
MS&E 310 Project: Online Linear Programming

Jiayue Wan, Lynn Zeng

December 11, 2017

1 Introduction

Resource allocation is a classical problem in operations research, which aims to maximize the total
return given a limited amount of resources. Typical problems can be formulated using a linear
program and solved offline in a straightforward manner. However, in specific settings where decisions
of resource allocation must be made shortly after order receipts (e.g. online auction / bidding), we
need online linear programming algorithms to make decisions. In this project, we investigate and
propose multiple online linear programming algorithms to solve online resource allocation problem.

2 Backgrounds

We consider a linear program in the form

maximize
x

n∑
j=1

πjxj

subject to
n∑
j=1

aijxj ≤ bi, ∀i = 1, 2, · · · ,m

0 ≤ x ≤ 1, ∀j = 1, 2, · · · , n

(1)

where π = (π1, π2, · · · , πn)T is the pricing (or gain) vector, aij is required quantity of resource
i for bidder j, b = (b1, b2, · · · , bm)T is the resource capacity vector. For simplicity, we assume that
aij is either 0 or 1. An offline linear programming algorithm computes the optimal solution x all
at the same time, while an online linear programming algorithm computes x1, x2, · · · , sequentially.
We test the performances of multiple online algorithms using simulated data.

2.1 Simulated Data

We generate simulated bidding data for Model 1. We set the number of resources to m = 10, the
number of bids to n = 10000, the resource capacity to bi to 1000 for i = 1, 2, · · · ,m. The bidding

1

information matrix A (an m by n matrix) such that

A =

a11 . . . am1
...

. . .
...

am1 . . . amn

 (2)

is generated by random zeros and ones. We also fix a ground truth price vector p using standard
uniform distribution U [0, 1]. Then, the bidding price is randomly generated using

πk = pTak + randn(0, 0.2) (3)

where randn(0, 0.2) indicates a random gaussian variable with mean 0 and variance 0.2.

2.2 Offline Algorithm (Baseline)

We consider the offline linear programming problem as the following

maximize
x,s

πTx+ u(s)

subject to Ax+ s = b

0 ≤ x ≤ 1

s ≥ 0.

(4)

We construct the Lagrangian for the LP program.

L = −(πTx+ u(s)) + pT (Ax+ s− b)− λT1 x+ λT2 (x− 1)− λT3 s (5)

1 −π + pTA− λ1 + λ2 = 0

2 −du(s)

ds
+ pT − λT3 = 0

3 λT3 s = 0

4 λT1 x = 0

5 λT2 (x− 1) = 0

6 λ1, λ2, λ3 ≥ 0.

(6)

Conditions 1 to 6, along with the primal constraints constitute the set of KKT conditions. We
assume that u(s) is increasing and strictly concave. Then, since du(si)

dsi
=∞ at si = 0, the objective

increases with a local increase in si at si = 0. Therefore, s∗i > 0 for all i. By conditions 2 and 3, we
know that λ3 = 0, and p = (du(s)ds)T is unique.

Consider the utility function u(s) as the expected future values of unused resources [3]. It is
increasing and concave due to the law of diminishing returns. We run the offline algorithm using
the following four utility functions u(s):

• Utility function 1: u1(s) =
w

m

∑
i log(si), where w = 1 and m = 10.

• Utility function 2: u1(s) =
w

m

∑
i log(si), where w = 10 and m = 10.

2

• Utility function 3: u2(s) =
w

m

∑
i(1− eisi), where w = 1 and m = 10.

• Utility function 4: u2(s) =
w

m

∑
i(1− eisi), where w = 10 and m = 10.

Table 1 shows the simulation result of the offline algorithm using different utility functions.

Table 1: Simulation result of the offline algorithm.

Utility function 1 2 3 4

Total Rev. 7398.067 7392.476 7405.956 7399.927
||p− p̄||2 0.2199722 0.219972 0.219972 0.2199721

Number of Bids Accepted 2235 2230 2231 2233

In theory, different choices of w, which means different expected future value of unused resources,
should yield different total revenues. A large w indicates a higher valuation of resource in the future
and a more conservative policy in online linear programming. However, we see that using different
w’s and different utility functions makes no significant difference in all three aspects we listed above.
This makes sense because in the offline problem, the u(s) function only ensures the uniqueness of
dual variables, and therefore should not affect the optimum significantly. In all cases, the shadow
price vector p is close to the ground truth price vector p. We use the results of offline algorithm as
the baseline of online algorithms.

