner function, we will
use (constant) numbers drawn from the uniform distribution (0 1] as our guess at each inner
iteration.

Fig.7 shows that increasing [increases the number of iterations needed to reach the solution.
This is to be expected: the smaller is beta, the smaller the effects of the constraints are on
the Lagrangian. This makes the minimization of the Lagrangian equivalent to solving an
unconstrained minimization of the objective function. Which in turn increases the rate of
convergence in situations where we are alway on the interiors of our problem (such as this).
On the opposite side, decreasing the value of gamma increases the rate of convergence. Once
again, this behaviour is to be expected: the lower the gamma means that at each iteration
the barrier function has less influence on our objective function and we end up solving a
similar problem to the one described in questions 1 or 2.

Iterations to reach solution with changes of beta Iterations to reach solution with changes of gamma

190 180 T

160
180
1401
170+ 120
100
160
80

60

Iterations to reach solution
Iterations to reach solution

40t
140
20t

130 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value of beta Value of gamma

Figure 7: We show the convergence of ADMM to the desired error tolerance when changing
parameters beta and gamma.

yyye
Comment on Text
Good reasoning

MS&E 310 — Lorenzo Limonta — Project 4

15/35

Question 5

We implement ADMM multi-block and see how it performs on our toy problem. We will
implement both the standard multi-block ADMM and the randomly permuted one, based

on the solution in eq.12-14.

e Standard Multi-Block

We can see that the implementation of our multi-block method converges in this situ-
ation. Due to the structure of the problem (the original matrix is small), we have no
time savings. Moreover, more iterations seem to be required for convergence.

Toy problem dual solution

Stopping Criterion | Required Tol | Computed Tol | Iterations | Time (s)
| fewact — fuill2 le-14 7.1054e-15 272 0.012607
L foeer = Furll2 le-14 0 269 | 0.028785
kst — vrll2 le-14 6.5653e-15 262 0.013769

Table 7: We show the results from the implementation of our toy problem for the dual. No
time savings is introduced by using multiblocks. Computation time is averaged over 1000

iterations.

Question 5 objective function value for Dual Multi ADMM
30 T T T T T

20

Objective function value

-30
0

I I
50 100

I I I
150 200 250

Number of iterations

300

Figure 8: We show the convergence to solution of our multi-block ADMM under the first
criteria. For the toy model we have no problem in converging and the convergence of our
objective function is similar to the one in question 2.

e Randomly Permuted

Randomly permuting the order of our update increases the number of iterations re-
quired for convergence, while adding noise in our convergence sequence. This behaviour

can be seen in fig.9

16/35 MS&E 310 — Lorenzo Limonta — Project 4

Toy problem dual solution

Stopping Criterion | Required Tol | Computed Tol | Iterations | Time (s)
|| fezact = fyp |2 le-14 7.1054e-15 375 | 0.023406
1 Foers — Furll2 Te-14 7.1054¢-15 415 | 0.025617
et — Vel Te-14 1.8028¢-15 350 | 0.022351

Table 8: We show the results from the implementation of our toy problem for the dual.
As expected, there is no substantial difference when preconditioning. Computation time is
averaged over 1000 iterations.

Question 5 objective function value for Dual Randomly Permut¢ Question 5 objective function value for Dual Randomly Permute
30 T T T T T T T T T T T T T 3

-20.97F

20 T _
o © 20.98
=] =
© ©
> 10 >
c c —20.99
K] il
= =
(&) (8]
C 0 C
=) 2 -2 (e
[0} (0]
= =
S -10 ©
8 8 -21.01
o o)
(@] (@]

'ZOM] _21.02

30 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 50 100 150 200 250 300 350 400 100 150 200 250 300 350
Number of iterations Number of iterations

Figure 9: We show the convergence to solution of our randomly permuted multi-block ADMM
under the first criteria. Randomly changing which variable to solve first causes wild oscilla-
tions that take a number of iterations to die out. These oscillations are characteristic of the
process, as clearly shown in the second image, where the same structure can be recognize at
smaller scale later in the process

yyye
Comment on Text
Good finding

MS&E 310 — Lorenzo Limonta — Project 4 17/35

=

Having validated the correctness of our code, we proceed on implementing it on bigger scale
problem. From http://www.netlib.org/lp/data/ we proceed to solve the following problems:
afiro, adlitlle, blend, sc205. Each problem has an exact solution.

Unless otherwise specified, we will use the following values to solve the relative ADMM
problem:

Practical Implementation - Real Problem

_B=05

Stopping Criterion: ||frs1 — fxll2
eracact_kaQ

‘feamctl

Error:

Tolerance = le-11

Max-iter = 108

- Problem = not pre-condtioned

The fist stopping criterion is chosen for two reasons: to highlighted some of the quirkness of
iterative methods, and to lessen the computational requirements. Moreover, all comparison
are made on non-preconditioned problems.

