

Interior Point Algorithms I: Geometric Explanation

Yinyu Ye

Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

<http://www.stanford.edu/~yyye>

Chapter 5.4-5.5

Methodological Philosophy

Recall that the primal Simplex Algorithm maintains the **primal feasibility and complementarity** while working toward **dual feasibility**. (The Dual Simplex Algorithm maintains **dual feasibility and complementarity** while working toward **primal feasibility**.)

In contrast, **interior-point methods** will move in the interior of the feasible region, hoping to by-pass many corner points on the boundary of the region. The primal-dual interior-point method maintains both **primal and dual feasibility** while working toward **complementarity**.

The key for the simplex method is to make computer **see corner points**; and the key for interior-point methods is to **stay in the interior** of the feasible region.

Interior-Point Algorithms for LP

$$\text{int } \mathcal{F}_p = \{\mathbf{x} : A\mathbf{x} = \mathbf{b}, \mathbf{x} > \mathbf{0}\} \neq \emptyset$$

$$\text{int } \mathcal{F}_d = \{(\mathbf{y}, \mathbf{s}) : \mathbf{s} = \mathbf{c} - A^T \mathbf{y} > \mathbf{0}\} \neq \emptyset.$$

Let z^* denote the optimal value and

$$\mathcal{F} = \mathcal{F}_p \times \mathcal{F}_d.$$

We are interested in finding an ϵ -approximate solution for the LP problem:

$$\mathbf{c}^T \mathbf{x} - \mathbf{b}^T \mathbf{y} \leq \epsilon.$$

For simplicity, we assume that an interior-point pair $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{s}^0)$ is known, and we will use it as our initial point pair.

Barrier Functions for LP

Consider the **barrier function** optimization

$$\begin{array}{ll}
 \text{F} & (PB) \quad \text{minimize} \quad - \sum_{j=1}^n \log x_j \\
 & \text{s.t.} \quad \mathbf{x} \in \text{int } \mathcal{F}_p
 \end{array}$$

and

$$\begin{array}{ll}
 \text{AC} & (DB) \quad \text{maximize} \quad \sum_{j=1}^n \log s_j \\
 & \text{s.t.} \quad (\mathbf{y}, \mathbf{s}) \in \text{int } \mathcal{F}_d
 \end{array}$$

They are **linearly constrained convex programs** (LCCP).

Analytic Center for the Primal Polytope

The maximizer $\bar{\mathbf{x}}$ of $\underline{\text{(PB)}}$ is called the analytic center of polytope $\underline{\mathcal{F}_p}$. From the optimality condition theorem, we have

$$-(\bar{X})^{-1}\mathbf{e} - A^T\mathbf{y} = \mathbf{0}, \quad A\bar{\mathbf{x}} = \mathbf{b}, \quad \bar{\mathbf{x}} > \mathbf{0}.$$

or

$$\begin{aligned} \bar{X}\mathbf{s} &= \mathbf{e} \\ A\bar{\mathbf{x}} &= \mathbf{b} \\ \underbrace{-A^T\mathbf{y} - \mathbf{s}}_{\bar{\mathbf{x}} > \mathbf{0.}} &= \mathbf{0} \end{aligned} \tag{1}$$

Analytic Center for the Dual Polytope

The maximizer $(\bar{\mathbf{y}}, \bar{\mathbf{s}})$ of (DB) is called the **analytic center** of polytope \mathcal{F}_d , and we have

$$\left\{ \begin{array}{rcl} \bar{\mathbf{S}}\mathbf{x} & = & \mathbf{e} \\ \bar{\mathbf{A}}\mathbf{x} & = & \mathbf{0} \\ -\bar{\mathbf{A}}^T\bar{\mathbf{y}} - \bar{\mathbf{s}} & = & -\mathbf{c} \\ \bar{\mathbf{s}} & > & \mathbf{0}. \end{array} \right. \quad (2)$$