3

3 SCPM

SCPM is an online algorithm that makes immediate decision when a bid is received from the par-
ticipants [1][3]. It notifies bidders the results right away so that they are able to modify their bids
and resubmit. Instead of solving the problem after the market closes, whenever the kth bid arrives,
the market maker solves the follwing problem:

maximize
xk,s

πkxk + u(s)

subject to aikxk + si = bi − qk−1
i ,∀i = 1, . . . ,m

0 ≤ xk ≤ 1

si ≥ 0,∀i = 1, . . . ,m

(7)

where qk−1
i =

∑k−1
j=1 aij x̄j is the resource i allocated before the kth bidder arrives. Again, we

construct the Lagrangian for this LP problem, and obtain the following:

L = −(πkxk + u(s)) +
m∑
i=1

pi(aikxk + si − bi + qk−1
i)− λ1xk + λ2(xk − 1)− λT3 s (8)

1 −πk +
m∑
i=1

pi ∗ aik − λ1 + λ2 = 0

2 −du(si)

dsi
+ pT − λT3 = 0, ∀i = 1 . . .m

3 λT3 s = 0

4 λ1 ∗ xk = 0

5 λ2 ∗ (xk − 1) = 0

6 λ1, λ2, λ3 ≥ 0.

(9)

Similar to the offline problem, the disutility function ensures the uniqueness of the shadow price
p. Conditions 1 to 6, along with the primal constraints constitute the set of KKT conditions.
Note that SCPM can be solved more efficiently compared with the offline algorithm. The reason is
that it only has decision variables xk and s to solve, while the offline problem has n of them (i.e.
x1, . . . , xn) besides decision variable s. However, one shortcoming of the SCPM algorithm is that
we have to solve one optimization problem each time we want to make a decision.

In order to compare the optimality of SCPM and the baseline algorithm, we run SCPM on the
simulated dataset described in Section 2.1 with the same four utility functions. Table 2 shows the
results of the SCPM algorithm. Because in the SCPM model we do not have a good estimate of
the total number of bids n, as we can see in Figure 1, all resources are allocated after around 2000
bids using any of the four utility functions.

For the online model, the shadow price generated from the online auction model does not
converge to the ground truth vector for any of the four utility functinons. This makes sense since
the shadow price is based on only one decision variable (i.e. one single bid). Therefore, the shadow
price is not a good indicator of the ground-truth price.

4

Table 2: Simulation result of SCPM online algorithm.

Utility Function Total Rev. ||p− p̄||2 Num of Bids Accepted

1 6105.517 Explode after around 2000th bid 2060
2 6106.285 Explode after around 2000th bid 2041
3 6108.591 Fluctuate between 1 and 5 2048
4 6109.561 Fluctuate between 1 and 5 2038

Figure 1: Number of bids accepted in SCPM.

5

4 SLPM

4.1 Regular SLPM

SLPM is an online algorithm proposed by Agrawal, et al [2]. With a good estimate of the total
number of bidders n in the market, we could wait for the first k bidders, solve a linear program,
retrieve the shadow price p to instruct future decisions. Mathematically, we consider the linear
program

maximize
x1,··· ,xk

k∑
j=1

πjxj

subject to
k∑
j=1

aikxk ≤
k

n
· bi, ∀i = 1, · · · ,m

0 ≤ xj ≤ 1, ∀j = 1, · · · , k.

(10)

We make future online decisions based on the derived dual price vector p:

xj =

{
1 if πj > aTj p,

0 otherwise.
(11)

Based on the model, we run two versions of algorithms for the first constraint:

• Version 1:
∑k

j=1 aikxk ≤
k

n
· bi. Using this constraint, we allocate

k

n
of the total resources

to the first k bids and derive the shadow price.

• Version 2:
∑k

j=1 aikxk ≤
(

1− k

n

)
· k
n
· bi. Using this constraint, we still roughly allocate

k

n

of the total resources to the first k bids but add a factor of
(

1− k

n

)
to eliminate the bias.

The results of the SLPM algorithms are shown below in Table 3 and Table 4.

