Optimality Conditions for Linearly Constrained Optimization

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

(LY: Chapters 7.1-7.2, 11.1-11.3)
Let the problem have the general mathematical programming (MP) form

\[
\begin{align*}
(P) & \quad \text{minimize} \quad f(x) \\
& \quad \text{subject to} \quad x \in \mathcal{F}.
\end{align*}
\]

In all forms of mathematical programming, a feasible solution of a given problem is a vector that satisfies the constraints of the problem, that is, in \mathcal{F}.

First question: How does one recognize or certify an optimal solution to a generally constrained and objectived optimization problem?

Answer: Optimality Condition Theory again.
Let f be a differentiable function on \mathbb{R}^n. If point $\bar{x} \in \mathbb{R}^n$ and there exists a vector d such that

$$\nabla f(\bar{x})d < 0,$$

then there exists a scalar $\bar{\tau} > 0$ such that

$$f(\bar{x} + \tau d) < f(\bar{x}) \text{ for all } \tau \in (0, \bar{\tau}).$$

The vector d (above) is called a descent direction at \bar{x}. If $\nabla f(\bar{x}) \neq 0$, then $\nabla f(\bar{x})$ is the direction of steepest ascent and $-\nabla f(\bar{x})$ is the direction of steepest descent at \bar{x}.

Denote by $D^d_\bar{x}$ the set of descent directions at \bar{x}, that is,

$$D^d_\bar{x} = \{ d \in \mathbb{R}^n : \nabla f(\bar{x})d < 0 \}.$$
At feasible point \bar{x}, a feasible direction is

$$\mathcal{D}^{f}_{\bar{x}} := \{ d \in \mathbb{R}^n : d \neq 0, \bar{x} + \lambda d \in \mathcal{F} \text{ for all small } \lambda > 0 \}.$$

Examples:

$$\mathcal{F} = \mathbb{R}^n \Rightarrow \mathcal{D}^{f} = \mathbb{R}^n.$$

$$\mathcal{F} = \{ x : Ax = b \} \Rightarrow \mathcal{D}^{f} = \{ d : Ad = 0 \}.$$

$$\mathcal{F} = \{ x : Ax \geq b \} \Rightarrow \mathcal{D}^{f} = \{ d : A_i d \geq 0, \forall i \in \mathcal{A}(\bar{x}) \},$$

where the active or binding constraint set $\mathcal{A}(\bar{x}) := \{ i : A_i \bar{x} = b_i \}$.

Optimality Conditions: given a feasible solution or point \bar{x}, what are the necessary conditions for \bar{x} to be a local optimizer?

A general answer would be: there exists no direction at \bar{x} that is both descent and feasible. Or the intersection of $D^d_{\bar{x}}$ and $D^f_{\bar{x}}$ must be empty.
Consider the **unconstrained** problem, where \(f \) is differentiable on \(\mathbb{R}^n \),

\[
\begin{align*}
\text{(UP)} & \quad \text{minimize} \quad f(x) \\
\text{subject to} & \quad x \in \mathbb{R}^n.
\end{align*}
\]

\(D^f_x = \mathbb{R}^n \), so that \(D^d_x = \{d \in \mathbb{R}^n : \nabla f(x)d < 0\} = \emptyset \):

Theorem 1 Let \(\bar{x} \) be a (local) minimizer of (UP). If the functions \(f \) is continuously differentiable at \(\bar{x} \), then

\[
\nabla f(\bar{x}) = 0.
\]
Consider the **linear equality-constrained** problem, where \(f \) is differentiable on \(\mathbb{R}^n \),

\[
\begin{align*}
\text{(LEP)} & \quad \text{minimize} \quad f(x) \\
\text{subject to} \quad Ax &= b.
\end{align*}
\]

Theorem 2 (*the Lagrange Theorem*) Let \(\bar{x} \) be a (local) minimizer of (LEP). If the functions \(f \) is continuously differentiable at \(\bar{x} \), then

\[
\nabla f(\bar{x}) = \bar{y}^T A
\]

for some \(\bar{y} = (\bar{y}_1; \ldots; \bar{y}_m) \in \mathbb{R}^m \), which are called **Lagrange or dual multipliers**.

