
MS&E 310 Homework #2 Solution
Linear Programming October 20, 2017

HOMEWORK ASSIGNMENT 2 SOLUTION

1. Farkas’ lemma can be used to derive many other (named) theorems of the
alternative. This problem concerns a few of these pairs of systems. Using Farkas’s
lemma, prove each of the following results.

(a) Gordan’s Theorem. Exactly one of the following systems has a solution:

(i) Ax > 0
(ii) yTA = 0, y ≥ 0, y 6= 0.

Let b be any fixed positive vector (e.g. the all-one vector). Then, (i) has a solution
iff Ax ≥ b has a solution: in fact, if Ax > 0, then one can always scale x so that
Ax ≥ b. We can write Ax ≥ b as:

Ax′ − Ax′′ − z = b, (x′;x′′; z) ≥ 0

By Farkas’ lemma, if it has no solution, then we must have an y such that:

yT (A, −A, −I) ≤ 0, yT b = 1

Then, y satisfies (ii). Conversely, if (ii) has no solution, then the above system has
no solution, and thus Ax ≥ b has a solution.

(b) Stiemke’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≥ 0, Ax 6= 0
(ii) yTA = 0, y > 0

Let b be any fixed positive vector (e.g. the all-one vector). Then, (i) is equivalent
to Ax ≥ 0, bTAx = 1 and it can be written as:(

A −A −I
bTA −bTA 0

)
(x′;x′′; z) =

(
0
1

)
, (x′;x′′; z) ≥ 0 (1)



By Farkas’ lemma, if it has no solution, then we must have a pair (y′; τ) such that:

(y′; τ)T
(

A −A −I
bTA −bTA 0

)
≤ 0, (y′; τ)T (0; 1) = 1 (2)

Let y = y′ + τ · b. Then, y satisfies (ii). Conversely, if (ii) has no solution, then
yTA = 0, y ≥ b has no solution, which means yTA = 0, y = y′ + b, y′ ≥ 0 has no
solution. Thus (2) has no solution; by Farkas’ lemma, (1) has a solution, thus (i)
has a solution.

(c) Gale’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≤ b
(ii) yTA = 0, yT b < 0, y ≥ 0

Note that (i) can be written as:

Ax′ − Ax′′ + z = b, (x′;x′′; z) ≥ 0

By Farkas’ lemma, if it has no solution, then we must have an y such that:

yT (A, −A, I) ≤ 0, yT b = 1

Then, −y satisfies (ii). The other direction is similar.

2. Given that the dual of a linear program

minimize cTx
subject to Ax = b

x ≥ 0

in standard form is
maximize yTb
subject to yTA ≤ cT

(y free)
,

develop an appropriate dual for each of the following LPs:

(a)
maximize cTx
subject to Ax = b

x ≥ 0
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Solutions:
minimize yT b
subject to yTA ≥ cT

y free.

(b)
minimize cTx
subject to Ax ≥ b

x ≥ 0

Solutions:
maxmize yT b
subject to yTA ≤ cT

y ≥ 0.

(c)
minimize cTx
subject to Ax = b

Āx ≥ b̄
x ≥ 0

Solutions:
maxmize yT b+ sT b̄
subject to yTA+ sT Ā ≤ cT

y free
s ≥ 0.

3. Consider the auction problem in Lecture note #4. The LP pricing problem
has an objective

πTx− z
where the scalar

z = max[Ax]

is the maximum number of contracts among all states (recall that Ax ∈ Rm is a vector
representing the number of contracts in each state). Thus, z represents the worst-
case payback amount. Now assuming that the auction organizer knows the discrete
probability distribution, say v ∈ Rm

+ , for each state to win. Then the expected payback
amount would be (

n∑
i=1

vi · [Ax]i

)
= vTAx

Develop an LP model to decide the contract award vector x and to price each state
using the expected payback rather than the worst-case payback, that is, using the
objective function

πTx− vTAx
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in the LP setting. How to solve the problem faster? Moreover, explain the price
properties using duality and/or complementarity.

Solutions: The LP model can be written as

maxmize πTx− vT z
subject to Ax− z ≤ 0

x ≤ v̄
(x, z) ≥ 0.

where decision variables x ∈ Rn and z ∈ Rm, and v̄ is the quantity limit.

The dual of the problem is

min v̄Ty
s.t. ATp+ y ≥ π,

p ≤ v,
(p, y) ≥ 0.

The complementarity conditions imply that Most of these conditions are the same

xj > 0 aTj p+ yj = πj so that aTj p ≤ πj
0 < xj < v̄j yj = 0 as well so that aTj p = πj
xj = 0 yj = 0 so that aTj p ≥ πj
zi > 0 pj = vj
zi = 0 pj ≤ vj

as those in our earlier model. One interesting case is when zi = 0, that is, nobody bid
on state i, the price for that state can be any number between 0 and vi. One simple
case is let p = v and we still have eTp = 1.