Table 3: Simulation result of version 1 SLPM.

k 50 100 200 400

Total Rev. 6007.230 6281.328 6434.860 6481.897
||p− p̄||2 0.905994 0.546397 0.394315 0.343217

Num of Bids Accepted 1779 1888 1941 1957

Table 4: Simulation result of version 2 SLPM.

k 50 100 200 400

Total Rev. 5991.450 6281.328 6434.860 6475.168
||p− p̄||2 0.974871 0.546397 0.394315 0.290046

Num of Bids Accepted 1786 1888 1941 1959

In general, when k is relatively small compared with the total number of bidders n, as k increases,
the optimal total revenue goes up and the difference between the shadow price and ground truth

6

price goes down. This result makes sense because a larger k means that more information is collected
through bidding data, which leads to more accurate estimation of the price vector. Moreover, the
SLPM algorithm also allows a relatively more even distribution of accepted bids across all bids,
compared with the SCPM algorithm.

4.2 SLPM with Dynamic Updates

A better model than the regular SLPM model is to update the dual price at different time points [2].
With more information collected, the updated dual price vector will be more accurate and can help
make better decisions subsequently. We solve the following linear program defined on the inputs
until time l (which we choose to be 50, 100, 200, etc. in our simulation):

maximize
x

l∑
t=1

πtxt

subject to
l∑

t=1

aitxt ≤ (1− hl)
l

n
bi, ∀i = 1, · · · ,m

0 ≤ xt ≤ 1, ∀t = 1, · · · , l

(12)

where hl =

√
n

l
∗ ε =

√
n

l
∗ 50

n
is the bias-elimination factor. The dynamic learning algorithm

will update the price every time the history information doubles. With the derived dual price
vector, we apply the same allocation rule as defined in Section 4.1 to decide future allocations. The
simulation result is shown in Table 5.

Table 5: Simulation result of SLPM with dynamic updates.

Algorithm Total Rev. Number of Bids Accepted
SLPM with dynamic updates 7290.995 2208

The cumulative number of accepted bids in the bidding process is shown in Figure 2. The
l2-norms of the differences between the dual price vectors and the ground truth price vector over
iterations are shown in Figure 3.

It is straightforward that with dynamic updates, SLPM is able to generate a total revenue very
close to the offline optimum. As we solve a linear program with more historical data, the dual price
vector gets closer to the ground truth price vector, which means better future decisions. In addition,
from Figure 2 we can see that SLPM with dynamic updates is also able to fully explore all bids and
allocate resources more evenly. Hence, SLPM with dynamic updates has great performance when
we have a good estimate of the total number of bidders.

7

Figure 2: Number of bids accepted in SLPM with dynamic updates.

Figure 3: l2-norm of the difference of price vectors in SLPM with dynamic updates.

8

5 SCPM Variants

5.1 Comparison between SCPM and SLPM

Technically it is not fair to make comparison between SCPM and SLPM. In SCPM we assume
that we do not know the total number of bidders beforehand, while in SLPM we do. Hence, when
implementing SCPM we have to choose utility function wisely (i.e. how we value resources used in
the future) so that we can possibly get results. SLPM, on the other hand, has great performance
when we assume that n is known beforehand. This motivates us to investigate the performance of
SCPM algorithms when we assume n is known. In this section, we propose two algorithms of SCPM
variants.

5.2 SCPM with Resource Partition

First, we divide the resources into d groups. Then, we run the SCPM algorithm within each group
individually. To be precise, each group will have

n

d
bidders. First, we run SCPM on the first group

of bidders and decide the acceptance of bids. Then, we run the SCPM algorithm on the second
group of bidders with the remaining resources divided by d− 1 and decide the acceptance of bids,
and so on. The algorithm terminates when all d groups are considered.

Mathematically, within each group r, when the lth bidder submits a bid, i.e. (r − 1) ∗ n
d

+ 1 ≤

l ≤ r ∗ n
d
, the market maker solves the following optimization problem:

maximize
xl,s

πl ∗ xl + u(s)

subject to ail ∗ xl + si = bir − ql−1
i , ∀i = 1, . . . ,m

0 ≤ xl ≤ 1

s ≥ 0

(13)

where bir = 1
d−r+1(bi −

∑(r−1)∗n
d

i=1 aij ∗ xj) is the allocated resource for the rth group, ql−1
i =∑l−1

i=(r−1)∗n
d
+1 aij ∗ xj is the resources that are already used within the rth group before the lth

bidder arrives. We choose the utility function

u(s) =
1

m

∑
i

(1− eisi) (14)

when implementing the algorithm. The result of SCPM with resource partition is shown in
Table 6. The cumulative number of accepted bids in the bidding process is shown in Figure 4. We
can see that within each group, the allocated resources are used up quickly. Hence, our attempt of
exploring all bids does not work very well using SCPM with resource partition.