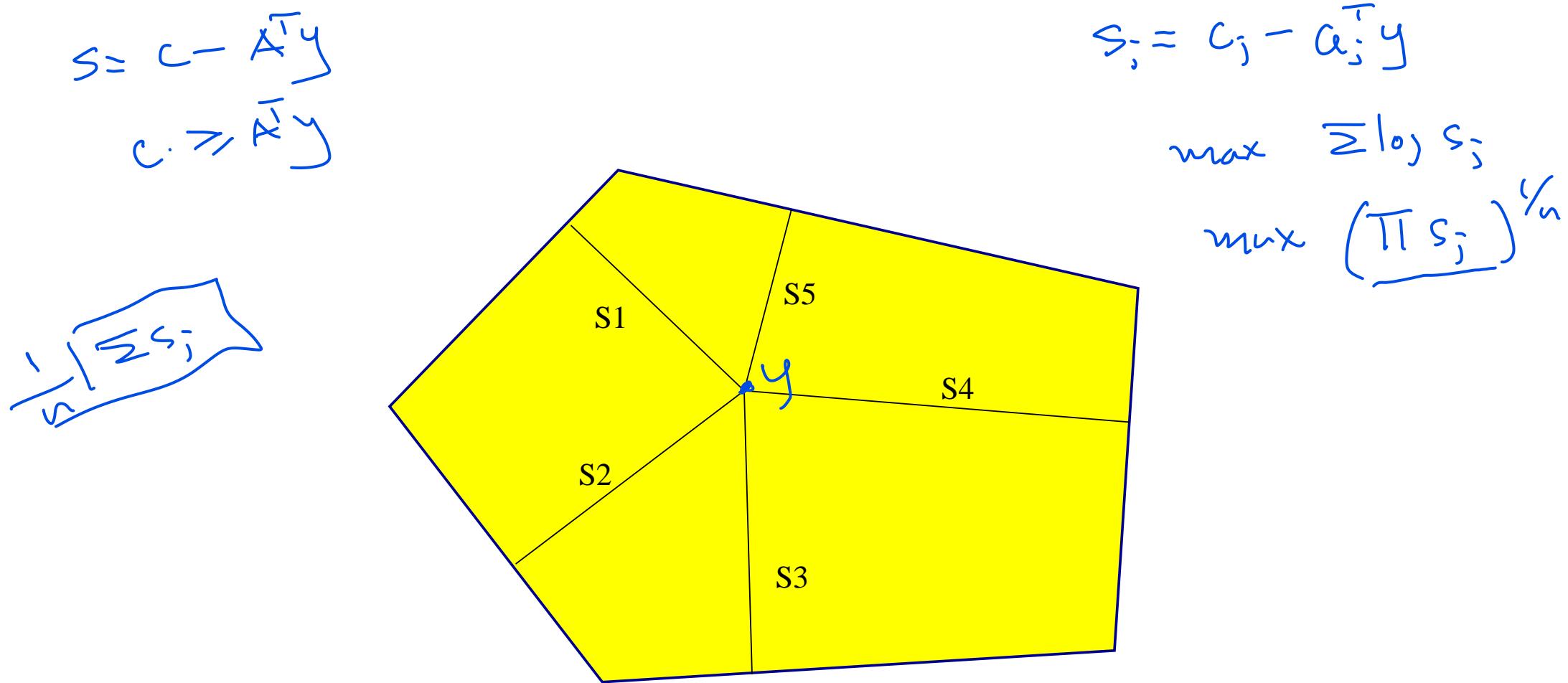


Figure 1: Analytic center maximizes the product of slacks.

Why Analytic

The analytic center of polytope \mathcal{F}_d is an analytic function of input data A, \mathbf{c} .

Consider $\Omega = \{y \in R : -y \leq 0, y \leq 1\}$, which is interval $[0, 1]$. The analytic center is $\bar{y} = 1/2$ with $\mathbf{x} = (2, 2)^T$.

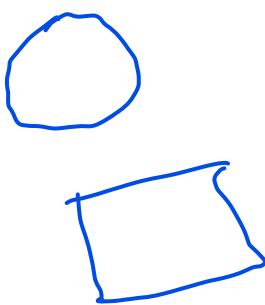
Consider

$$\Omega' = \{y \in R : \underbrace{-y \leq 0, \dots, -y \leq 0}_{n \text{ times}}, y \leq 1\},$$

$\pi y (1-y)$

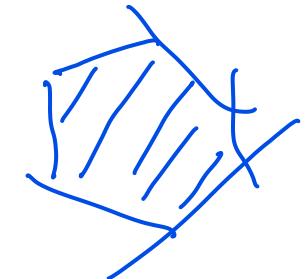
$\pi y^n (1-y)$

which is, again, interval $[0, 1]$ but “ $-y \leq 0$ ” is copied n times. The analytic center for this system is $\bar{y} = n/(n+1)$ with $\mathbf{x} = ((n+1)/n, \dots, (n+1)/n, (n+1))^T$.



Analytic Volume of Polytope and Cutting Plane

$$AV(\mathcal{F}_d) := \prod_{j=1}^n \bar{s}_j = \prod_{j=1}^n (c_j - \mathbf{a}_j^T \bar{\mathbf{y}})$$



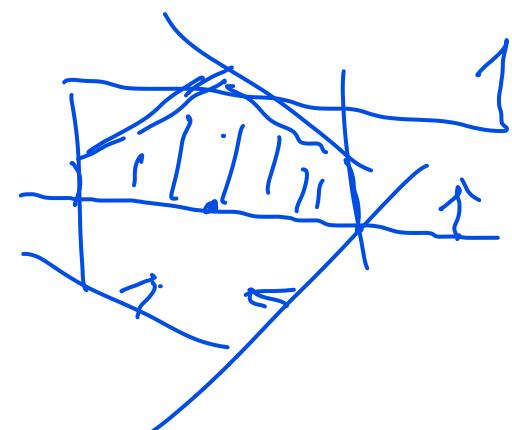
can be viewed as the **analytic volume** of polytope \mathcal{F}_d or simply \mathcal{F} in the rest of discussions.

If one inequality in \mathcal{F} , say the first one, needs to be translated, change $\mathbf{a}_1^T \mathbf{y} \leq c_1$ to $\mathbf{a}_1^T \mathbf{y} \leq \mathbf{a}_1^T \bar{\mathbf{y}}$; i.e., the first inequality is parallelly moved and it now cuts through $\bar{\mathbf{y}}$ and divides \mathcal{F} into two bodies.

Analytically, c_1 is replaced by $\mathbf{a}_1^T \bar{\mathbf{y}}$ and the rest of data are unchanged. Let

$$\mathcal{F}^+ := \{\mathbf{y} : \mathbf{a}_j^T \mathbf{y} \leq c_j^+, j = 1, \dots, n\},$$

where $c_j^+ = c_j$ for $j = 2, \dots, n$ and $c_1^+ = \mathbf{a}_1^T \bar{\mathbf{y}}$.