4. Strict Complementarity Theorem: Consider the LP problem

(LP ) maximize cTx =
∑n

j=1 cjxj
subject to

∑n
j=1 ajxj = Ax ≤ b, 0 ≤ x ≤ e;

where data A ∈ Rm×n, aj ∈ Rm, c ∈ Rn, b ∈ Rm and e is the vector of all ones,
and variables x ∈ Rn. You may interpret this is a linear program to sell the items of
inventory b to n customers such that the revenue is maximized.

Suppose the problem is feasible and bounded.
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(i) Write down the dual of the problem. What are the interpretations of the dual
price vector associated with the constraints Ax ≤ b and the dual price vector
associated with the constraints x ≤ e ?

(LD) minimize bTy + eT s
subject to ATy + s ≥ c, y, s ≥ 0.

yi : i = 1, 2, · · · ,m: price for item i which has inventory bi;

sj : j = 1, 2, · · · , n: the difference between customer j’s internal cost and exter-
nal revenue.

(ii) What properties does a strictly complementary solution have for this linear
program pair?

Assume x, p, s is a strictly complementary solution.

The strictly complementarity conditions imply that

1 > xj > 0 aTj y + sj = cj and sj = 0 so that aTj y = cj
xj = 0 aTj y + sj > cj and sj = 0 so that aTj y > cj
xj = 1 aTj y + sj = cj and sj > 0 so that aTj y < cj

(iii) Suppose the linear program pair has a strictly complementary primal solution x∗

such that x∗j = 0 or x∗j = 1 for all j, and let y∗ be a strictly complementary dual
price vector associated with the constraints Ax ≤ b. Now consider a on-line
linear program where customer (cj, aj) comes sequentially, and the seller have
to make a decision xj = 0 or xj = 1 as soon as the customer arrives. Prove that
the following mechanism or decision rule, given y∗ being known, is optimal: If
cj > aTj y

∗ then set xj = 1; otherwise, set xj = 0.

Since the linear program pair has a strictly complementary primal solution x∗

such that x∗j = 0 or x∗j = 1 for all j. The correctness of the mechanism follows
directly from part (b).

5. Consider a system of m linear equations in n nonnegative variables, say

Ax = b, x ≥ 0.

Assume the right-hand side vector b is nonnegative. Now consider the (related) linear
program

minimize eTy

subject to Ax+ Iy = b

x ≥ 0, y ≥ 0
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where e is the m-vector of all ones, and I is the m ×m identity matrix. This linear
program is called a Phase One Problem.

(a) Write the dual of the Phase One Problem.

maximize bTπ

subject to ATπ ≤ 0

π ≤ e

(b) Show that the Phase One Problem always has a basic feasible solution.

Obviously [x; y] = [0; b] is a basic solution to the Phase One Problem; since b is
nonnegative by the assumption, it is also a feasible solution.

(c) Using theorems proved in class, show that the Phase One Problem always has
an optimal solution.

Since the Phase I problem is feasible, and its objective value is bounded from below
by 0 (the dual of Phase I has a feasible solution π = 0).

(d) Write the complementary slackness conditions for the Phase One Problem.

xj(−ATπ)j = 0 ∀ j = 1, ..., n

yi(1− πi) = 0 ∀ i = 1, ...,m.

(e) Prove that {x : Ax = b, x ≥ 0} 6= ∅ if and only if the optimal value of the
objective function in the corresponding Phase One Problem is zero.

If the optimal value of the Phase one problem is zero, then we must have also the
optimal solution (x ≥ 0, y = 0) and that Ax = b, that is, {x : Ax = b, x ≥ 0} 6= ∅.
Conversely, if {x : Ax = b, x ≥ 0} 6= ∅, then for any x in this set, [x; y] = [x; 0]
is an optimal solution to the Phase One Problem with optimal value 0 (it is feasible,
with objective value 0 and no other solution can achieve a lower value).

Another proof of the converse direction: if {x : Ax = b, x ≥ 0} 6= ∅, then from
Farkas’ lemma that the maximal value of the dual is less or equal to zero. But π = 0
is a feasible solution for the dual so that the optimal value of the dual is zero.

6. Exercise 4.9-7
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(a) We write the dual of the problem as

minimize
∑

i pi +
∑

j qj

subject to pi + qj ≥ sij, i, j ∈ {1, ..., n}
p, q free

To show that there exists p and q for which pi + qj ≥ sij, it suffices to show that
the primal is feasible and bounded. One feasible solution to the primal is xii = 1
for i = 1, ..., n, and xij = 0 for i 6= j. Note that since the sum of xij over i (or j)
is 1 according to primal constraints,

∑
i

∑
j sij is an upper bound for the objective

function.