Table 6: Simulation result of SCPM with resource partition.

Algorithm Total Rev. Number of Bids Accepted
SLPM with resource partition 6066.916 2075

9

yyye
Comment on Text
Good point

yyye
Sticky Note
In some sense, this is a combined SCPM and SLPM

Figure 4: Number of bids accepted in SCPM with resource partition.

5.3 SCPM with Dynamic Updates

We propose an SCPM variant with dynamic updates analogous to SLPM with dynamic updates.
We solve the following linear program defined on the inputs until time l (which we choose to be 50,
100, 200, etc. in our simulation):

maximize
x

l∑
t=1

πtxt + u(s)

subject to
l∑

t=1

aitxt + si = (1− hl)
l

n
bi, ∀i = 1, · · · ,m

0 ≤ xt ≤ 1, ∀t = 1, · · · , l

(15)

where hl =

√
n

l
∗ ε =

√
n

l
∗ 50

n
is the bias-elimination factor. The dynamic learning algorithm

will update the price every time the history information doubles. With the derived dual price vector,
we apply the same allocation rule as defined in Section 4.1 to decide future allocations. The simu-
lation result is shown in Table 7. The cumulative number of accepted bids in the bidding process is
shown in Figure 5. The l2-norms of the differences between the dual price vectors and the ground
truth price vector over iterations are shown in Figure 6.

It is straightforward that with dynamic updates, SCPM is able to generate a total revenue close
to the offline optimum. The dual price vector also gets closer to the ground truth price vector over
iterations. In addition, from Figure 5 we can see that SLPM with dynamic updates is also able to
fully explore all bids and allocate resources more evenly. Hence, SCPM with dynamic updates has
great performance when we assume that n is known.

10

yyye
Comment on Text
Good finding

yyye
Comment on Text
Is there way to estimate n by observing the total arrivals in the first short period of times.

Table 7: Simulation result of SCPM with dynamic updates.

Algorithm Total Rev. Number of Bids Accepted
SCPM with dynamic updates 7284.217 2208

Figure 5: Number of bids accepted in SCPM with dynamic updates.

Figure 6: l2-norm of the difference of price vectors in SCPM with dynamic updates.

11

6 General Resource Allocation Problem

6.1 Offline Algorithm

One may consider a more general resource allocation problem with production costs:

maximize
x,y

n∑
j=1

(πjxj −
∑
k,i

cijkyijk)

subject to
K∑
k=1

yijk = aijxj , ∀i, j

∑
i,j

yijk ≤ Ck, ∀k

0 ≤ xj ≤ 1, ∀j
yijk ≥ 0

(16)

where cijk is the cost of resource i produced by producer k to bidder j, Ck is the production
capacity of producer k (k = 1, 2, · · · ,K). To derive the dual problem, we construct the Lagrangian
function as following:

L =
∑
j

(−πjxj +
∑
i,k

cijkyijk) +
∑
i,j

µij(
∑
k

yijk − aijxj) +
∑
k

(yijk − Ck)

+
∑
j

δ1j(−xj) +
∑
j

δ2j(xj − 1) +
∑
i,j,k

αijk(−yijk) (17)

=
∑
j

(−πj −
∑
i

µijaij − δ1j + δ2j)xj +
∑
i,j,k

(cijk + µij + λk − αijk)yijk −
∑
k

λkCk −
∑
j

δ2j .

Then, the corresponding dual problem is the following:

minimize
µ,λ,δ1,δ2,α

∑
k

Ckλk +
∑
j

δ2j

subject to − πj −
∑
i

aijµij − δ1j + δ2j = 0, ∀j

cijk + µij + λk − αijk = 0, ∀i, j, k
λk ≥ 0, ∀k
δ1j , δ2j ≥ 0, ∀j
αijk ≥ 0, ∀i, j, k.