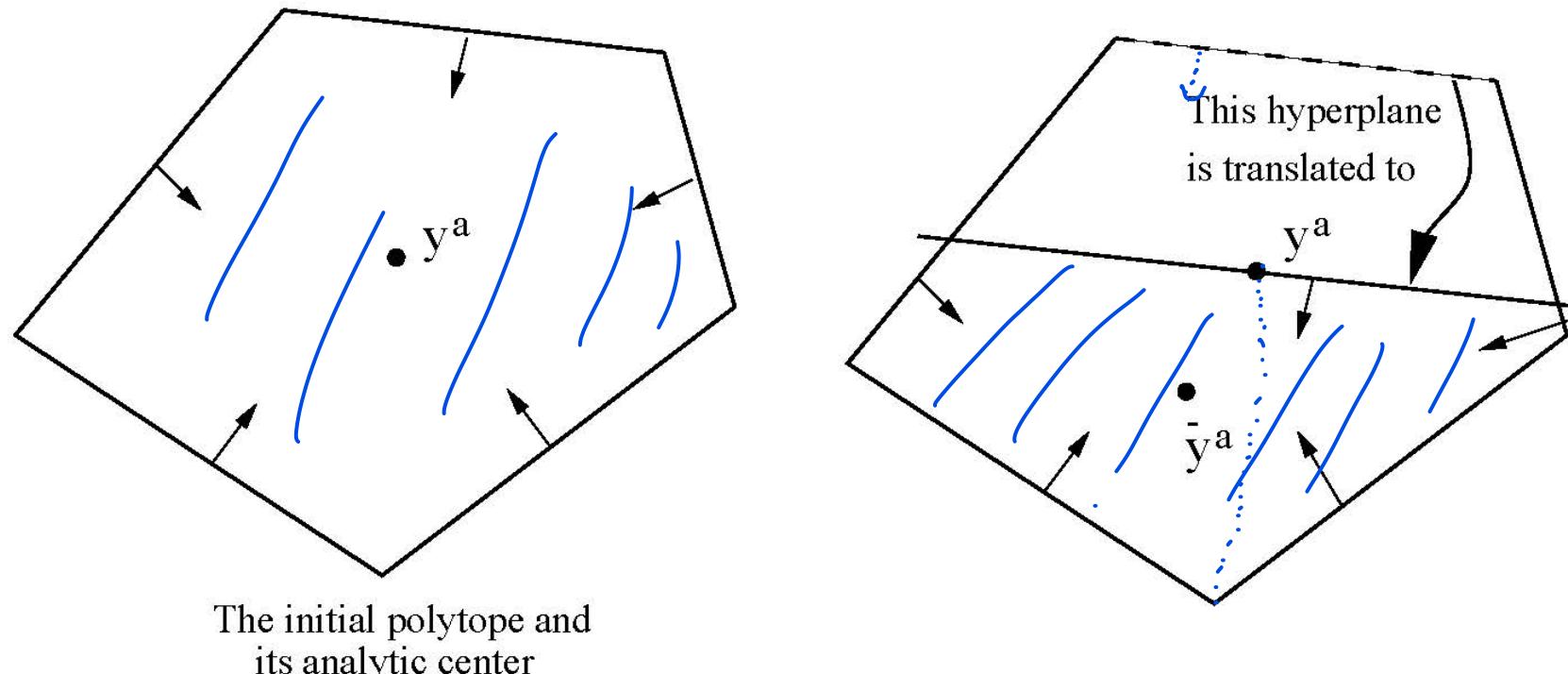


Figure 2: Translation of a hyperplane to the AC.

Analytic Volume Reduction of the New Polytope

Let $\bar{\mathbf{y}}^+$ be the analytic center of \mathcal{F}^+ . Then, the analytic volume of \mathcal{F}^+

$$AV(\mathcal{F}^+) = \prod_{j=1}^n (c_j^+ - \mathbf{a}_j^T \bar{\mathbf{y}}^+) = (\mathbf{a}_1^T \bar{\mathbf{y}} - \mathbf{a}_1^T \bar{\mathbf{y}}^+) \prod_{j=2}^n (c_j - \mathbf{a}_j^T \bar{\mathbf{y}}^+).$$

We have the following volume reduction theorem:

Theorem 1

$$\frac{AV(\mathcal{F}^+)}{AV(\mathcal{F})} \leq \exp(-1).$$

$$e^{-1}$$

Proof

Since $\bar{\mathbf{y}}$ is the analytic center of \mathcal{F} , there exists $\bar{\mathbf{x}} > \mathbf{0}$ such that

$$\bar{X}\bar{\mathbf{s}} = \bar{X}(\mathbf{c} - A^T\bar{\mathbf{y}}) = \mathbf{e} \quad \text{and} \quad A\bar{\mathbf{x}} = \mathbf{0}.$$

Thus,

$$\bar{\mathbf{s}} = (\mathbf{c} - A^T\bar{\mathbf{y}}) = \bar{X}^{-1}\mathbf{e} \quad \text{and} \quad \mathbf{c}^T\bar{\mathbf{x}} = (\mathbf{c} - A^T\bar{\mathbf{y}})^T\bar{\mathbf{x}} = \mathbf{e}^T\mathbf{e} = n.$$