The geometric interpretation: the objective gradient vector is **perpendicular** to or the objective level set **tangents** the constraint hyperplanes.
Proof

Consider feasible direction space

\[\mathcal{F} = \{ x : Ax = b \} \Rightarrow \mathcal{D}_x^f = \{ d : Ad = 0 \}. \]

If \(\bar{x} \) is a local optimizer, then the intersection of the descent and feasible direction sets at \(\bar{x} \) must be empty or

\[Ad = 0, \ \nabla f(\bar{x})d \neq 0 \]

has no feasible solution for \(d \). By the Alternative System Theorem it must be true that its alternative system has a solution, that is, there is \(\bar{y} \in \mathbb{R}^n \) such that

\[\nabla f(\bar{x}) = \bar{y}^T A = \sum_{i=1}^{m} \bar{y}_i A_i. \]
Consider the problem

\[
\text{minimize} \quad - \sum_{j=1}^{n} \log x_j \\
\text{subject to} \quad Ax = b, \\
\quad x \geq 0
\]

The non-negativity constraint can be removed if the feasible region has an "interior", that is, there is a feasible solution such that \(x > 0 \). Thus, if a minimizer \(\bar{x} \) exists, then \(\bar{x} > 0 \) and

\[
-e^T \bar{X}^{-1} = \bar{y}^T A = \sum_{i=1}^{m} \bar{y}_i A_i.
\]

The maximizer is called the analytic center of the feasible region.
Linear Inequality-Constrained Problems

Let us now consider the inequality-constrained problem

$$
\begin{align*}
& \text{minimize } \quad f(x) \\
& \text{subject to } \quad Ax \geq b.
\end{align*}
$$

Theorem 3 *(the KKT Theorem)* Let \bar{x} be a (local) minimizer of (LIP). If the functions f is continuously differentiable at \bar{x}, then

$$
\nabla f(\bar{x}) = \bar{y}^T A, \quad \bar{y} \geq 0
$$

for some $\bar{y} = (\bar{y}_1; \ldots; \bar{y}_m) \in \mathbb{R}^m$, which are called Lagrange or dual multipliers, and $\bar{y}_i = 0$, if $i \not\in A(\bar{x})$.

The geometric interpretation: the objective gradient vector is in the cone generated by the normal directions of the active-constraint hyperplanes.
Proof

\[\mathcal{F} = \{x : Ax \geq b\} \Rightarrow \mathcal{D}_x^f = \{d : A_i d \geq 0, \ \forall i \in \mathcal{A}(\bar{x})\}, \]

or

\[\mathcal{D}_x^f = \{d : \bar{A} d \geq 0\}, \]

where \(\bar{A} \) corresponds to those active constraints. If \(\bar{x} \) is a local optimizer, then the intersection of the descent and feasible direction sets at \(\bar{x} \) must be empty or

\[\bar{A} d \geq 0, \ \nabla f(\bar{x}) d < 0 \]

has no feasible solution. By the Alternative System Theorem it must be true that its alternative system has a solution, that is, there is \(\bar{y} \geq 0 \) such that

\[\nabla f(\bar{x}) = \bar{y}^T \bar{A} = \sum_{i \in \mathcal{A}(\bar{x})} \bar{y}_i A_i = \sum_i \bar{y}_i A_i, \]

when let \(\bar{y}_i = 0 \) for all \(i \not\in \mathcal{A}(\bar{x}) \). Then we prove the theorem.
We now consider optimality conditions for problems having both inequality and equality constraints. These can be denoted

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

For any feasible point \(\bar{x} \) of (P) we have the sets

\[
\begin{align*}
\mathcal{A}(\bar{x}) &= \{ j : \bar{x}_j = 0 \} \\
\mathcal{D}_x^d &= \{ d : \nabla f(\bar{x})d < 0 \}.
\end{align*}
\]
Theorem 4 Let \bar{x} be a local minimizer for (P). Then there exist multipliers \bar{y}, \bar{s} such that

$$\nabla f(\bar{x}) = \bar{y}^T A + \bar{s}^T$$

$$\bar{s} \geq 0$$

$$\bar{s}_j = 0 \text{ if } j \notin A(\bar{x}).$$
Optimality and Complementarity Conditions

\[x_j (\nabla f(x) - y^T A)_j = 0, \quad \forall j = 1, \ldots, n \]
\[A x = b \]
\[\nabla f(x) - y^T A \geq 0 \]
\[x \geq 0. \]

\[x_j s_j = 0, \quad \forall j = 1, \ldots, n \]
\[A x = b \]
\[\nabla f(x) - y^T A - s^T = 0 \]
\[x, s \geq 0 \]
Sufficient Optimality Conditions

Theorem 5 If \(f \) is a differentiable convex function in the feasible region and the feasible region is a convex set, then the (first-order) KKT optimality conditions are sufficient for the global optimality of a feasible solution.

Corollary 1 If \(f \) is differentiable convex function in the feasible region, then the (first-order) KKT optimality conditions are sufficient for the global optimality of a feasible solution for linearly constrained optimization.

How to check convexity, say \(f(x) = x^3 \)?