(18)

We simulate the bidding data for this general resource allocation problem. We set the number
of resources to m = 10, the number of bids to n = 1000, the number of producers to K = 3, the
production capacity Ck to 500 for k = 1, 2, · · ·K. The bidding information matrix A (an m by n
matrix) is generated by random zeros and ones. We set the average price of each resource to 0.5 so
that the bidding price is

r = 0.5 ∗ sum(aj) + randn(0, 0.2). (19)

Table 8 shows the simulation result of the offline algorithm for general resource allocation prob-
lem. The cumulative number of accepted bids in the bidding process is shown in Figure 7.

12

Table 8: Simulation result of offline algorithm for general resource allocation problem.

Algorithm Total Profit Number of Bids Accepted
Offline for general resource allocation 590.737 325

Figure 7: Number of bids accepted in general resource allocation problem using offline algorithm.

6.2 Online Algorithm

We propose a heuristic algorithm that resolves online programming for general resource allocation
problem. When the ĵth bid comes in, the market maker solves the following problem:

minimize
yiĵk

∑
i,k

ciĵkyiĵk − u(s)

subject to
∑
k

yiĵk = aiĵxĵ , ∀i∑
i

yiĵk + sk = Ck − qĵ−1
k ,∀k

sk ≥ 0,∀k
yiĵk ≥ 0, ∀i, k

(20)

where qĵ−1
k =

∑m
i=1

∑ĵ−1
j=1 yijk is the used production capacity of producer k before bidder j ar-

rives, and u(s) is a disutility function that has the same property as the disutility function defined
in Section 2.2. After computing the optimal y∗

iĵk
in the problem above, the market maker decides

whether to accept with the following rule:

xĵ =

{
1 if πĵ >

∑
i,k cijk ∗ y∗iĵk ∗ α,

0 otherwise
(21)

13

where α = K+1
2 is a multiplier indicating the expected rate of return when there are K com-

petitive producers in the market. Table 9 shows the simulation result of the online algorithm for
general resource allocation problem. The cumulative number of accepted bids in the bidding process
is shown in Figure 8.

It is straightforward that our online algorithm has good performance when compared with the
offline baseline model. It generates a total profit of 516.787, which is more than 87.5% of the offline
optimum. In addition, we discover that the accepted bids are relatively evenly distributed among
all the bids.

Table 9: Simulation result of online algorithm for general resource allocation problem.

Algorithm Total Profit Number of Bids Accepted
Online for general resource allocation 516.787 308

Figure 8: Number of bids accepted in general resource allocation problem using online algorithm.

14

7 Conclusion

In this project we investigate multiple online algorithms for resource allocation. Table 10 summarizes
the simulation results of all offline and online algorithms implemented in this project. We can see
that when we assume that the number of total bidders is known, SLPM with dynamic updates and
SCPM with dynamic updates have the best performances, yielding total revenue very close to the
offline optimum (over 98% of the offline optimum). On the other hand, when we do not have a
good estimate of the total number of bidders where algorithms like SLPM do not apply, SCPM has
a reasonable performance, generating a decent total revenue (over 80% of the offline optimum). In
terms of future plan, more heuristic algorithms dealing with the general resource allocation problem
can be explored.

Table 10: Simulation results of offline and online algorithms.

Algorithm Total Rev. Number of Bids Accepted
Offline Algorithm 7405.956 2231

SCPM 6109.56 2038
SLPM Version 1 6481.897 1959
SLPM Version 2 6475.168 1957

SLPM with Dynamic Updates 7290.995 2208
SCPM with Resource Partition 6066.916 2075
SCPM with Dynamic Updates 7284.217 2208

15

References

[1] S. Agrawal, E. Delage, M. Peters, Z. Wang and Y. Ye. A Unified Framework for Dynamic
Prediction Market Design. Operations Research, 59:3 (2011) 550-568.

[2] S. Agrawal, Z. Wang and Y. Ye. A Dynamic Near-Optimal Algorithm for Online Linear Pro-
gramming. Operations Research, 62:4 (2014) 876-890.

[3] M. Peters, A. M-C. So and Y. Ye. Pari-mutuel Markets: Mechanisms and Performance. The 3rd
International Workshop On Internet And Network Economics, 2007.