We have

$$\begin{aligned} \mathbf{e}^T\bar{X}\bar{\mathbf{s}}^+ &= \mathbf{e}^T\bar{X}(\mathbf{c}^+ - A^T\bar{\mathbf{y}}^+) = \mathbf{e}^T\bar{X}\mathbf{c}^+ \\ &= \mathbf{c}^T\bar{\mathbf{x}} - \bar{x}_1(c_1 - \mathbf{a}_1^T\bar{\mathbf{y}}) = n - 1. \end{aligned}$$

$$\begin{aligned}
\frac{AV(\mathcal{F}^+)}{AV(\mathcal{F})} &= \prod_{j=1}^n \frac{\bar{s}_j^+}{\bar{s}_j} \\
&= \prod_{j=1}^n \bar{x}_j \bar{s}_j^+ \\
&\leq \left(\frac{1}{n} \sum_{j=1}^n \bar{x}_j \bar{s}_j^+ \right)^n \\
&= \left(\frac{1}{n} \mathbf{e}^T \bar{X} \bar{\mathbf{s}}^+ \right)^n \quad n > 1 \\
&= \left(\frac{n-1}{n} \right)^n \leq \exp(-1).
\end{aligned}$$

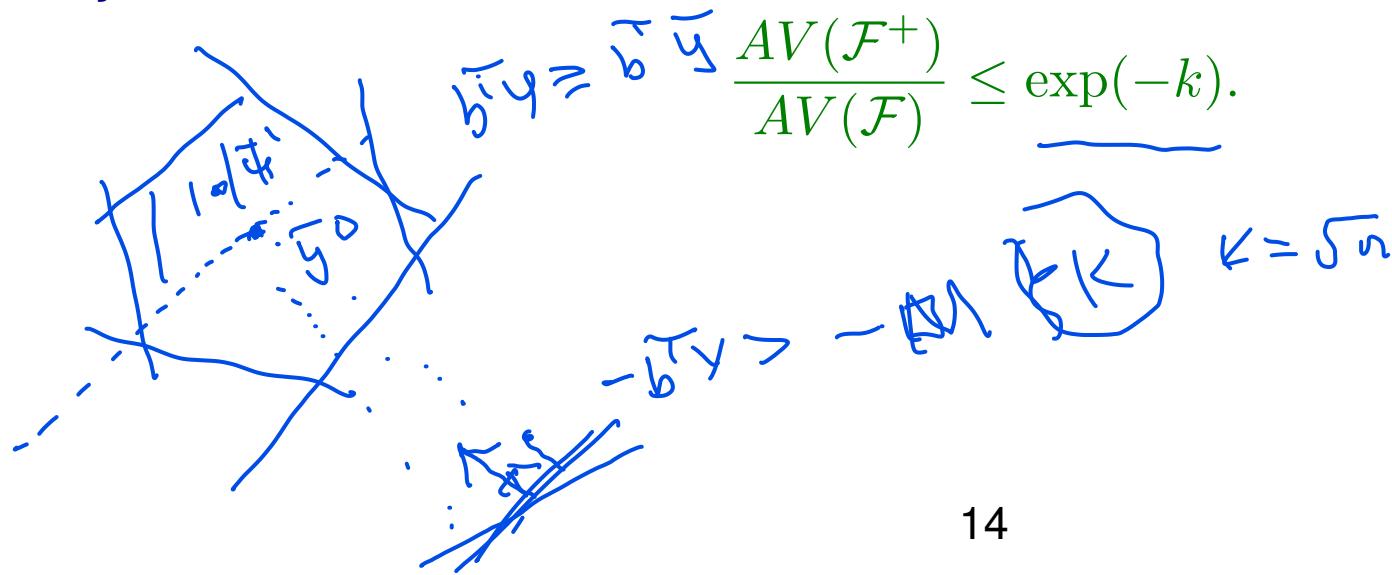
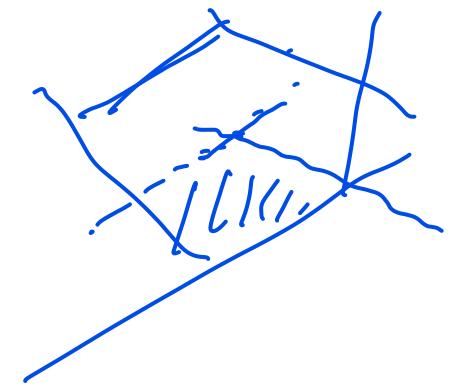
Analytic Volume of Polytope and Multiple Cutting Planes

Now suppose we translate $k (< n)$ hyperplanes, say $1, 2, \dots, k$, moved to cut the analytic center $\bar{\mathbf{y}}$ of \mathcal{F} , that is,

$$\mathcal{F}^+ := \{\mathbf{y} : \mathbf{a}_j^T \mathbf{y} \leq c_j^+, j = 1, \dots, n\},$$

where $c_j^+ = c_j$ for $j = k + 1, \dots, n$ and $c_j^+ = \mathbf{a}_j^T \bar{\mathbf{y}}$ for $j = 1, \dots, k$.

Corollary 1



The Analytic Center Method Cutting-Plane Method

Problem: Find a solution in the feasible set $\mathcal{F} := \{\mathbf{y} : \mathbf{a}_j^T \mathbf{y} \leq c_j, j = 1, \dots, n\}$.