Question 1

As expected, by applying ADMM on the primal we observe that it always converges to
the exact solution. Unlike with out toy model, preconditioning speeds up our solution
considerably, we see gains up to 70% of total computig time when using preconditioning.
When comparing the number of iterations needed to reach a solution via stopping criteria
number one or two, we see the same effect witnessed with our toy model (N.B. not shown
here): when the problem is preconditioned, the difference between the number of iterations
needed to satisfy either requirement is much less than when not. We can thus infer that
preconditioning also regularizes our problem, i.e. changes in our variables will be matched
by equivalent changes in the objective function.

Primal Solution
Problem | Size | Sparsity (%) | Iter Error (%) | Time (s) | Pre-Cond Iter
afiro 27x51 92.59 1512 4.7337e-10 0.1111 1476
adlittle | H6x138 94.51 131785 0.0878 10.0823 103549
blend 74x114 93.81 147667 | 1.8926e-05 | 10.5930 32283
sc205 | 205x317 98.97 1298343 | 1.6471e-07 | 78.899630 930398

Table 9: We show the results from the implementation of standard ADMM for a variety of
sample problems in their primal form.

yyye
Sticky Note
This is the highlight of this study!

This tells the difference of well conditioned problem vs. ill-conditioned problems.

yyye
Comment on Text
Good point

yyye
Comment on Text
Different story.

yyye
Underline

18/35

MS&E 310 — Lorenzo Limonta — Project 4

Question 2

Applying ADMM on the dual presents risks, as evidenced by the results reported in tab.10.
Two of our four problem, afiro and sc205, stop early and seemingly converge to the wrong
solution. From theory, we know that two block ADMM always converges, therefore our
objective function must be rather flat at the point of stopping. This is indeed the case,
limiting ourselves to sc205 for brevity, we show in fig.10 that its objective function is rather
flat for numerous iterations, and then jumps towards the exact solution. The slow decreases
"tricks” our chosen stopping criteria into delivery the wrong solution.

To obviate this problem we may want to look at different solutions: either changing the
value of 5 (1) or choice of stopping criterion (2).

1.

For the dual of sc205, increasing 5 does indeed alleviate the problems caused by stop-
ping criteria 1. It increases our stepsize and the costs of the constraints on the La-
grangian, converging quickly to the exact solution by avoiding any flat valley. Nonethe-
less, generally speaking, this choice cannot be made a priori. Augmenting beta such
that the dual for sc205 converges, makes the primal not convergent within the maxi-
mum number of iterations. This leads us to make a crucial observation regarding the
role of our tuning parameter f3, if its change in one directions increases the convergence
of the primal, it decreases the convergence rate of the dual and vice-versa. There are
techniques to optimize the value of § and thus convergence. When problems are not
excessively large, we could make use of the duality gap, by simultaneously solving both
the primal and dual. Ref.[1] has a detailed algorithm on optimal choice for § using
this idea.

. Imposing the stopping criterion on the changes of the variables, it seems to gener-

ally perform better. Unfortunately, the literature has extensively shown this is not
necessary true. In addition, a stopping criterion on the changes of variables, for non-
preconditioned problem, greatly increases the number of iterations needed to converge
(see tab.1).

Dual Solution

Problem | Size | Sparsity (%) | Iter | Error (%) | Time | Pre-Cond Iter
afiro o1x27 92.59 1264 99.17 1255

adlittle | 138x56 94.51 66026 | 7.8834e-08 | 3.6737 56079
blend 114x74 93.81 16530 | 1.2600e-05 | 1.0631 16530
sc205 | 317x205 98.97 18 99.7029 18

Table 10: We show the results from the implementation of standard ADMM on the dual of
the aforementioned problems. Time is not shown for afiro and sc205 since convergence is
not reached

yyye
Comment on Text
Good finding

MS&E 310 — Lorenzo Limonta — Project 4 19/35

«10c Objective function value for sc205 Objective function value for sc205
12 T T T T T T T T T T T T T
20
1or 1of
[} o
= =
g g
c c
3= .2
= 6 =
o o
< =
2 2
o 4r]
2 =
3] 3]
Q2 8
Q Qo
(©) o
o
-70

-2

0 é 1‘1 6 8 16 1‘2 1‘4 1‘6 18 0 é 1‘1 é 8 16 12
Number of Iterations Number of Iterations x10°
Figure 10: We show the convergence to solution of ADMM for the problem sc205. The
figure on the left shows the objective function under testing conditions: it seemingly quickly
reaches convergence to the wrong value. The right figure shows what happens when the
algorithm is allowed to run until the maximum number of iterations is reached. It clearly
shows a slow decay which could be mistaken as a solution by our algorithm, to then jump
to the exact and correct one.