16

Appendix: MATLAB Code

A1. Generating Simulated Data

clc
clear
format long

rng(31415926) % set seed
m = 10; % number of resources
n = 10000; % number of bids
b = 1000 * ones(m,1); % resource capacity
A = randi(2,m,n) - 1; % bid matrix
p_true = rand(m,1); % ground truth price vector
r = A'*p_true + sqrt(0.2)*randn(n,1); % bidding price

save('data.mat')

A2. Offline Algorithm

f = {@(t) 1/m * sum(log(t));
@(t) 10/m * sum(log(t));
@(t) 1/m * sum(1-exp(-t));
@(t) 10/m * sum(1-exp(-t))};

num_f = 4;
revs = zeros(num_f,1);
diffs = zeros(num_f,1);
bids_accepted = zeros(num_f,1);

for i = 1: num_f
cvx_begin

variable x(n);
variable s(m);
dual variable p;

maximize (r'*x + f{i}(s))
p: A*x + s == b
x >= 0
x <= 1
s >= 0

cvx_end

x(x <= 0) = 0;
x(x >= 1) = 1;
x = (rand(n,1) < x);

rev = r'*x;
diff = norm(p + p_true);

revs(i) = rev;
diffs(i) = diff;
bids_accepted(i) = sum(x);

end

save('offline_results.mat')

17

A3. SCPM Algorithm

f = {@(t) 1/m * sum(log(t));
@(t) 10/m * sum(log(t));
@(t) 1/m * sum(1-exp(-t));
@(t) 10/m * sum(1-exp(-t))};

num_f = 4;
revs = zeros(num_f, 1);
diffs = zeros(num_f, n);
X = zeros(num_f, n);

for i = 1: num_f
q = zeros(m,1); % used resources
for k = 1: n

if q == b
break

else
cvx_begin

variable x(1);
variable s(m);
dual variable p;

maximize (r(k)*x + f{i}(s))

p: A(:, k)*x + s == b - q
x >= 0
x <= 1
s >= 0

cvx_end
end

if q + A(:, k) <= b
if x < 0

X(i,k) = 0;
elseif x >= 1

X(i,k) = 1;
else

X(i,k) = (rand < x);
end

else
X(i,k) = 0;

end

q = q + A(:, k)*X(i,k);
diffs(i, k) = norm(p + p_true);

end

revs(i) = X(i,:)*r;
end

save('scpm_results.mat')

18

A4. SLPM Algorithm

k = [50 100 200 400];
num_k = 4;

revs = zeros(num_k, 1);
diffs = zeros(num_k, 1);
X = zeros(num_k, n);

for i = 1: num_k
X(i, 1:k(i)) = 0;
q = zeros(m,1); % used resources

cvx_begin
variable x(k(i));
dual variable p;

maximize (r(1:k(i))'*x)
%p: A(:,1:k(i))*x <= k(i)/n*b % version 1 SLPM
p: A(:,1:k(i))*x <= (1-k(i)/n)*k(i)/n*b % version 2 SLPM
x >= 0
x <= 1

cvx_end

diffs(i) = norm(p-p_true);

for j = k(i)+1 : n
if q + A(:, j) <= b & r(j) > A(:,j)'*p

X(i,j) = 1;
q = q + A(:, j)*X(i,j);

else
X(i,j) = 0;

end
end

revs(i) = X(i,:)*r;
end

save('slpm_results.mat')

19

A5. SLPM Algorithm with Dynamic Updates

niter = floor(log2(n/50)) + 1;
diffs = zeros(niter, 1);
X = zeros(n,1);
q = zeros(m,1); % used resources
eps = 50/10000;

for i = 1: niter
num_x = 50*2^(i-1);
cvx_begin

variable x(num_x);
dual variable p;

maximize (r(1:num_x)'*x)
p: A(:,1:num_x)*x <= (1-eps*sqrt(n/num_x))*num_x/n*b;
x >= 0
x <= 1

cvx_end

diffs(i) = norm(p-p_true);

for j = num_x+1 : min(n, 2*num_x)
if q + A(:, j)*1 <= b & r(j) > A(:,j)'*p

X(j) = 1;
q = q + A(:, j)*X(j);

else
X(j) = 0;

end
end

end

save('slpm_dynamical_update_results.mat')