- Hessian matrix is PSD in the feasible region.
- Epigraph is a convex set.
LCCP Examples: Linear Optimization

\[(LP) \quad \text{minimize} \quad c^T x \]
\[\text{subject to} \quad A x = b, \quad x \geq 0.\]

For any feasible \(x\) of (LP), it’s optimal if for some \(y, s\)

\[x_j s_j = 0, \quad \forall j = 1, \ldots, n\]

\[A x = b\]

\[\nabla (c^T x) = c^T = y^T A + s^T\]

\[x, s \geq 0.\]

Here, \(y\) are Lagrange multipliers of equality constraints, and \(s\) (reduced cost or dual slack vector in LP) are Lagrange multipliers for \(x \geq 0\).
LCCP Examples: Barrier Optimization

\[f(x) = c^T x - \mu \sum_{j=1}^{n} \log(x_j), \]

for some fixed \(\mu > 0 \). Assume that interior of the feasible region is not empty:

\[Ax = b \]

\[c_j - \frac{\mu}{x_j} - (y^T A)_j = 0, \forall j = 1, \ldots, n \]

\[x > 0. \]

Let \(s_j = \frac{\mu}{x_j} \) for all \(j \) (note that this \(s \) is not the \(s \) in the KKT condition of \(f(x) \)). Then

\[x_j s_j = \mu, \forall j = 1, \ldots, n, \]

\[Ax = b, \]

\[A^T y + s = c, \]

\[(x, s) > 0. \]
Solution pair of \((x, s)\) of the barrier optimization problem is unique.

Suppose there two different pair \((x^1, s^1)\) and \((x^2, s^2)\). Note that

\[
(s^1 - s^2)^T (x^1 - x^2) = 0.
\]

Thus, there is \(j\) such that

\[
(s^1_j - s^2_j)(x^1_j - x^2_j) > 0.
\]

If \(x^1_j > x^2_j\), then \(s^1_j < s^2_j\) since \(x^1_j s^1_j = x^2_j s^2_j = \mu > 0\), which leads to \((s^1_j - s^2_j)(x^1_j - x^2_j) < 0\) – a contradiction. Similarly, one cannot have \(x^1_j < x^2_j\).
Let \((x(\mu), y(\mu), s(\mu))\) be the KKT solutions of the barried LP problem. Then the path

\[C = \{(x(\mu), y(\mu), s(\mu)) \in \text{int} \mathcal{F} : Xs = \mu e, \ 0 < \mu < \infty \}; \]

is called the (primal and dual) central path of linear programming.

Theorem 6 Let both (LP) and (LD) have interior feasible points for the given data set \((A, b, c)\). Then for any \(0 < \mu < \infty\), the central path point pair \((x(\mu), y(\mu), s(\mu))\) exists and is unique.
KKT Application: Fisher’s Equilibrium Price

Player \(i \in B \)'s optimization problem for given prices \(p_j, j \in G \).

\[
\begin{align*}
\text{maximize} & \quad u_i^T x_i := \sum_{j \in G} u_{ij} x_{ij} \\
\text{subject to} & \quad p_i^T x_i := \sum_{j \in G} p_j x_{ij} \leq w_i, \\
 & \quad x_{ij} \geq 0, \quad \forall j,
\end{align*}
\]

Assume that the amount of each good is \(s_j \). The equilibrium price vector is the one that for all \(j \in G \)

\[
\sum_{i \in B} x(p)_{ij} = s_j
\]
Example of Fisher’s Equilibrium Price

There two goods, x and y, each with 1 unit on the market. Buyer 1, 2’s optimization problems for given prices p_x, p_y.

maximize $2x_1 + y_1$
subject to $p_x \cdot x_1 + p_y \cdot y_1 \leq 5, \quad x_1, y_1 \geq 0$

maximize $3x_2 + y_2$
subject to $p_x \cdot x_2 + p_y \cdot y_2 \leq 8, \quad x_2, y_2 \geq 0$

$p_x = \frac{26}{3}, \ p_y = \frac{13}{3}, \ x_1 = \frac{1}{13}, \ y_1 = 1, \ x_2 = \frac{12}{13}, \ y_2 = 0$
Equilibrium Price Conditions

Player $i \in B$’s dual problem for given prices $p_j, j \in G$.

\[
\begin{align*}
&\text{minimize} & & w_i y_i \\
&\text{subject to} & & p_j y_i \geq u_i, \ y_i \geq 0
\end{align*}
\]