Question 3

For brevity, we will investigate ADMM with barrier function only for the primal of afiro, as
it is the smallest problem and the one with the fastest convergence rate. Studying the other
problems becomes cost prohibitive due to the solver chosen for the interior point method.

We easily and smoothly find a solution close to the exact one, especially thanks to the low
coefficient associated with our barrier function. Comparing our results with those found
in question 1, we can see that the interior point methods takes fewer iterations than the
standard ADMM. Nevertheless, the cost of solving two non-linear minimization problems is
significant and is reflected in a high computation time.

Primal Solution £= 0.1
Problem | Tol | Iterations | Error (%) | Time (s) | Pre-Cond Iter
Afiro le-3 754 0.0492 178.8527 720

Table 11: We show the results from the implementation of the interior point method on the
primal of afiro. It takes fewer iteration to converge to an acceptable result, nonetheless the
time taken to reach it is longer.

20/35 MS&E 310 — Lorenzo Limonta — Project 4

Question 3 Primal objective function value Question 3 Objective function value with preconditioner
T T T T T T T -50 T T T T T T T

I
&4
S

-100

Lo L
a o
=] S
L
a
S

|
n
o
S

—-200

|
n
a
S

-250

-300

Objective function value

Objective function value

|
N
=)
S

|
IS
a
=)

_500
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Number of iterations Number of iterations

Figure 11: We show the results for the interior point ADMM on the objective function of
Afiro. As it can be see from the right picture, the preconditioned problem is better behaved.
Just like with our toy model, we see a smooth decrease towards the exact solution for both
cases.

Question 4

As expected from what seen in the toy problem, we smoothly converge towards the exact
solution. In this situation preconditioning does not influence our results significantly as we
are introducing a barrier function which modify the problem and should nullify any positive
effect of preconditioning. As before, it takes fewer iteration to converge, nonetheless, due to
the Lagrangian not being solved analytically, it takes longer time.

Primal Solution, £&= 0.9,y= 0.9
Problem | Tol | Iterations | Error (%) | Time (s) | Pre-Cond Iter
Afiro le-3 727 0.05 120.6948 732

Table 12: We show the results from the implementation of iterative barrier ADMM on
the primal of afiro. We see that the required time to converge is significantly less for this
methodology than for the prior interior point method.

Question 5

Applying ADMM multi-block presents the same problems outlined in the straight up dual
section. Dividing the starting matrix in equal block doesn’t seem to speed up the time
required to reach a solution, nonetheless it make memory management much better. The
same ideas as before can be imposed to ease convergence.

e Multi-Block ADMM

By using adlittle as our testing problem, we investigate if there is an optimal solution
on how to split the matrix A for most efficient computation time. Looking at fig.13 it
seems that not splitting is always the most efficient situation as long as we don’t run

MS&E 310 — Lorenzo Limonta — Project 4

21/35

200

Question 4 Primal objective function value

100

-100

-200

-300

Objective function value

—400F

-500

0 100 200 300

400

500

Number of iterations

600 700 800

Objective function value

Question

-100

4 Obijective function value with preconditioner

L
a
=]

|
n
=3
S

300

200

400

500 600

Number of iterations

Figure 12: We show the results for barrier ADMM with outer iteration on the objective
function of Afiro. Just like with our toy model, we see a smooth decrease towards the exact

solution for both cases.

Dual Multi-Block
Problem | Size | Sparsity (%) | Iter | Error (%) | Time
afiro 51x27 92.59 1660 59.17
adlittle | 138x56 94.51 76356 | 9.6035e-09 | 9.4241
blend 114x75 93.81 242707 0.0064 61.8577
sc205 | 317x205 98.97 644 99.7029

Table 13: We show the results from the implementation of ADMM multi-block on the dual
of the problems considered at the beginning of this section. Time is not shown for afiro and
sc205 since convergence is not reached

9.5

8.5

Time (s)

751

6.5

Objective function value

I I
5 10

15
A1 size

I
20

I
25 30

Figure 13: We show the time to convergence for adlittle as A1 rows increase. Conversely the
row size of A2 is decreasing.

22/35

MS&E 310 — Lorenzo Limonta — Project 4

into memory problems. As Al size increases (and conversely A2 size decreases) and

reaches A2’s size, time to solve increases.

e Random Permutation

Dual Multi Block Rand Perm
Problem | Size | Sparsity (%) | Iter | Error (%)
afiro 51x27 92.59 1660 59.17
adlittle | 138x56 94.51 111556 | 3.3292e-09
blend 114x74 93.81 48 84.2364
sc205 317x205 98.97 795 99.7029

Table 14: We show the results from the implementation of random permutation to ADMM
multi-block on the dual of the problems considered at the beginning of this section.

