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Question 1 (20pts)

Consider the combinatorial call auction market discussed in the class. This
time, the market maker forms the decision problem as:

max
∑n

j=1 xj
s.t. Ax− e · y ≤ 0, (p)

−πTx + α · y ≤ 0, (λ)
x ≤ q, (µ)
x ≥ 0,

where (πj, aj, qj) are as defined as in our auction problem through out this
course, aj is the column vector of A, e is the vector of all ones, and parameter
α ≥ 0. Again, the bidder wins one dollar if the winning state is in his or her
selection.

(a) (5 pts) Interpret the model, and write down the dual of the model. In
particular, what is the role of α?

(b) (10 pts) Use the dual variable indicated in the formulation to derive
the dual linear program and the optimal conditions. Show that p = 0
and λ = 0 is a dual feasible solution

(c) (5 pts) Show by an example that the model may have an arbitrage,
that is, an order with aj = e and price limit πj < 1 can get accepted.

Answer

Solution: (a) This model tries to accept the maximum amount of bids
while the market maker makes sure that the worst-case ratio of revenue over
cost is at least α > 0.

The dual of the model is
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minimizep,λ,µ qTµ
subject to ATp− λπ + µ ≥ e

eTp = α · λ
p, λ, µ ≥ 0

(1)

(b) The dual formulation is given in 1). The optimality conditions for the
primal and dual are:

• Primal Feasible

Ax− e · y ≤ 0

−πTx+ α · y ≤ 0

x ≤ q

x ≥ 0

• Dual Feasible

ATp− λπ + µ ≥ e

eTp = α · λ
p, λ, µ ≥ 0

• Zero Duality Gap
eTx = qTµ

or the complementary slackness

xT (ATp− λπ + µ− e) = 0

pT (Ax− e · y) = 0

λ(−πTx+ α · y) = 0

µT (q − x) = 0

Now we show the dual feasibility of p = 0 and λ = 0. In this case eTp =
0 = α·λ, thus the second condition holds. The first condition ATp−λπ+µ ≥ e
reduces to µ ≥ e. We can set, say, µ = e, then all dual feasible constraints
are satisfied.
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(c) Let α = 1. Consider an example with two states and three bids, where
a1 = (1; 0), a2 = (0; 1) and a3 = (1; 1), π1 = π2 = π3 = 0.6, and q1 = q2 = 2
and q3 = 1 . It is easy to see that y = 3, x1 = x2 = 2 and x3 = 1 is the
optimal solution. This is an arbitrage, that is, Bidder 3 is for sure to win
one dollar with cost sixty cents.

The optimal dual solution is p1 = p2 = λ = 0, and µ = e.

Question 2 (20 pts)

Consider a (bounded) polytope in n-dimension defined by the following set
of linear constraints

{x |Ax ≤ b}.

Suppose that we wish to embed this polytope in the “smallest” possible
square whose sides are parallel to the coordinate axes. One way to do is for
each j to solve max and min values of the following linear programs

x̄j := max xj s.t. Ax ≤ b;

xj := min xj s.t. Ax ≤ b.

Then you let the jth coordinate of the center of the square be (x̄j + xj)/2
where each side has maxj (x̄j − xj) in length. In doing so, you need to solve
2n linear programs.

(a) (10pts) How to formulate the problem as a single linear program. (Hint.
Consider to use the dual.)

(b) (10pts) Let

A =


1 3 2
−2 −1 −4
−1 2 1

2 −2 1
2 1 1

 and b =


1
−2

1
3
1

 .

Use any method to find such “smallest” square.
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Answer

Solution

(a) For the first type of problem min xi s.t. Ax ≤ b, it has the same optimal
objective value as the dual, which is:

max bTy(i)

s.t. ATy(i) = ei
y(i) ≤ 0

Here, ei is the i-th Euclidean basis vector in Rn and y(i) ∈ Rm. Intro-
ducing an extra variable ai (which should be equal to xi at optimality),
we have:

maxai,y(i) ai
s.t. ai ≤ bTy(i)

ATy(i) = ei
y(i) ≤ 0

For the second type of problem maxxi s.t. Ax ≤ b, it has the same
optimal objective value as the dual, which is:

min bT z(i)

s.t. AT z(i) = ei
z(i) ≥ 0

Here, z(i) ∈ Rm. Introducing an extra variable di (which should be
equal to x̄i at optimality), we have:

mindi,z(i) di
s.t. bT z(i) ≤ di

AT z(i) = ei
z(i) ≥ 0

We can turn it into a maximization problem by negating the objective
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function. Then, we can combine the 2n problems into one LP:

maxai,di,x(i),y(i) for i = 1, . . . , n

∑n
i=1 ai − di

s.t. ai ≤ bTy(i) for i = 1, . . . , n
ATy(i) = ei for i = 1, . . . , n
bT z(i) ≤ di for i = 1, . . . , n
AT z(i) = ei for i = 1, . . . , n
y(i) ≤ 0 for i = 1, . . . , n
z(i) ≥ 0 for i = 1, . . . , n

(b) Solving the final LP above, we obtain a =

−22
3

−6
1
3

 and d =

 2
3

0
17
3

.