Start with the initial polytope

$$\mathcal{F}^0 := \{\mathbf{y} : \mathbf{a}_j^T \mathbf{y} \leq c_j^0 := c_j + R, j = 1, \dots, n\}$$

where R is sufficiently large such that $\bar{\mathbf{y}}^0 = \mathbf{0}$ is an (approximate) analytic center of \mathcal{F}^0 .

Check if the (approximate) analytic center $\bar{\mathbf{y}}^k$ of \mathcal{F}^k is in \mathcal{F} or not. If not, define a new polytope \mathcal{F}^{k+1} by translating one or multiple violated constraint hyperplanes through $\bar{\mathbf{y}}^k$ as defined earlier, and compute an approximate analytic center $\bar{\mathbf{y}}^{k+1}$ of \mathcal{F}^{k+1} .

Continue this step till $\bar{\mathbf{y}}^k \in \mathcal{F}$.

Trajectory of Analytic Centers: Central Path for LP

Now consider the problem

$$\begin{aligned} & \text{maximize} && \mathbf{b}^T \mathbf{y} \\ & \text{s.t.} && \mathbf{A}^T \mathbf{y} \leq \mathbf{c}. \end{aligned}$$

Assume that the feasible region is bounded, and the analytic center of the region is \mathbf{y}^0 .

Start with a polytope

$$\mathcal{F}(R) := \{\mathbf{y} : \mathbf{A}^T \mathbf{y} \leq \mathbf{c}, \underbrace{\mathbf{b}^T \mathbf{y} \geq R, \dots, \mathbf{b}^T \mathbf{y} \geq R}_{k \text{ times}}\}$$

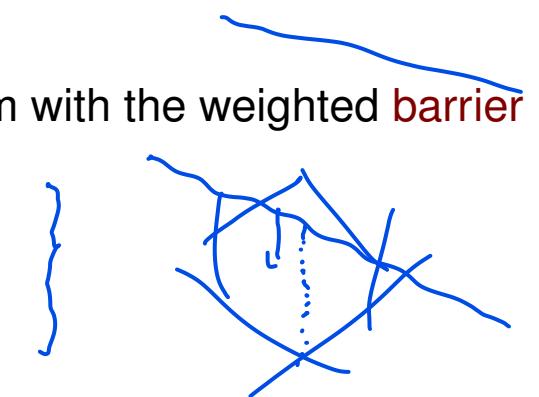
where R is so low such that \mathbf{y}^0 is also an (approximate) analytic center of $\mathcal{F}(R)$.

Define a family of polytopes $\mathcal{F}(R)$ by continuously increasing R toward the maximal value and consider its analytic center $\mathbf{y}(R)$: it forms a **path of analytic centers** from \mathbf{y}^0 toward the optimal solution set.

Better Parameterization: LP with Barrier Function

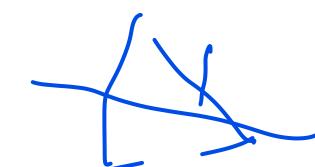
An equivalent algebraic representation of the path is to consider the LP problem with the weighted barrier function

$$\begin{aligned}
 & x(\mu) \quad (LDB) \quad \text{maximize} \quad \mathbf{b}^T \mathbf{y} + \mu \sum_{j=1}^n \log s_j \\
 & \text{s.t.} \quad (\mathbf{y}, \mathbf{s}) \in \text{int } \mathcal{F}_d,
 \end{aligned}$$



and also

$$\begin{aligned}
 & y(\mu) \quad (LPB) \quad \text{minimize} \quad \mathbf{c}^T \mathbf{x} - \mu \sum_{j=1}^n \log x_j \\
 & s(\mu) \quad \text{s.t.} \quad \mathbf{x} \in \text{int } \mathcal{F}_p
 \end{aligned}$$



where μ is called the **barrier (weight) parameter**.

They are again **linearly constrained convex programs (LCCP)**.

$$\mu = \frac{\mathbf{c}^T \mathbf{x}^* - \mathbf{b}^T \mathbf{y}^*}{n}$$

$$\mu = \frac{x^*(\mu) - s^*(\mu)}{n}$$

Common Optimality Conditions for both LPB and LDB

They share the same first-order KKT conditions:

$$\begin{aligned}
 & \text{Left side: } \underbrace{\begin{bmatrix} x_1 s_1 \\ x_2 s_2 \\ \vdots \\ x_n s_n \end{bmatrix}}_{\text{Left side of } Xs = \mu e} \\
 & \text{Right side: } \underbrace{\begin{aligned} Xs &= \mu e \\ Ax &= b \\ -A^T y - s &= -c; \end{aligned}}_{\text{Right side of } -A^T y - s = -c; \text{ and } Ax = b}
 \end{aligned}$$

where we have

$$\mu = \frac{\mathbf{x}^T \mathbf{s}}{n} = \frac{\mathbf{c}^T \mathbf{x} - \mathbf{b}^T \mathbf{y}}{n}, \quad \text{and} \quad \infty \rightarrow 0^+$$

so that it's the **average** of complementarity or duality gap.

Denote by $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ the (unique) solution satisfying the conditions. As μ decreases to zero, $\mathbf{x}(\mu)$ form a path in the primal feasible region and $\mathbf{y}(\mu)$ form a path in the dual feasible region to-warding optimality respectively.