Random permutation, in addition to the same problems as regular two block ADMM,
presents a new fascinating one: blend seem not to converge. Let’s investigate this
situation further: not only does blend not converge, as shown in fig.14 it also seemingly
converges to different solutions every time. In these situation, neither decreasing the
tolerance nor increasing the value of g alleviate the problem. These event seems to
arise when the last updated variable is also the firs new updated one. One simple
way to eliminate this aberration lies in changing stopping criterion. We show this in
fig.15. Applying criterion 2, we see that — as per theory — the algorithm does indeed
converge to the exact solution. Again we notice how random permutation takes longer

to converge as it oscillates significantly around the exact solution.

Objective function value for blend

Objective function value

I I I I I I
10 20 30 40 50 60

I I
70 80

Number of iterations

Figure 14: We show the results of different Multi Block ADMM with random permutation
runs for blend. The algorithm seem to never converge to the exact solution as demonstrated

I I I
90 100 110

by the different objective value it stops at.

Objective function value

50

40F

30

Objective function value for blend

5 10 15 20 2
Number of iterations

MS&E 310 — Lorenzo Limonta — Project 4 23/35

Objective function value for blend

Objective function value

0.5 1 1‘.5 2 25
Number of iterations x10°

Figure 15: We show the results of using stopping criterion number 2 (i.e. ||ygr1 — ykl|2) to
reach convergence for the Multi Block ADMM with random permutation for blend.

Conclusions @

Having used ADMM on a variety of problem and in a variety of situations we recommend
the following implementations techniques:

e Always precondition your problem: preconditioning increases speed of convergence and
regularizes the problem. I.e. changes in x; and f; are more closely realated, which
means that satisfying stopping criterion 1 may is more likely to also satisfy stopping
criterion 2

e [f unsure on the behavior of your objective function, use a blended tolerance approach
for stopping criterion: a||fi1 — fill2 + (1 — @) ||zer1 — xx||2
This way you can reach a satisfactory compromise between speed of convergence and
accuracy in both objective function and variables.

e When feasible, solve both primal and dual. As shown, it is possible that either one
converges to the wrong solution, but it’s unlikely that both will (from strong duality
you know that can’t be the case whenever a feasible optimal solution exists). Ref. [1]
recommends a stopping criterion based un the residual of both the primal and dual
problem to make use of the aforementioned statement.

e Carefully choose the value of 5 as it will strongly influence your rate of convergence

[1].

References

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends®) in Machine Learning, 3(1):1-122, 2011.

yyye
Sticky Note
Good summary

yyye
Underline

yyye
Comment on Text
Good suggestion

yyye
Underline

24/35 MS&E 310 — Lorenzo Limonta — Project 4

APPENDIX - Matlab Code
Main

clear all
close all

% Setting up system of equations to be solved

% System taken from http://www.ifp.illinois.edu/ angelia/ge330fall09_stform4 .
% Pag.11

%

% A=[6 4 1 0 ;

% 1 2 0 1] ;

% b=[24;6];

% c¢=—15;4;0;0]; % check sign for plus or minus depending if you are solving a
% load afiromatlab .mat

% load adlittlematlab .mat

% load blendmatlab .mat

% load sc205matlab . mat

% Aprime=sparse ([Aineq,eye(size (Aineq,1))]); % This is adding the slack varia
% Asecond=sparse ([Aeq, zeros (size (Aeq,1),size (Aineq,1))]); %This is adding the
% A=sparse ([Aprime; Asecond]);

% b=sparse ([bineq;beq]); % Writing the b vector

% c=sparse ([f;zeros(size(Aineq,1),1)]); %Adding slack variable to objective f
beta=0.5;

% Setting beta, tolerance, counters

min_tol = le—11;

max_counter = 10000000;

xsi=0.9 ; % How much we need to consider barrier function

gamma = 0.9;

Y/
%
%
% QUESTION 1
%
%
%

%
% General prolbem is the primal with the following form
% minimize c¢’xx

% s.t. Axl=b

MS&E 310 — Lorenzo Limonta — Project 4 25/35

% x1—x2=0

% x2 \ge 0
temp_no_p =]
temp_p =]
% for iii = 1:100
preconditioner = 0;

templ=Project4Q1Matlab (A ,b,c,beta, min_tol ,max_counter ,preconditioner); %

temp_no_p=[temp_no_p ,templ];

preconditioner = 1;

temp2=Project4Q1Matlab (A,b,c,beta, min_tol ,max_counter , preconditioner); %

temp_p=[temp_p ,temp2];
% end
%%
%
%
% QUESTION 2
%
%
%
%
% Solving the dual with the following form
% maximize b’xy

