Mathematical Preliminaries

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

LY, Appendices A, B, and Chapter 1.
Real n-Space; Euclidean Space

- \mathbb{R}, \mathbb{R}_+, $\text{int} \mathbb{R}_+$
- \mathbb{R}^n, \mathbb{R}_+^n, $\text{int} \mathbb{R}_+^n$
- $\mathbf{x} \geq \mathbf{y}$ means $x_j \geq y_j$ for $j = 1, 2, \ldots, n$
- $\mathbf{0}$ denotes the zero vector and \mathbf{e} denotes the vector of ones
- Inner-Product:
 \[\mathbf{x} \cdot \mathbf{y} := \mathbf{x}^T \mathbf{y} = \sum_{j=1}^{n} x_j y_j \]
- Norm: $\|\mathbf{x}\|_2 := \sqrt{\mathbf{x}^T \mathbf{x}}$, $\|\mathbf{x}\|_{\infty} := \max\{|x_1|, |x_2|, \ldots, |x_n|\}$, and $\|\mathbf{x}\|_p := \left(\sum_{j=1}^{n} |x_j|^p \right)^{1/p}$
- The dual of the p norm, denoted by $\|\cdot\|^*$, is the q norm where $\frac{1}{p} + \frac{1}{q} = 1$ and $1 \leq p, q < \infty$.
• Column vector:

\[\mathbf{x} = (x_1; x_2; \ldots; x_n) \]

and row vector:

\[\mathbf{x} = (x_1, x_2, \ldots, x_n) \]

• A set of vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_m \) is said to be linearly dependent if there exists some scalars \(\lambda_1, \ldots, \lambda_m \), not all zero, such that the linear combination

\[\sum_{i=1}^{m} \lambda_i \mathbf{a}_i = \mathbf{0} \]

• A linearly independent set of vectors that spans \(\mathbb{R}^n \) is a basis.
Matrices

- $\mathcal{R}^{m \times n}$, a_i, a_j, a_{ij}

- A_I denotes the submatrix of A whose rows belong to I, A_J denotes the submatrix whose columns belong to J, and A_{IJ} denotes the submatrix whose rows belong to I and whose columns belong to J.

- 0 denotes the zero matrix and I denotes the identity matrix

- $\mathcal{N}(A)$, $\mathcal{R}(A)$:

 Theorem 1 Each linear subspace of \mathcal{R}^n can be generated by finitely many vectors and is also an intersection of finitely many hyperplanes; that is, for each linear subspace of L of \mathcal{R}^n there are matrices A and C such that $L = \mathcal{N}(A) = \mathcal{R}(C)$.

- $\text{det}(A)$, $\text{tr}(A)$
• Inner Product:

$$A \bullet B := \text{tr}(A^T B) = \sum_{i,j} a_{ij} b_{ij}$$

• The operator norm of A:

$$\|A\|^2 := \max_{0 \neq x \in \mathbb{R}^n} \frac{\|Ax\|^2}{\|x\|^2}$$

• Sometimes we use $X = \text{diag}(x)$

• Eigenvalues and eigenvectors

$$Av = \lambda v$$
Symmetric Matrices

- S^n

- The Frobenius norm:

$$\|X\|_f := \sqrt{\text{tr}(X^T X)} = \sqrt{X \cdot X}$$

- Positive Definite (PD): $Q \succ 0$ iff $x^T Q x > 0$, for all $x \neq 0$

- Positive SemiDefinite (PSD): $Q \succeq 0$ iff $x^T Q x \geq 0$, for all x

- The set of PSD matrices: $S^n_+, \ \text{int} \ S^n_+$
Cauchy-Schwarz Inequality: given $x, y \in \mathbb{R}^n$, we have $x^T y \leq \|x\| \|y\|$.

Triangle Inequality: given $x, y \in \mathbb{R}^n$, we have $\|x + y\| \leq \|x\| + \|y\|$.