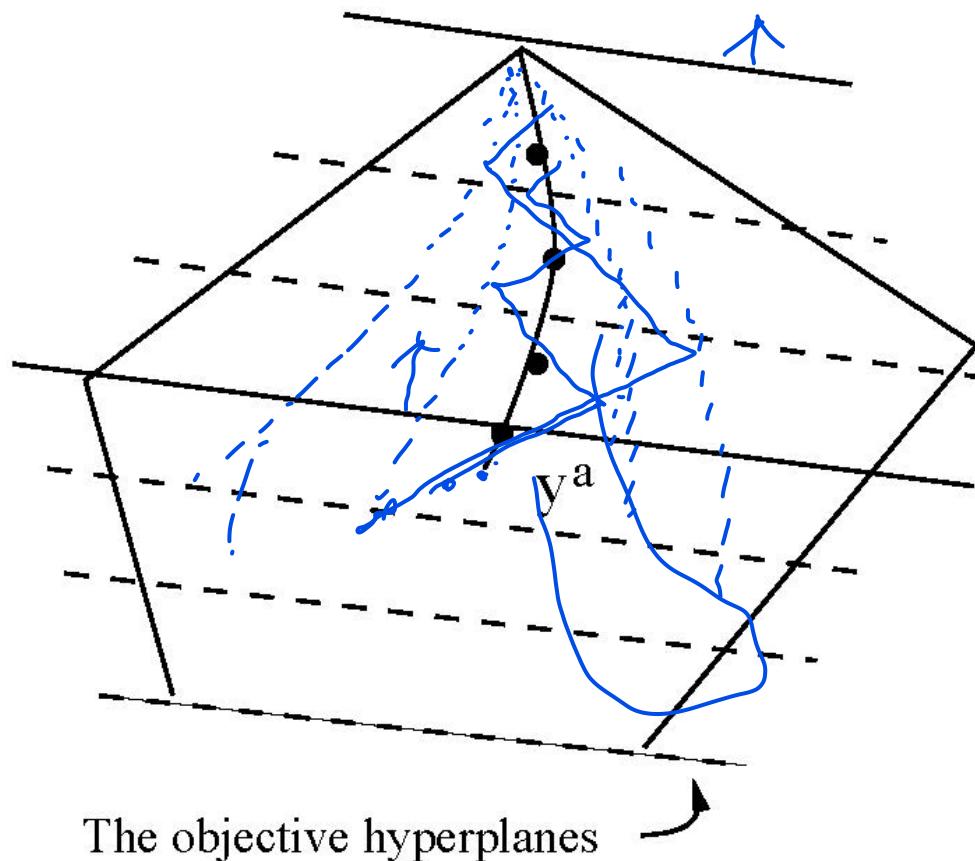


Figure 3: The central path of $y(\mu)$ in a dual feasible region.

Central Path for Linear Programming

The path

$$\mathcal{C} = \{(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu)) \in \text{int } \mathcal{F} : X\mathbf{s} = \mu\mathbf{e}, 0 < \mu < \infty\};$$

is called the (primal and dual) central path of linear programming.

A full row rank

Theorem 2 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c) . Then for any $0 < \mu < \infty$, the central path point pair $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ exists and is unique.

Central Path Properties

Theorem 3 Let $(\mathbf{x}(\mu), \mathbf{y}(\mu), \mathbf{s}(\mu))$ be on the central path of an linear program in standard form.

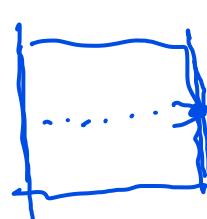
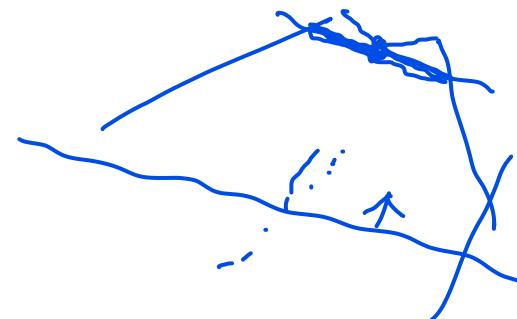
i) The central path point $(\mathbf{x}(\mu), \mathbf{s}(\mu))$ is bounded for $0 < \mu \leq \mu^0$ and any given $0 < \mu^0 < \infty$.

ii) For $0 < \mu' < \mu$,

$$\underline{\mathbf{c}^T \mathbf{x}(\mu')} < \underline{\mathbf{c}^T \mathbf{x}(\mu)} \quad \text{and} \quad \underline{\mathbf{b}^T \mathbf{y}(\mu')} \geq \underline{\mathbf{b}^T \mathbf{y}(\mu)}$$

if both primal and dual have nontrivial optimal solutions.

iii) $(\mathbf{x}(\mu), \mathbf{s}(\mu))$ converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point $\mathbf{x}(0)_{P^*} > \mathbf{0}$ and the limit point $\mathbf{s}(0)_{Z^*} > \mathbf{0}$, where (P^*, Z^*) is the strictly complementarity partition of the index set $\{1, 2, \dots, n\}$.