% s.t. Ay + s=c
% s \ge 0
temp_no_p =[]

temp _p =]

% for iii = 1:1000
preconditioner = 0;

templ=Project4Q2Matlab (A,b,c,beta, min_tol ,max_counter , preconditioner)
temp_no_p=[temp_no_p ,templ];

preconditioner = 1;

temp2=Project4Q2Matlab (A,b,c,beta, min_tol ,max_counter , preconditioner)
temp_p=|[temp_p , temp2];

% end

%%

%
%
% QUESTION 3
%
%
%
%
% Solving the primal with barrier function
% minimize c¢’sxx—xsi*(sum(log(x_j)))

% s.t. Axl=b

26/35 MS&E 310 — Lorenzo Limonta — Project 4

% x1-x2=0
% x2 \ge 0
outer=0;
min_tol_barrier=le—S§;
xs1=0.1

YPRIMAL

% NO PRECONDITIONER
preconditioner = 0;

warning (' off)

Project4Q3Q4Primal (A,b,c,beta, min_tol_barrier ,max_counter ,preconditioner ,xsi,
Y%WITH PRECONDITIONER

preconditioner = 1;

warning (" off 7)

Project4Q3Q4Primal (A,b,c,beta, min_tol_barrier ,max_counter ,preconditioner ,xsi,

% Solving the dual with barrier function

% maximize b’xy + xsixsum(log(x_j))

% s.t. Ay + s=c

% s \ge 0

% DUAL

% NO PRECONDITIONER

preconditioner = 0;

warning (" off)

Project4Q3Q4Dual (A,b,c,beta, min_tol_barrier ,max_counter , preconditioner ,xsi,ou
% WITH PRECONDITIONER

preconditioner = 1;

warning (" off)

Project4Q3Q4Dual (A,b,c,beta, min_tol_barrier ,max_counter , preconditioner ,xsi, ot
%0

%
%
% QUESTION 4
%
%
%
%
% Solving the primal with barrier function with outer iteration
% minimize c¢’sxx—xsi*(sum(log(x_j)))

% s.t. Axl=b

% x1—x2=0
% x2 \ge 0
outer=1;

xs1=0.9;

MS&E 310 — Lorenzo Limonta — Project 4 27/35

gamma=0.9;

min_tol_barrier=le—S§;
counter_all =[];

beta=0.5;

for beta =0.01:0.01:0.91

YPRIMAL

% NO PRECONDITIONER
preconditioner = 0;

warning (" off 7)
[counter|=Project4Q3Q4Primal (A,b,c,beta, min_tol_barrier ,max_counter, precondit
counter_all=[counter_all ,counter |;

end
% PRIMAL WITH PRECONDITIONER
preconditioner = 1;

warning (' off)
Project4Q3Q4Primal (A,b,c,beta, min_tol_barrier ,max_counter ,preconditioner ,xsi

% DUAL
% NO PRECONDITIONER
preconditioner = 0;

warning (' off)

Project4Q3Q4Dual (A,b,c,beta, min_tol_barrier ,max_counter , preconditioner ,xsi,ou
% WITH PRECONDITIONER

preconditioner = 1;

warning (" off 7)

Project4Q3Q4Dual (A,b,c,beta, min_tol_barrier ,max_counter ,preconditioner ,xsi,ou

Y/
%
%
% QUESTION 5
%
%0
%
%
% Solving multi—block dual
% maximize bl xyl+b2x*y2
% s.t. Al7yl1+A2’ y24s=c
% s \ge 0
% total_time =][];
% for iii=1:round(size(A,1)/2)
A=A (1 i1)
A2=A(iii+1:end,:);
bl=b(1:1iii ,1);
b2=b(iii+1l:end,1);

28/35 MS&E 310 — Lorenzo Limonta — Project 4

[tempo|=Project4Q5Dual (A1,A2,bl,b2,c,beta,min_tol ,max_counter)

% total _time=[total_time ,tempo];

% end

% QUESTION 5 — RANDOM PERMUTATION
%

Project4Q5DualRandPerm (A1,A2,bl,b2,c,beta, min_tol ,max_counter)
Q1

function [temporale|=Project4Q1Matlab(A,b,c,beta,min_tol ,max_counter ,precond:
% close all