Arithmetic Mean-Geometric Mean Inequality: given $x \in \mathbb{R}_+^n$, we have

$$\frac{\sum x_j}{n} \geq \left(\prod x_j\right)^{1/n}.$$
Hyperplane and Half-spaces

\[H = \{ x : ax = \sum_{j=1}^{n} a_j x_j = b \} \]

\[H^+ = \{ x : ax = \sum_{j=1}^{n} a_j x_j \leq b \} \]

\[H^- = \{ x : ax = \sum_{j=1}^{n} a_j x_j \geq b \} \]
Figure 1: Plane and Half-Spaces
System of Linear Equations

Solve for $x \in \mathbb{R}^n$ from:

\[
\begin{align*}
 a_1 x &= b_1 \\
 a_2 x &= b_2 \\
 \vdots & \quad \vdots \\
 a_m x &= b_m
\end{align*}
\]

⇒ $Ax = b$
Figure 2: System of Linear Equations
Fundamental Theorem of Linear Equations

Theorem 2 Given $A \in \mathcal{R}^{m \times n}$ and $b \in \mathcal{R}^m$, the system $\{x : Ax = b\}$ has a solution if and only if that $A^T y = 0$ and $b^T y \neq 0$ has no solution.

A vector y, with $A^T y = 0$ and $b^T y \neq 0$, is called an infeasibility certificate for the system.

Example Let $A = (1; -1)$ and $b = (1; 1)$. Then, $y = (1/2; 1/2)$ is an infeasibility certificate.

Alternative systems: $\{x : Ax = b\}$ and $\{y : A^T y = 0, \ b^T y \neq 0\}$.
Figure 3: \mathbf{b} is not in the set $\{A\mathbf{x} : \mathbf{x}\}$, and \mathbf{y} is the distance vector from \mathbf{b} to the set.
Affine, Convex, Linear, and Conic Combinations

When \(x \) and \(y \) are two distinct points in \(\mathbb{R}^n \) and \(\alpha \) runs over \(\mathbb{R} \),

\[
\{ z : z = \alpha x + (1 - \alpha)y \}
\]

is the line connecting \(x \) and \(y \). When \(0 \leq \alpha \leq 1 \), it is called the convex combination of \(x \) and \(y \) and it is the line segment between \(x \) and \(y \). Also, the set

\[
\{ z : z = \alpha x + \beta y \},
\]

for multipliers \(\alpha \) and \(\beta \) is the linear combination of \(x \) and \(y \), and it is the hyperplane containing the origin and \(x \) and \(y \). When \(\alpha \geq 0 \) and \(\beta \geq 0 \), such \(z \) is called a conic combination.
Convex Sets

- Set notations: $x \in \Omega$, $y \notin \Omega$, $S \cup T$, and $S \cap T$

- Ω is said to be a convex set if for every $x^1, x^2 \in \Omega$ and every real number $\alpha \in [0, 1]$, the linear combination satisfies $\alpha x^1 + (1 - \alpha) x^2 \in \Omega$.

- The convex hull of a set Ω is the intersection of all convex sets containing Ω.

- Any Intersection of convex sets is convex.

- A point in a convex set is an extreme point if and only if it cannot be represented as a convex combination of two distinct points in the set.

- A set is polyhedral if and only if it has finite number of extreme points.
Proof of convex set

• All solutions to the system of linear equations \(\{x : Ax = b\} \) form a convex set.

• All solutions to the system of linear inequalities \(\{x : Ax \leq b\} \) form a convex set.

• All solutions to the system of linear equations and inequalities \(\{x : Ax = b, x \geq 0\} \) form a convex set.

• Ball is a convex set. The ball with a center \(y \in \mathbb{R}^n \) and a radius \(r > 0 \) is denoted by \(B(y, r) := \{x : \|x - y\| \leq r\} \).

• Ellipsoid is a convex set. The ellipsoid with a center \(y \in \mathbb{R}^n \) and a positive definite matrix \(Q \) is denoted by \(E(y, Q) = \{x : (x - y)^T Q (x - y) \leq 1\} \).
More Proofs on Convexity

Given a matrix A, let’s consider the set B of all b such that the set

$$\{x : Ax = b, \ x \geq 0\}$$

is feasible. Show that B is a convex set.

Example:

$$B = \{b : \ (x_1, x_2) : \ x_1 + x_2 = b, \ (x_1, x_2) \geq 0\}$$

is feasible.
Convex Cones

- A set C is a cone if $x \in C$ implies $\alpha x \in C$ for all $\alpha > 0$.