Hence, the smallest possible rectangle for this example is [−22
3
, 2
3
] ×

[−6, 0]× [1
3
, 17

3
]. So the square edge length is 8.

Question 3 (20 pts)

In this question, we will reconsider the relaxation problem in midterm. Given
a function

φ(x) = αTx +
1

2
xTWx =

∑
i

αixi +
∑
i<j

wijxixj,

where x = (x1, x2, ..., xn) is a binary vector (xi ∈ {−1, 1}), Wij = Wji and
Wii = 0. Our goal is to

(D-OPT) max
x

φ(x),

subject to xi ∈ {−1, 1}.

(a) (10 pts) Please provide a semidefinite programming (SDP) relaxation
for the above problem. (Hint. You may want to introduce a matrix
Y = (yi,j)n,n to linearize the quadratic part in the objective function.)

Answer

max
x,Y

αTx +
∑
i<j

wijyij,
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subject to yi,j = yj,i, yi,i = 1, Y � xxT .

(b) (10 pts) Write out the dual problem of your SDP formulation.

Answer

Rewrite the primal problem as (by following the tricks in max-cut prob-
lem in lecture 15):

max
X

n+1∑
i=2

αiZ1,i +
∑

2≤i<j≤n+1

Wi,jZi+1,j+1,

subject to zi,i = 1, zi,j = zj,i for i 6= j

Z � 0.

Then by replacing the coefficients in the objective with C and con-
straints as A, its dual follows from the Page 6 of lecture 14.

Question 4 (20 pts + 10 pts Bonus)

Consider the optimization problem

min
x
‖x‖1 + ‖Ax− b‖1,

where x ∈ Rn is the decision variable vector, A ∈ Rm×n, b ∈ Rm and ‖ · ‖1
is the L1-norm. For u = (u1, ..., uk) ∈ Rk, ‖u‖1 =

∑k
i=1 |ui|. We assume that

m < n. This optimization problem has a background compressed sensing,
a signal processing technique for efficient signal reconstruction. Imagine we
have a signal xtrue ∈ Rn, you can see each column of matrix A as a mea-
surement. Normally, we need n measurements to reconstruct the true sig-
nal. However, when there are some sparsity conditions (number of non-zero
elements) with xtrue, we could actually recover it by solving the above opti-
mization problem (in which there are only m < n measurements). In other
words, the optimal solution of the above optimization problem x∗ = xtrue.

(a) (15 pts) Reformulate the optimization problem into an LP and provide
the path following algorithm for your formulation.
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Answer

The LP formulation is

min
u,v,s,t

n∑
i=1

(ui + vi) +
m∑
i=1

(si + ti),

Au− Av − b = s− t,

u, v ∈ Rn
+, s, t ∈ Rm

+ .

And the path following algorithm would be

min
u,v,s,t

n∑
i=1

(ui+vi)+
m∑
i=1

(si+ti)+µ
n∑
i=1

(log ui+log vi)+µ
m∑
i=1

(log si+log ti)

Au− Av − b = s− t.

And we alternatively decrease µ and optimize over u, v, s, t.

(b) (5 pts) What is the augmented Lagrangian function for you formula-
tion?

Answer

The augmented Lagrangian is

min
u,v,s,t

n∑
i=1

(ui+vi)+
m∑
i=1

(si+ti)−yT (Au−Av−b−s+t)+β
2
‖Au−Av−b−s+t‖22,

u, v ∈ Rn
+, s, t ∈ Rm

+ , y ∈ Rm.

(c) (Bonus 10 pts) ADMM algorithm has been a benchmark algorithm for
solving compressed sensing problem. Provide ADMM algorithm for
your formulation. Furthermore, we require that the ADMM should
have analytical (i.e. closed-form) updates on each step. Is the ADMM
a 2-block or multi-block one? Discuss about the convergence.
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Answer

Introduce variables to separate out the non-negative constraints. The
problem will become:

min
u,v,s,t,u′,v′,s′,t′

n∑
i=1

(ui + vi) +
m∑
i=1

(si + ti),

Au− Av − b = s− t,

u = u′, v = v′, s = s′, t = t′

u′, v′ ∈ Rn
+, s′, t′ ∈ Rm

+ .

The augmented Lagrangian is

min
u,v,s,t,u′,v′,s′,t′

n∑
i=1

(ui + vi) +
m∑
i=1

(si + ti)− yT (Au− Av − b− s+ t)

+
β

2
‖Au− Av − b− s+ t‖22 +

β

2
‖u− u′‖22 +

β

2
‖v − v′‖22

+
β

2
‖s− s′‖22 +

β

2
‖t− t′‖22 − zTu (u− u′)− zTv (v − v′)

− zTs (s− s′)− zTt (t− t′),
subjec to u′, v′ ∈ Rn

+, s′, t′ ∈ Rm
+

It is essentially a 2-block ADMM. One group is (u, v, s, t) and the other
one is (u′, v′, s′, t′). The rest are all dual variables. In the objective func-
tion, the first group is quadratic free variables, while the second group
is quadratic and decomposable (but subject to positive constraints).
So both groups have analytical updates.
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