% Initialization of your starting vectors

mu=ones (size (A,2),1); %initializiation of lagrange multiplier for (x1—x2)
lambda=ones (size (A,1),1); %initilization of lagrange multiplier for (Ax—b)
xl=ones (size (A,2),1);

x2=ones (size (A,2),1);

tol=100; % initial tolerance

counter=0;

fnew=[]; %creation of vector containing result of objective function

Y

s = sprintf(’Question 1 objective function value’);
% Do you want to precondition your system;
if preconditioner = 1
b=(full (A)* full (A”))"(—=1/2)xb;
A=(full (A)xfull (A"))"(—1/2)%A;
s = sprintf(’Question 1 objective function value with preconditioner ’);
end

% fprintf(A 7, A,’\n b 7,b,’\n ¢ ’,¢,” \n mu ’,mu,’\n lambda ’,lambda,’\n T

temp_inv = (A'xAteye(size(A’xA)))\eye(size(x2,1));
cond ((A’xA+eye(size (A'xA))))
% zzznorm (temp_inv—inv (A’xAteye(size (A'*xA))))
% pause
tic
while tol>=min_tol && counter<=max_counter
x_old=x1;
counter=counter+1;
fold=c’*x1;

% Analytical solution for x1_k+1
x1_k_1= temp_inv*(x24A’xb+1/betax(A’*«lambdat+mu—c));

MS&E 310 — Lorenzo Limonta — Project 4 29/35

% Analytical solution for x2_k+1
x2_k_1 =max([zeros(size(A,2),1),x1_k_1-mu/beta] ,[],2);

% Updating multipliers

lambda = lambda — betax(Axx1_k_1-b);
mu=mu—betax(x1_k 1-x2_k_1);
x2=x2_k_1;
xl=x1_k_1;
fnew=[fnew ,c’xx1];
tol=norm (fnew (end)—fold ,2);
% tol=norm(xl—x_old ,1);
end
temporale=toc;
% figure
% plot (fnew ,’ LineWidth’ ,2)

% title (s, fontsize ' 16)

% xlabel (’Number of iterations ’,’ fontsize ' ,16)

% ylabel (?Objective function value’,’fontsize ’,16)

fprintf (’\n Question 1 \n’)

fprintf ('We needed %d iterations to obtain the following solution: %15.10f \n
tol

% x2,lambda

fprintf(’\n Taking this much time %f \n’, temporale)

%Testing solution is correct
% solution=linprog(c,—eye(size(A,2),size(A,2)),zeros(size(A,2),1),A/b) %ey;e

Q2

function [temporale|=Project4dQ2Matlab(A,b,c,beta,min_tol ,max_counter ,precond:

% Initialization of your starting vectors

y=—ones (size (A1) ,1);

s=ones (size (A,2),1);

lambda=ones (size (A,2) ,1);

tol=100; % initial tolerance

counter=0;

fnew=[]; %creation of vector containing result of objective function

% Do you want to precondition your system
testo = sprintf(’Question 2 Dual objective function value ’);
% Do you want to precondition your system;

30/35 MS&E 310 — Lorenzo Limonta — Project 4

if preconditioner =— 1

b=(full (A)*full (A”))"(—1/2)xb;

A=(full (A)xfull (A”))"(—1/2)%A;

testo = sprintf(’Question 2 Dual objective function value with preconditi
end

temp_inv=(AxA")\ eye(size(y,1));
cond (temp_inv)

% fprintf(A 7, A,’\n' b 7,b,’\n ¢ ’,¢,” \n mu ’,mu,’\n lambda ’,lambda,’\n T
tic
while tol>=min_tol && counter<= max_counter

y-old=y;

counter=counter+1;
fold=b’xy;

% % Analytical solution for y_k+1
y_k_1 = temp_inv*(Axc—Axs+1/betax(b+Axlambda));

% Solution via fmincon for lagrangian for general problem

% options=optimset (’fminunc ’); options.TolFun = le—10;0ptions.TolX = le—1(
% myfuny=Q(y)yLagMinimizerDual (y,A,b,c,lambda, beta,s);
% y_k_1=fminunc (myfuny,y,options);
%
% % Analytical solution for s_k+1
s_.k_1 = max([zeros(size(A,2),1),c—=A’xy_k_l+lambda/beta] ,[],2);

% Solution via fmincon for lagrangian for general problem

% myfuns=Q(s)sLagMinimizerDual (y_k_1 ;A b, c,lambda, beta ,s);
% options=optimset ('fmincon ’); options.TolFun = le—10;0ptions.TolX = le—1(
% s_k_l1=fmincon (myfuns,s,[] ,[] ,[] ,[], zeros(size(A,2),1),[],[],options);