Proof of (i)

$$(\mathbf{x}(\mu^0) - \mathbf{x}(\mu))^T (\mathbf{s}(\mu^0) - \mathbf{s}(\mu)) = 0,$$

since $(\mathbf{x}(\mu^0) - \mathbf{x}(\mu)) \in \mathcal{N}(A)$ and $(\mathbf{s}(\mu^0) - \mathbf{s}(\mu)) \in \mathcal{R}(A^T)$. This can be rewritten as

$$\sum_j^n (s(\mu^0)_j x(\mu)_j + x(\mu^0)_j s(\mu)_j) = n(\mu^0 + \mu) \leq 2n\mu^0,$$

or

$$\sum_j^n \left(\frac{x(\mu)_j}{x(\mu^0)_j} + \frac{s(\mu)_j}{s(\mu^0)_j} \right) \leq 2n.$$

Thus, $\mathbf{x}(\mu)$ and $\mathbf{s}(\mu)$ are bounded, which proves (i).

Proof of (iii)

Since $\mathbf{x}(\mu)$ and $\mathbf{s}(\mu)$ are both bounded, they have at least one limit point which we denote by $\mathbf{x}(0)$ and $\mathbf{s}(0)$. Let $\mathbf{x}_{P^*}^*$ ($\mathbf{x}_{Z^*}^* = \mathbf{0}$) and $\mathbf{s}_{Z^*}^*$ ($\mathbf{s}_{P^*}^* = \mathbf{0}$), respectively, be any strictly complementary solution pair on the primal and dual optimal faces: $\{\mathbf{x}_{P^*} : A_{P^*} \mathbf{x}_{P^*} = \mathbf{b}, \mathbf{x}_{P^*} \geq \mathbf{0}\}$ and $\{\mathbf{s}_{Z^*} : \mathbf{s}_{Z^*} = \mathbf{c}_{Z^*} - A_{Z^*}^T \mathbf{y} \geq \mathbf{0}, \mathbf{c}_{Z^*} - A_{Z^*}^T \mathbf{y} = \mathbf{0}\}$. Again, we have

$$\sum_j^n (s_j^* x(\mu)_j + x_j^* s(\mu)_j) = n\mu,$$

or

$$\sum_{j \in P^*} \left(\frac{x_j^*}{x(\mu)_j} \right) + \sum_{j \in Z^*} \left(\frac{s_j^*}{s(\mu)_j} \right) = n.$$

Thus, we have

$$x(\mu)_j \geq x_j^*/n > 0, \quad j \in P^*$$

and

$$s(\mu)_j \geq s_j^*/n > 0, \quad j \in Z^*.$$

This implies that

$$x(\mu)_j \rightarrow 0, \quad j \in Z^*$$

and

$$s(\mu)_j \rightarrow 0, \quad j \in P^*.$$

The Primal-Dual Path-Following Algorithm

$$\mu^0 \gg 0$$

In general, one can start from an (approximate) central path point $\mathbf{x}(\mu^0), (\mathbf{y}(\mu^0), \mathbf{s}(\mu^0))$, or $(\mathbf{x}(\mu^0), \mathbf{y}(\mu^0), \mathbf{s}(\mu^0))$ where μ^0 is sufficiently large.

Then, let μ^1 be a slightly smaller parameter than μ^0 . Then, we compute an (approximate) central path point $\mathbf{x}(\mu^1), (\mathbf{y}(\mu^1), \mathbf{s}(\mu^1))$, or $(\mathbf{x}(\mu^1), \mathbf{y}(\mu^1), \mathbf{s}(\mu^1))$. They can be updated from the previous point at μ^0 using the Newton method.

μ might be reduced at each stage by a specific factor, giving $\mu^{k+1} = \gamma \mu^k$ where γ is at most $\left(1 - \frac{1}{3\sqrt{n}}\right)$ where k is the iteration count.

This is called the primal, dual, or primal-dual path-following method.

$$\hat{\mathbf{x}}(\mu^k), \hat{\mathbf{y}}(\mu^k), \hat{\mathbf{s}}(\mu^k)$$

$$\hat{\mathbf{x}}(\mu^{k+1}) \dots$$

$$\frac{1}{e}$$

The Path-Following Newton Method

Given a pair $(\mathbf{x}, \mathbf{y}, \mathbf{s}) \in \text{int } \mathcal{F}$ in a neighborhood to the central path, that is, for a constant $0 < \eta < 1$

$$\|\mathbf{XSe} - \mu \mathbf{e}\|_2 \leq \eta \mu,$$

we compute direction vectors \mathbf{d}_x , \mathbf{d}_y and \mathbf{d}_s from the Newton equations:

$$\begin{aligned} A(\mathbf{x} + \delta \mathbf{x}) &= \mathbf{b} \\ S\mathbf{d}_x + X\mathbf{d}_s &= \mu^+ \mathbf{e} - \mathbf{XSe}, \text{ where } \mu^+ = \left(1 - \frac{1}{3\sqrt{n}}\right)\mu, \\ \underbrace{A\mathbf{d}_x}_{= 0} &= 0, \\ -A^T\mathbf{d}_y - \mathbf{d}_s &= 0. \end{aligned}$$

(Note that $\mathbf{d}_x^T \mathbf{d}_s = -\mathbf{d}_x^T A^T \mathbf{d}_y = 0$ here.) Then we update

$$\mathbf{x}^+ = \mathbf{x} + \mathbf{d}_x, \quad \mathbf{y}^+ = \mathbf{y} + \mathbf{d}_y, \quad \mathbf{s}^+ = \mathbf{s} + \mathbf{d}_s.$$