If in an optimal assignment activity i is assigned to parcel j, we have xij = 1. By
complementary slackness, pi + qj = sij.

(b) By part (a), we have pi + qj = sij and pi + qj′ ≥ sij′ . Hence, sij − qj = pi ≥
sij′ − qj′ .

sij is the value created by locating activity i at parcel j, and qj is the price of land
j. Their difference is the net profit generated by locating activity i at parcel j.

Therefore, choosing j such that

sij − qj ≥ sij′ − qj′

is to choose the location for activity i with the maximum net profit.

The equilibrium in free competition achieves both primal and dual optimality.
Primal objective value (where the central authority maximizes its total revenue) is
equal to the dual objective value (where the individual activities minimize their total
price/cost).

(c) Easiest Proof: Consider change the constraints
∑

i xij = 1,
∑

j xij = 1 to∑
i xij ≤ 1,

∑
j xij ≤ 1 in the primal.

Then equality and inequality are equivalent if sij > 0. In the latter case, the dual
variables are non-negative.

Another Proof:

Assume ∃i, pi < 0. since pi + qj ≥ sij∀i, j ∈ {1, 2, . . . , n} and sij > 0, we must
have qj > 0,∀j. Let mini{pi} = −c. Let p′i = pi + c,∀i and q′j = qj − c,∀j. Then
p′i ≥ 0,∀i and since minj{qj}+ mini{pi} ≥ sij > 0, q′j > 0,∀j.
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We still have p′i+ q′j = pi+ qj ≥ sij. Therefore, we get a new feasible dual solution
which gives the same objective value as before. Namely, whenever we have a negative
price, we can construct an equivalent nonnegative price. Therefore, the prices can all
be assumed to be nonnegative.

7. Exercise 4.9-10

Consider the primal linear program in the standard form. Suppose that this program
and its dual are feasible. Let y be a known optimal solution to the dual.

(a) If the k-th equation of the primal is multiplied by µ 6= 0, determine an optimal
solution w to the dual of this new problem.

Multiplying the k-th equality constraint of the primal by µ doesn’t change the primal
feasible region, thus doesn’t change the primal optimal solution. Hence the optimal
objective values of primal and dual problems remain the same.

Let A′x = b′ denote the new equality constraint. Construct w such that wk = yk/µ
and wi = yi for i 6= k. Then it can be easily verified that wTA′ ≤ cT , thus w is feasible
to the new dual problem. Also wT b′ = yT b, so w achieves the optimal objective value,
and it is the optimal solution.

(b) Suppose that, in the original primal, we add µ times the k-th equation to the r-th
equation. What is an optimal solution w to the corresponding dual problem?

Similar to part (a), the optimal objective value does not change. Let wk = yk−µyr,
and wi = yi for i 6= k, then w is the optimal solution to the new dual problem.

(c) Suppose, in the original primal, we add µ times the k-th row of A to c. What is
an optimal solution to the corresponding dual problem?

w = y + µek, where ek is the unit vector with the k-th entry being 1.
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8. Let A be an m by n matrix and let b be a vector in Rm. We consider the
problem of minimizing ‖Ax−b‖∞ over all x ∈ Rn. Let v be the value of the optimal
cost.

(a) Let p be any vector in Rm that satisfies ‖p‖1 =
∑m

i=1 |pi| ≤ 1 and ATp = 0.
Show that bTp ≤ v.

Let z = ‖Ax− b‖∞. The problem can be written as

min z

subject to Ax+ ze ≥ b

−Ax+ ze ≥ −b
z ≥ 0, x free

The dual of the above LP is

max bTu− bTw
subject to ATu− ATw = 0

eTu+ eTw ≤ 1
u,w ≥ 0

For any vector p, let si = p+i and ti = |p−i | for any i. Then pi = si − ti and
|pi| = si + ti, ∀i. Since p satisfies ‖p‖1 = eT s + eT t ≤ 1 and ATp = AT s− AT t = 0,
s, t is a feasible solution of the dual problem. By weak duality, the optimal value of
the dual problem is no more than v.

Therefore, bTp = bT (s− t) ≤ v.

(b) In order to obtain the best possible lower bound of the form considered in part
(a), we form the linear programming problem

maximize bTp

subject to ATp = 0

‖p‖1 ≤ 1.

Show that the optimal cost on this problem is equal to v.

Denote the optimal cost to the problem in part (b) as v′. From (a), we obtain
v′ ≤ v. Next we will prove v′ ≥ v.
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If v = 0. p = 0 is a feasible solution and the cost is bTp = 0. So v′ ≥ v.