% Updating multipliers

lambda = lambda — betax(A’sxy_k_14+s_k_1—c);
s=s_k_1;

y=y-k_1;

fnew=[fnew ,b’xy];

fnew (end);

% tol=norm (fnew (end)—fold ,1);
tol=norm (y—y_old ,2);
% pause

end

MS&E 310 — Lorenzo Limonta — Project 4 31/35

temporale=toc;

figure

plot (fnew , LineWidth’,2)
title (testo,’ fontsize ',16)

tol
xlabel (’Number of iterations ', fontsize ’,16)
ylabel (?Objective function value’,’fontsize ,16)

fprintf (’\n Question 2 \n’)
fprintf ('We needed %d iterations to obtain the following solution: %15.10f \n
%y

fprintf(’\n Taking this much time %f \n’, temporale)
% s

%Solution via linpro
%[x, fval ,exitflag ,output] = linprog([—Newb;zeros(size (NewA,2) ,1)],[],[],[NewA

Q3Q4 Primal

function [counter|=Project4Q3Q4Primal (A,b,c,beta,min_tol ,max_counter ,precondi
preconditioner

% Initialization of your starting vectors

mu=ones (size (A,2),1); %initializiation of lagrange multiplier for (x1—x2)
lambda=ones (size (A,1),1); %initilization of lagrange multiplier for (Ax—b)
xl=ones(size (A,2),1);

x2=ones (size (A,2),1);

tol=100; % initial tolerance

counter =0;

fnew=[]; %creation of vector containing result of objective function
%
domanda = (’Question 37);
if outer =1
domanda = sprintf (’Question 47);
end
testo = [domanda,sprintf(’ Primal objective function value ’)];

% Do you want to precondition your system ;
if preconditioner 1

b=(full (AxA”))"(—=1/2)xb;

A=(full (AxA’))"(—=1/2)%A;

testo = [domanda,sprintf(’ Objective function value with preconditioner)

end

tic

while tol>=le—7 && counter<max_counter
x_old=x1;

32/35 MS&E 310 — Lorenzo Limonta — Project 4

counter=counter+1;
fold=c’s*x1—xsi*sum(log (x1));

% Solution via fmincon for lagrangian for general problem
myfunx1=Q(x1)x1LagMinimizerPrimalBarrier (x1,A,b,c ,mu,lambda, beta , xsi ,x2);
options=optimset ('fmincon ’); options.TolFun = le—10;0ptions.TolX = le—10;c
x1_k_1 = fmincon (myfunxl,x1,[],[],[],[] ,0.00001%ones(length(A),1),[],[],c
myfunx2=0(x2)x2LagMinimizerPrimalBarrier (x1_k_1 ,A,b,c,mu,lambda, beta , xsi ,
options=optimset (’fmincon ’); options.TolFun = le—10;0ptions.TolX = le—10;c
x2_k_1 = fmincon (myfunx2,x2,[] ,[],[],[] ,0.00001%ones(length(A),1),[],[],c

% Updating multipliers

lambda = lambda — betax(Axx1_k_1-b);
mu=mu—betax(x1_k_ 1—-x2_k_1);
x2=x2_k_1;
xl=x1_k_1;
fnew=[fnew ,c’ '« xl—xsixsum(log(x1))];
fnew (end);
tol=norm (fnew (end)+21);
% tol=norm(xl—x_old);
if outer ==1 % Reduction algorithm outer iteration
Xsi=gammax xsi ;
end
end
toc
% figure
plot (real (fnew),’LineWidth’,2)

title (testo,’ fontsize ',16)

xlabel (’Number of iterations ’,’ fontsize ’,16)

ylabel (?Objective function value’,’fontsize ’,16)

fprintf ([’\n’, domanda,’ Primal \n’])

fprintf (’We needed %d iterations to obtain the following solution: %15.10f"
% x2

tol

% error = norm (fnew (end)+21)

%Testing solution is correct

% xs1i=0;

% solution = fmincon (Q(x) c¢’s*x—xsixsum(log(x)),ones(size(A,2).,1),[],[] ,A,b,0.f
%

Q3Q4 Dual

function [|=Project4Q3Q4Dual(A,b,c,beta, min_tol ,max_counter,preconditioner ,xs

preconditioner

MS&E 310 — Lorenzo Limonta — Project 4 33/35

% Initialization of your starting vectors
y=ones (size (A,1),1);

s=ones (size (A,2),1);

lambda=ones (size (A,2) ,1);

tol=100; % initial tolerance

counter=0;

fnew =[]; %creation of vector containing result of objective function
%
domanda = (’Question 37);
it outer =1
domanda = sprintf(’Question 47);
end
testo = [domanda,sprintf(’ Dual objective function value’)];
% Do you want to precondition your system:;
if preconditioner = 1

b=(AxA’)"(—1/2)x*b;
A=(AxA")"(—1/2)*A;
testo = [domanda,sprintf (

)