The necessary and sufficient conditions for an equilibrium point x_i, p are:

\[
\begin{align*}
& p^T x_i = w_i, \ x_i \geq 0, \ \forall i, \\
& p_j y_i \geq u_{ij}, \ y_i \geq 0, \ \forall i, j, \\
& u_i^T x_i = w_i y_i, \ \forall i, \\
& \sum_i x_{ij} = \bar{s}_j, \ \forall j.
\end{align*}
\]

\[
\begin{align*}
& p^T x_i = w_i, \ x_i \geq 0, \ \forall i, \\
& p_j \geq w_i \frac{u_{ij}}{u_i^T x_i}, \ \forall i, j, \\
& \sum_i x_{ij} = \bar{s}_j, \ \forall j.
\end{align*}
\]
Equilibrium Price Conditions (continued)

These conditions can be equivalently represented by

\begin{align*}
\sum_j s_j p_j &\leq \sum_i w_i, \quad x_i \geq 0, \quad \forall i, \\
p_j &\geq w_i \frac{u_{ij}}{u_i^T x_i}, \quad \forall i, j, \\
\sum_i x_{ij} &= s_j, \quad \forall j.
\end{align*}

since from the second inequality (after multiplying x_{ij} to both sides and take sum over j) we have

\[p^T x_i \geq w_i, \quad \forall i. \]

Then, from the rest conditions

\[\sum_i w_i \geq \sum_j s_j p_j = \sum_i p^T x_i \geq \sum_i w_i. \]

Thus, every inequality in the sequel has to be equal, that is, $p^T x_i = w_i, \quad \forall i$ and

\[p_j x_{ij} = w_i \frac{u_{ij} x_{ij}}{u_i^T x_i}, \quad \forall i, j. \]
Equilibrium Price Property

If u_{ij} has at least one positive coefficient for every j, then we must have $p_j > 0$ for every j at every equilibrium. Moreover, The second inequality can be rewritten as

$$\log(u_i^T x_i) + \log(p_j) \geq \log(w_i) + \log(u_{ij}), \forall i, j, u_{ij} > 0.$$

The function on the left is (strictly) concave in x_i and p_j. Thus,

Theorem 7 The equilibrium set of the Fisher Market is convex, and the equilibrium price vector is unique.
Aggregate Social Optimization

maximize
\[\sum_{i \in B} w_i \log(u_i^T x_i) \]
subject to
\[\sum_{i \in B} x_{ij} = \bar{s}_j, \quad \forall j \in G, \ x_{ij} \geq 0, \ \forall i, j. \]

Theorem 8 *(Eisenberg and Gale 1959)* Optimal dual (Lagrange) multiplier vector of equality constraints is an *equilibrium price vector*.

The proof is from *Optimality Conditions of the Aggregate Social Problem*:

\[w_i \frac{u_{ij}}{u_i^T x_i} \leq p_j, \ \forall i, j \]
\[w_i \frac{u_{ij} x_{ij}}{u_i^T x_i} = p_j x_{ij}, \ \forall i, j \] (complementarity)
\[\sum_i x_{ij} = \bar{s}_j, \ \forall j \]
\[x_i \geq 0, \ \forall i, \]

which is identical to the equilibrium conditions described earlier.
Rewrite Aggregate Social Optimization

maximize \[\sum_{i \in B} w_i \log u_i \]

subject to \[\sum_{j \in G} u_{ij}^T x_{ij} - u_i = 0, \quad \forall i \in B \]
\[\sum_{i \in B} x_{ij} = \bar{s}_j, \quad \forall j \in G \]
\[x_{ij} \geq 0, \quad u_i \geq 0, \quad \forall i, j, \]

This is called the \textbf{weighted analytic center} problem.

Question: Is the price vector \(p \) \textbf{unique} when at least one \(u_{ij} > 0 \) among \(i \in B \) and \(u_{ij} > 0 \) among \(j \in G \).

Aggregate Example:

maximize \[5 \log(2x_1 + y_1) + 8 \log(3x_2 + y_2) \]

subject to \[x_1 + x_2 = 1, \]
\[y_1 + y_2 = 1, \]
\[x_1, x_2, y_1, y_2 \geq 0. \]
Using the Lagrangian Function to Derive Optimality Conditions

We consider the general constrained optimization:

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad c_i(x) \ (\leq, =, \geq) \ 0, \ i = 1, \ldots, m,
\end{align*}
\]

For Lagrange Multipliers:

\[
\Lambda := \left\{ \lambda_i \ (\leq, '\text{free}', \geq) \ 0, \ i = 1, \ldots, m \right\},
\]

the Lagrangian Function is given by

\[
L(x, \lambda) = f(x) - \lambda^T c(x) = f(x) - \sum_{i=1}^{m} \lambda_i c_i(x), \ \lambda \in \Lambda.
\]

\[
\nabla_x L(x, \lambda) = 0 \quad \text{and} \quad \lambda_i c_i(x) = 0, \ \forall i.
\]