20

A6. SCPM with Resource Partition

f = @(t) 1/m * sum(1-exp(-t));
k = 1000;
num_group = n/k;
diffs = zeros(n, 1);
X = zeros(n, 1);

q = zeros(m,1); % used resources
b_remaining = b;

for i = 1: num_group
b_remaining = b_remaining - q;
A_sub = A(:, (i-1)*k+1: i*k);
b_sub = b_remaining/(num_group - i + 1);
q = zeros(m,1); % used resources in group i
for j = 1: k

if q == b_sub
break

else
cvx_begin

variable x(1);
variable s(m);
dual variable p;

maximize (r(j)*x + f(s))

p: A_sub(:, j)*x + s == b_sub - q
x >= 0
x <= 1
s >= 0

cvx_end
end

idx = (i-1)*k + j;

if q + A_sub(:, j) <= b_sub
if x < 0

X(idx) = 0;
elseif x >= 1

X(idx) = 1;
else

X(idx) = (rand < x);
end

else
X(idx) = 0;

end

q = q + A_sub(:, j)*X(idx);
diffs(idx) = norm(p + p_true);

end
end

save('scpm_partition_results.mat')

21

A7. SCPM with Dynamic Updates

f = @(t) 1/m * sum(1-exp(-t));
niter = floor(log2(n/50)) + 1;
diffs = zeros(niter, 1);
X = zeros(n,1);
q = zeros(m,1); % used resources
eps = 50/10000;

for i = 1: niter
num_x = 50*2^(i-1);
cvx_begin

variable x(num_x);
variable s(m);
dual variable p;

maximize (r(1:num_x)'*x + f(s))
p: A(:,1:num_x)*x +s == (1-eps*sqrt(n/num_x))*num_x/n*b;
x >= 0
x <= 1
s >= 0

cvx_end

diffs(i) = norm(p+p_true);

for j = num_x+1 : min(n, 2*num_x)
if q + A(:, j)*1 <= b & r(j) > -A(:,j)'*p

X(j) = 1;
q = q + A(:, j)*X(j);

else
X(j) = 0;

end
end

end

save('scpm_dynamic_update_results.mat')

22

A8. Simulated Data for General Resource Allocation Problem

clc
clear
format long

rng(31415926) % set seed
m = 10; % number of resources
n = 1000; % number of bids
K = 3; % number of producers
Cap = 500 * ones(K,1); % producer capacity
A = randi(2,m,n) - 1; % bid matrix
c = rand(m,n,K);
avg_price = ones(m,1)*0.5;
r = A'*avg_price + sqrt(0.2)*randn(n,1); % bidding price

save('general_data.mat')

A9. Offline Algorithm for General Resource Allocation Problem

cvx_begin
variable x(n);
variable y(m,n,K);

maximize (r'*x - sum(sum(sum(y.*c))))

for i = 1:m
for j = 1:n

sum(y(i,j,:)) == A(i,j)*x(j);
end

end

for k = 1:K
temp = 0;
for i = 1:m

for j = 1:n
temp = temp + y(i,j,k);

end
end
temp <= Cap(k);

end

x >= 0
x <= 1
y >= 0

cvx_end

profit = r'*x - sum(sum(sum(y.*c)));

save('offline_general_results.mat')

23

A10. Online Algorithm for General Resource Allocation Problem

f = @(t) 1/m * sum(1-exp(-t));

X = zeros(n, 1);
profit = 0;
q = zeros(K,1); % used resources

for j = 1: n
if q == Cap

break
else

cvx_begin
variable y(m,K);
variable s(K);

cost_mat = reshape(c(:,j,:), m, K, []);
minimize (sum(sum(cost_mat.*y)) - f(s))

sum(y, 2) == A(:, j);
sum(y, 1)' + s == Cap - q;

s >= 0;
y >= 0;

cvx_end

cost = sum(sum(cost_mat.*y)) + 0;

if cost < r(j)*0.5 & q + sum(y, 1)' <= Cap
X(j) = 1;
q = q + sum(y, 1)'
profit = profit + r(j) - cost

else
%

end
end

end

save('online_general_results.mat')

24

	Introduction
	Backgrounds
	Simulated Data
	Offline Algorithm (Baseline)

	SCPM
	SLPM
	Regular SLPM
	SLPM with Dynamic Updates

	SCPM Variants
	Comparison between SCPM and SLPM
	SCPM with Resource Partition
	SCPM with Dynamic Updates

	General Resource Allocation Problem
	Offline Algorithm
	Online Algorithm

	Conclusion