Dual function value with preconditioner ")];
end

%

Y)

% fprintf(A 7, A,’\n b ",b,’\n ¢ ’,c¢,” \n mu ’,mu,’\n lambda ’,lambda,’\n L
fnew=[fnew ,b’*y+xsixsum(log(s))]
tic
while tol>=min_tol && counter <= max_counter
counter=counter+1

y-old=y;

Y

% Solution via fmincon for lagrangian for general problem
options=optimset ('fminunc ’); options.TolFun = le—10;0ptions.TolX = le—10;c
myfuny=Q(y)yLagMinimizerDualQ3(y,A,b,c,lambda, beta s, xsi);

y_k_l1=fminunc (myfuny,y, options);

% Solution via fmincon for lagrangian for general problem
myfuns=Q(s)sLagMinimizerDualQ3 (y_k_1 ;A b, c,lambda, beta s, xsi);
options=optimset ('fmincon ’); options.TolFun = le—10;0ptions.TolX = 1le—10;c
s_k_l1=fmincon (myfuns,s.[],[] ,[],[],0.00001xones(size(A,2),1).[],[],option

% Updating multipliers

lambda = lambda — betax(A’xy_k_14+s_k_1—c);
s=s_k_1;

y=y-k_1;

fnew=[fnew ,b’ s y+xsixsum(log(s))];

34/35 MS&E 310 — Lorenzo Limonta — Project 4

fnew (end)

% tol=abs((—4.6475314286e02+fnew (end)))
% tol=norm (fnew (end)—fnew (end —1),2)
tol=norm (y_old—y);
if outer ==
Xsl=gammax Xs1i ;
end
% pause
end
toc
figure

plot (real (fnew),’LineWidth’,2)

title (testo,’ fontsize ’,16)

xlabel (’Number of iterations ', ’ fontsize ’,16)
ylabel (’Objective function value’
fprintf ([domanda, ’Dual’])

, " fontsize ’,16)

fprintf ('"We needed %d iterations to obtain the following solution: %15.10f",

y
tol

norm (fnew (end)—fnew (end —1))

Q5

function [temporale|=Project4Q5Dual(Al1,A2,bl,b2,c,beta, min_tol , max_counter)

% Initialization of your starting vectors
yl=ones (size (Al,1),1);
y2=ones (size (A2,1),1);

s=ones(size (Al1,2),1);

lambda=ones (size (Al,2) ,1);

tol=100; % initial tolerance
counter=0;

fnew=[]; %creation of vector containing result of objective function

y-old=[yl;y2];

% fprintf(A 7, A,’\m' b "b,’\n ¢ ’,c¢,’ \n mu

fnew=[fnew ,bl ' xy14+b2 ' xy2];

temp_invl=(AlxAl’)\ eye(size(yl,1));

temp_inv2=(A2xA2")\ eye(size(y2,1));

tic

while tol>=min_tol && counter <=max_counter
counter=counter+1;

% Analytical solution for x1_k+1

" mu, '\n lambda ’,lambda,’\n F

vyl k1 = temp_invl*(Alxc—Alxs—A1xA2’xy2+1/beta*(bl+Alxlambda));

v2 k1 = temp_inv2x(A2xc—A2xs—A2+«A1’xy1 _k_1+41/beta*(b2+A2xlambda));

MS&E 310 — Lorenzo Limonta — Project 4 35/35

s_.k_1 = max([zeros(length (lambda),1),lambda/betatc—Al’xy1l k_ 1-A2’%xy2 k_1

% Updating multipliers
lambda = lambda — beta*x(Al'xyl_k_1+A2’xy2_k_14s_k_1—c);
s=s_k_1;
yl=y1l_k_1;
y2=y2_k_1;
fnew=[fnew ,bl xy14+b2 xy2];
tol=norm (fnew (end)—fnew (end —1),2);
% tol=norm ([yl;y2]—y-old ,2);
y-old=[yl;y2];
% pause
end
temporale=toc;
% figure
% plot (real(fnew),’ LineWidth’,2)
% title (’Question 5 objective function value for Dual Multi ADMM ,’ fontsize ',
% xlabel (’Number of iterations ’,’fontsize ,16)
% ylabel (?Objective function value’,’fontsize ' ,16)
% fprintf(’Question 5 Duall \n’)
fprintf (’We needed %d iterations to obtain the following solution: %15.10f \n
% tol
% yl,y2
% printf(’\n With value: %f \n’,fnew(end))
fprintf (’\n Taking this much time %f \n’, temporale)