If v 6= 0. ∀i, at least one of (Ax + ze)i = bi and (−Ax + ze)i = −bi doesn’t
hold. By complementary slackness theorem, if (u∗, w∗) is dual optimal, we must have
u∗iw

∗
i = 0,∀i. Therefore, u∗+w∗ = |u∗−w∗|. Let q = u∗−w∗. q is a feasible solution

to the problem in part (b). By strong duality theorem, bT q = bT (u∗ − w∗) = v. v′ is
the optimal value to the problem in part (b), therefore v′ ≥ bT q ≥ v.

Hence, v′ = v.

9. Prove that BFS is an extreme point of the feasible region in the LP standard
form.

Consider the feasible region of a standard LP {Ax = b, x ≥ 0}, where A ∈ Rm×n

is full row rank (m ≤ n), x ∈ Rn. Suppose x is a BFS with ABxB = b, xN = 0,
where B is the set of basic variable indices, and N is the set of non-basic variable
indices. Assume the contrary that x is not an extreme point of the feasible region,
then there exist two feasible solutions y, z 6= x such that x = (y + z)/2. This implies
yN + zN = 2xN = 0; combing with yN , zN ≥ 0, we have yN = zN = 0. Then
b = Ay = AByB + ANyN = AByB, which implies yB = A−1B b = xB. Therefore y = x,
a contradiction.

10. (Lemma 2 on slide 25.) The discounted MDP primal LP is given by

minimize
∑

i∈S
∑

a∈A c(i, a)x(i, a)

subject to
∑

a∈A x(j, a) = 1 + γ
∑

i∈S
∑

a∈A x(i, a)pij(a),∀j ∈ S
x(i, a) ≥ 0, ∀i ∈ S, a ∈ A.

where S denotes the state space, A the action space, c(i, a) the cost function of
choosing action a when the state is x, pij(a) the probability of transitioning from
state i to j under action a. The decision variables are x(i, a), for i ∈ S, a ∈ A.

Show that it has the following properties:

(a) The feasible set is bounded. More precisely, for every feasible x ≥ 0, eTx = m
1−γ .

Adding up all the equality constraints yields eTx = m
1−γ . Since a feasible solution

x is non-negative, we have 0 ≤ x ≤ m
1−γ bounded.

(b) There is a one-to-one correspondence between a stationary policy of the original
discounted MDP and a basic feasible solution (BFS) of the primal.

First we show a BFS x corresponds to a stationary policy. Let B denote the index
set of basic variables, then |B| = m. Suppose B does not contain any state-action
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pair for a certain state k, then the k-th equality constraint fails to hold:∑
a∈A

x(k, a) = 0 6= 1 + γ
∑
i∈S

∑
a∈A

x(i, a)pik(a) ≥ 1.

Therefore B contains exactly one state-action pair for each state, and corresponds
to a stationary policy of the discounted MDP problem.

Next we show that a stationary policy π corresponds to a BFS. Suppose π(i) = ai
for i = 1, 2, ...,m. Let B = {(i, ai)|i = 1, 2, ...,m, ai ∈ A} be an index set.
Then selecting the corresponding columns of the equality constraint matrix yields
AB = I − γPB, where PB(i, j) = pji(aj). And xB is the solution to ABxB = e.
Observe that the diagonal entries of AB are positive, and the off-diagonal entries
are non-positive, thus AB is of full rank. Therefore AB is a basis, and x such
that xB = A−1B e and xN = 0 is a basic solution. It remains to show that x is
feasible, that is, xB ≥ 0. Suppose not, then the system {ABxB = e, xB ≥ 0} is
infeasible. By Farka’s Lemma, there exists y such that yTAB ≤ 0 and yT e > 0.
Wlog, assume y1 is the maximum entry in y. Then yT e > 0 implies that y1 > 0.
Also,

0 ≥ (yTAB)1 = (yT (I − γPB))1 = y1 − γyTp1,

where p1 denote the first column of PB. Since p1 is a probability vector, we have
yTp1 ≤ y1, then y1 − γyTp1 ≥ (1− γ)y1 > 0 yields a contradiction.

(c) Every policy or BFS basis has the Leontief substitution form AB = I − γPB.

Immediately follows from part (b).

(d) Let xπ be a basic feasible solution. Then any basic variable, say xπj , has its value
1 ≤ xπj ≤ m

1−γ .

xπ is feasible, thus by part (a) we know xπj ≤ m
1−γ . It remains to show xπj ≥ 1,

which is obvious, since the j-th equality constraint requires∑
a∈A

xπ(j, a) = xπj = 1 + γ
∑
i∈S

∑
a∈A

xπ(i, a)pij(a) ≥ 1.
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