- A **convex cone** is a cone which is also convex.

- Dual cone:
 \[C^* := \{ y : y \cdot x \geq 0 \quad \text{for all} \quad x \in C \} \]
Cone Examples

- Example 2.1: The n-dimensional non-negative orthant
 \[\mathcal{R}^n_+ = \{ x \in \mathbb{R}^n : x \geq 0 \} \]
 is a convex cone.

- Example 2.2: The set of all positive semi-definite matrices in \mathcal{S}^n, \mathcal{S}^n_+, is a convex cone, called the positive semi-definite matrix cone.

- Example 2.3: The set $\mathcal{N}_2^n := \{ x \in \mathcal{R}^n : x_1 \geq \| x_{-1} \| \}$ is a convex cone in \mathcal{R}^n called the second-order cone.

- Example 2.4: The set $\mathcal{N}_p^n := \{ x \in \mathcal{R}^n : x_1 \geq \| x_{-1} \|_p \}$ is a convex cone in \mathcal{R}^n called the p-order cone with $p \geq 1$.
A cone C is a (convex) polyhedral if C can be represented as

$$C = \{ x : Ax \leq 0 \} \quad \text{or} \quad \{ x : x = Ay, \ y \geq 0 \}$$

for some matrix A. In the latter case, C is generated by the columns of A.

Polyhedral Convex Cones
The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.

Figure 4: Polyhedral and non-polyhedral cones.
The following theorem states that a polyhedral cone can be generated by a set of basic directional vectors.

Theorem 3 Given matrix $A \in \mathbb{R}^{m \times n}$ where $n > m$, take a convex polyhedral cone $C = \{Ax : x \geq 0\}$. Then for any $b \in C$,

$$b = \sum_{i=1}^{d} a_{j_i}x_{j_i}, \ x_{j_i} \geq 0, \forall i$$

for some linearly independent vectors a_{j_1}, \ldots, a_{j_d} chosen from a_1, \ldots, a_n.
Real Functions

- **Continuous functions** C

- **Weierstrass theorem**: a continuous function $f(x)$ defined on a compact set (bounded and closed) $\Omega \subset \mathbb{R}^n$ has a minimizer in Ω.

- The least upper bound or supremum of f over Ω

$$\sup\{f(x) : x \in \Omega\}$$

and the greatest lower bound or infimum of f over Ω

$$\inf\{f(x) : x \in \Omega\}$$

- A function $f(x)$ is said to be **homogeneous** of degree k if

$$f(\alpha x) = \alpha^k f(x)$$

for all $\alpha \geq 0$.

Let $c \in \mathbb{R}^n$ be given and $x \in \text{int} \, \mathbb{R}_+^n$. Then $c^T x$ is homogeneous of
degree 1 and

\[\phi(x) = n \log(c^T x) - \sum_{j=1}^{n} \log x_j \]

is homogeneous of degree 0.

Let \(C \in S^n \) be given and \(X \in \text{int} S^n_+ \). Then \(x^T C x \) is homogeneous of degree 2, \(C \cdot X \) and \(\det(X) \) are homogeneous of degree 1 and \(n \), respectively, and

\[\Phi(X) = n \log(C \cdot X) - \log \det(X) \]

is homogeneous of degree 0.

- The gradient vector \(C^1 \):

\[\nabla f(x) = \{ \partial f / \partial x_i \}, \quad \text{for} \quad i = 1, \ldots, n. \]
• The Hessian matrix C^2:

\[
\nabla^2 f(x) := \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j} \right\} \quad \text{for } i = 1, \ldots, n; \quad j = 1, \ldots, n.
\]

• Vector function: $f = (f_1; f_2; \ldots; f_m)$

• The Jacobian matrix of f:

\[
\nabla f(x) := \begin{pmatrix}
\nabla f_1(x) \\
\vdots \\
\nabla f_m(x)
\end{pmatrix}
\]
Convex Functions

- f is a convex function iff for $0 \leq \alpha \leq 1$,

\[f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y). \]

- The level set of f is convex:

\[L(z) = \{ x : f(x) \leq z \}. \]

- The convex set \{(z; x) : f(x) \leq z\} is called the epigraph of f.