Then we can prove $\mathbf{x}^+ > \mathbf{0}$, $\mathbf{s}^+ > \mathbf{0}$ and

$$\|\mathbf{X}^+ \mathbf{S}^+ \mathbf{e} - \mu^+ \mathbf{e}\|_2 \leq \eta \mu^+.$$

$$\begin{aligned} \mathbf{XSe} &= \mu \mathbf{e} \\ (\mathbf{x} + \delta \mathbf{x})(\mathbf{s} + \delta \mathbf{s}) &= \mathbf{x}\mathbf{s} + \mathbf{s}\delta \mathbf{x} + \mathbf{x}\delta \mathbf{s} \\ &= \mathbf{x}\mathbf{s} + \mathbf{s}\delta \mathbf{x} + \mathbf{x}\delta \mathbf{s} \\ &\quad \cancel{\mathbf{x}\delta \mathbf{x}} \quad (3) \end{aligned}$$

$$A\delta \mathbf{x} = 0$$

$$\mu^{(t+1)} \leq \left(1 - \frac{1}{3\sqrt{n}}\right) \mu^t$$

$$D(\mathcal{F}) \leq \left(1 - \frac{1}{3\sqrt{n}}\right)^{M^0}$$

The Path-Following Newton Method in Large Neighborhoods

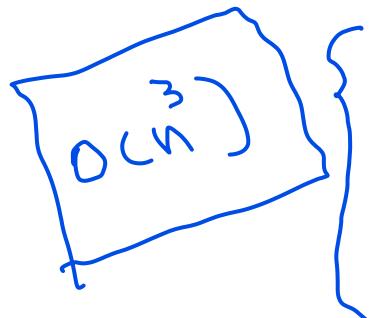
Large neighborhoods were proposed

$$\| \cdot \|_2 \quad \Rightarrow$$

$$\| XSe - \mu e \|_\infty \leq \eta \mu \quad \text{or} \quad \|(XSe - \mu e)^- \|_\infty \leq \eta \mu.$$

$$\begin{aligned} x_i, \xi_i &\geq 0.01 \mu \\ (1-\eta) \mu & \\ \eta &= 0.99 \end{aligned}$$

we compute direction vectors $\mathbf{d}_x, \mathbf{d}_y$ and \mathbf{d}_s from the system equations:



$$\begin{aligned} A \left[\begin{array}{l} \bar{A}^{-1} A^T \bar{A} \bar{S}^{-1} \bar{A}^T \bar{A} \bar{d}_y \\ \bar{A} \bar{S}^{-1} X \bar{d}_s \end{array} \right] = \bar{A} \bar{S}^{-1} (\mu^+ e - XSe), \quad \text{where } \mu^+ = \left(1 - \frac{1}{3n}\right) \mu \\ \Rightarrow A \bar{d}_x = 0, \\ -A^T \bar{d}_y - \bar{d}_s = 0, \end{aligned} \quad (4)$$

and let

$$\begin{aligned} \bar{A} \bar{S}^{-1} \bar{A}^T \bar{A} \bar{d}_y &= \bar{A} \bar{S}^{-1} r \\ \bar{d}_s &= \bar{A} \bar{S}^{-1} r \end{aligned}$$

$$\mathbf{x}^+ = \mathbf{x} + \mathbf{d}_x, \quad \mathbf{y}^+ = \mathbf{y} + \mathbf{d}_y, \quad \mathbf{s}^+ = \mathbf{s} + \mathbf{d}_s.$$

But it is slower than the smaller neighborhood algorithm!

$$dx \ ds$$

$$\begin{bmatrix} dx \\ dy \\ ds \end{bmatrix}$$

The Fast Corrector-Method in Large Neighborhoods

Repeatedly solve the following system from $i = 1, \dots, r$:

$O(m^2)$

$$\begin{aligned}
 S\mathbf{d}_x^i + X\mathbf{d}_s^i &= \underbrace{\mu^+ \mathbf{e} - X^k S^k \mathbf{e} - \sum_{i=1}^r w^i D_x^{i-1} D_s^{i-1} \mathbf{e}}_{\mathcal{M}^+} \\
 A\mathbf{d}_x^i &= \underbrace{0,}_{\mathcal{M}^+ = \left(1 - \frac{1}{3n^{1/2}}\right) \mathcal{M}} \\
 -A^T \mathbf{d}_y^i - \mathbf{d}_s^i &= 0,
 \end{aligned} \tag{5}$$

$\mu^+ = \left(1 - \frac{1}{3n^{1/2}}\right) \mu$

$\mathbf{e}^+ = \left(1 - \frac{1}{3n}\right) \mathbf{e}$

for some given weights w^i . Then we let

$$\mathbf{x}^+ = \mathbf{x} + \mathbf{d}_x^r, \mathbf{y}^+ = \mathbf{y} + \mathbf{d}_y^r, \mathbf{s}^+ = \mathbf{s} + \mathbf{d}_s^r$$

and they remain in the large neighborhood with

$$\mu^+ = \left(1 - \frac{1}{3n^{(r+1)/2r}}\right) \mu.$$

$$\begin{aligned}
 \gamma &= 4 \\
 \gamma &= 2, \quad 3/4 \\
 &\vdots \\
 &\sqrt{2}
 \end{aligned}$$

Implementations?