- $tf(x/t)$ is a convex function of $(t; x)$ for $t > 0$ and it’s homogeneous of degree 1.
Proof of convex function

Consider the minimal-objective value function of b for fixed A and c:

$$z(b) := \text{minimize} \quad c^T x$$

subject to $A x = b$, $x \geq 0$.

Show that $z(b)$ is a convex function in b for all feasible b.
Taylor’s theorem or the mean-value theorem:

Theorem 4 Let \(f \in C^1 \) be in a region containing the line segment \([x, y]\). Then there is \(\alpha \) with \(0 \leq \alpha \leq 1 \) such that

\[
f(y) = f(x) + \nabla f(\alpha x + (1 - \alpha)y)(y - x).
\]

Furthermore, if \(f \in C^2 \) then there is \(\alpha \) with \(0 \leq \alpha \leq 1 \) such that

\[
f(y) = f(x) + \nabla f(x)(y - x) + (1/2)(y - x)^T \nabla^2 f(\alpha x + (1 - \alpha)y)(y - x).
\]

Theorem 5 Let \(f \in C^1 \). Then \(f \) is convex over a convex set \(\Omega \) if and only if

\[
f(y) \geq f(x) + \nabla f(x)(y - x)
\]

for all \(x, y \in \Omega \).
Theorem 6 Let \(f \in C^2 \). Then \(f \) is convex over a convex set \(\Omega \) if and only if the Hessian matrix of \(f \) is positive semi-definite throughout \(\Omega \).
Linear Least Squares Problems

Given $A \in \mathcal{R}^{m \times n}$ and $c \in \mathcal{R}^n$,

\[(LS) \quad \text{minimize} \quad \|c - A^T y\|^2 \]
\[\text{subject to} \quad y \in \mathcal{R}^m.\]

A close form solution:

$$AA^T y = Ac \quad \text{or} \quad y = (AA^T)^{-1} Ac.$$

$$c - A^T y = c - A^T (AA^T)^{-1} Ac = c - Pc$$

Projection matrix: $P = A^T (AA^T)^{-1} A$ or $P = I - A^T (AA^T)^{-1} A.$
Figure 5: Projection of c onto a subspace
Choleski decomposition method

\[AA^T = LL^T \]

\[LL^Ty^* = Ac \]
System of nonlinear equations

Given $f(x) : \mathbb{R}^n \to \mathbb{R}^n$, the problem is to solve n equations for n unknowns:

$$f(x) = 0.$$

Given a point x^k, Newton’s Method sets

$$f(x) \simeq f(x^k) + \nabla f(x^k)(x - x^k) = 0.$$

or solve for direction vector d_x:

$$x^{k+1} = x^k - (\nabla f(x^k))^{-1}f(x^k)$$

and

$$\nabla f(x^k)d_x = -f(x^k) \quad \text{and} \quad x^{k+1} = x^k + d_x.$$
Figure 6: Newton’s method for root finding
The quasi Newton method

\[x^{k+1} = x^k - \alpha (\nabla f(x^k))^{-1} f(x^k) \]

where scalar \(\alpha \geq 0 \) is called the step-size. More generally, we may use

\[x^{k+1} = x^k - \alpha M^k f(x^k) \]

where \(M^k \) is an \(n \times n \) symmetric matrix. In particular, if \(M^k = I \), then the method is called the gradient method, where \(f \) is viewed as the gradient vector of a real function.
Convergence and Big O

- \(\{x^k\}_{0}^{\infty} \) denotes a sequence \(x^0, x^1, x^2, \ldots, x^k, \ldots \).
- We denote \(x^k \to \bar{x} \) when \(\|x^k - \bar{x}\| \to 0 \).
- \(g(x) \geq 0 \) is a real valued function of a real nonnegative variable, the notation \(g(x) = O(x) \) means that \(g(x) \leq \bar{c}x \) for some constant \(\bar{c} \).
- \(g(x) = \Omega(x) \) means that \(g(x) \geq cx \) for some constant \(c \).
- \(g(x) = \theta(x) \) means that \(cx \leq g(x) \leq \bar{c}x \).
- \(g(x) = o(x) \) means that \(g(x) \) goes to zero faster than \(x \) does:
 \[
 \lim_{x \to 0} \frac{g(x)}{x} = 0
 \]