Yinyu Ye, MS&E, Stanford Simons Institute Lecture Note #1

Interior Point Algorithms I: Geometric Explanation

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/ yyye
Chapter 5.4-5.5



Yinyu Ye, MS&E, Stanford Simons Institute Lecture Note #1

Methodological Philosophy I

Recall that the primal Simplex Algorithm maintains the primal feasibility and complementarity while
working toward dual feasibility. (The Dual Simplex Algorithm maintains dual feasibility and

complementarity while working toward primal feasibility.)

In contrast, interior-point methods will move in the interior of the feasible region, hoping to by-pass many
corner points on the boundary of the region. The primal-dual interior-point method maintains both primal

and dual feasibility while working toward complementarity.

The key for the simplex method is to make computer see corner points; and the key for interior-point

methods is to stay in the interior of the feasible region.
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Interior-Point Algorithms for LP I

int F, = {x: Ax=b, x >0} # ()

int /3 = {(y,s): s=c— Aly > 0} £ 0.

Le@note the optimal value and
F = ./T"p X Fq.

We are interested in finding oximate solution for the LP problem:

cl'x—bly<e.

For simplicity, we assume that an interior-point pair (XO, yY, SO) is known, and we will use it as our initial

point pair. /f +
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Barrier Functions for LP '

Consider the barrier function optimization

;{ (PB) minimize —3 7 logx;

s.t. X & 1nt D

and
(DB) maximize Z; , log s;
A~ s.t. (yv,s) €ty

They are linearly constrained convex programs (LCCP).
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Analytic Center for the Primal Polytope I

The maximizer X of (PB) is called the analytic center of polytope ./,,. From the optimality condition

~—~— P

theorem, we have

—(X) le—A'y =0, Ax=b, x> 0.
or
Xs =
Ax =
—Aly —s =

—

X >

olo T o
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Analytic Center for the Dual Polytope I

The maximizer (37', §) of (DB) is called the analytic center of polytope f,, and we have

Sx = e
Ax = 0
- (2)
—A'y—s = —c
s > 0
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Figure 1: Analytic center maximizes the product of slacks.
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Why Analytic. © Eﬁ-—-‘f—“ﬁ* \

The analytic center of polytope .F; is an analytic function of input data A, c.

Consider () ={y € R: —y <0, y < 1}, which iz interval [0, 1]. The analytic center is y = 1/2 with

x = (2,2)7. 5eYel Ty L= )
Consider o<t ™Y (=)
D-éq ntjiines

Q/:{QERZ—ZJSO,“' 7_y§07 y§1}7

which is, again, interval [0, 1] but “—y < 0” is copied 7 times. The analytic center for this system is
§=n/(n+1)witrx = ((n+1)/n, -, (n+1)/n, (n+1))7.
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can be viewed as the analytic volume of polytope F; or simply J in the rest of discussions.

If one inequality in /-, say the first one, needs to be translated, change ar{y < cto ar{y < a{y; e,
the first inequality is parallelly moved and it now cuts through y and divides ./ into two bodies.
Analytically, ¢ is replaced by aipjf and the rest of data are unchanged. Let

Fr={y: a]Ty < c;r, j=1,...,n},

where c;r —=c¢jfory=2,...,nand cf = alTSf.
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“his hyperplane

1s translated to

ya

The 1nitial polytope and
its analytic center

Figure 2: Translation of a hyperplane to the AC.
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Analytic Volume Reduction of the New Polytope I

Let y ' be the analytic center of 7. Then, the analytic volume of F

We have the following volume reduction theorem:

Theorem 1 R ‘
AV (FT) .
V() <exp(—1). )| €
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Since y is the analytic center of /-, there exists X > 0 such that
Xs=X(c—A'y)=e and Ax =0.

Thus,

s=(c—A'y)=X""'e and c'x=(c-Aly) 'x=e'e=n.
We have

el Xst = e'X(ct —A'yt)=e'Xc*

12
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AV (FH) o)
AV (F) 1]

I

T)—(+)n n> |
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Analytic Volume of Polytope and Multiple Cutting Planes I

Now suppose we translate /(< n) hyperplanes, say 1,2, ..., k, moved to cut the analytic center y of .F,
that is,
T .
Fr={y: a;y < c;r, j=1,...n},

where cj —cjforj=Fk+1,...,nand cj = a;fy fory =1,..., k.

Corollary 1
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The Analytic Center Method Cutting-Plane Method I

Problem: Find a solution in the feasible set 7 := {y : ajy <c¢;, j =1,...,n}.

Start with the initial polytope
FO={y: a?y < c? =c;+ R, j=1,..,n}

where R is sufficiently large such that }70 = (0 is an (approximate) analytic center of FV.

Check if the (approximate) analytic center yk of F¥isin JF or not. If not, define a new polytope Fhtl by
translating one or multiple violated constraint hyperplanes through ka as defined earlier, and compute an

approximate analytic centery’lﬁrl of Frt1,

Continue this step till * € F.

15
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Trajectory of Analytic Centers: Central Path for LP I

Now consider the problem
maximize b’y
s.t. Aly <ec.

Assume that the feasible region is bounded, and the analytic center of the region is yo.

Start with a polytope

k times
A

‘F(R) ::{y: AT}’ﬁCa %TYZRaabTYZ}%}

where I? is so low such that y" is also an (approximate) analytic center of F(R).

Define a family of polytopes F(R) by continuously increasing /X toward the maximal value and consider
its analytic center y(R): it forms a path of analytic centers from yO toward the optimal solution set.

16
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Better Parameterization: LP with Barrier Function '

An equivalent algebraic representation of the path is to consider the LP problem with the weighted barrier

function
KON (LDB) maximize by +pu) " logs;
s.t. (y,8) € int Fy,
and also
\3()*\ (LPB) minimize c'x—pu) " logw;
SCP) s.t. X € int F,

where (1 is called the barrier (weight) parameter.

They are again linearly constrained convex programs (LCCP). N

F S )
— *im 7
)A,

W

17
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Common Optimality Conditions for both LPB and LDB I

They share the same first-order KKT conditions:

Se g
)L\Q\v\/ ‘?‘ B el /\A’
X s = ue
Sw

\;_.\_41
E Ax = b
-
~Aly —s = —c;
where we have +
_XTs_ch—bTy oo — 0
:u _ n - n 9 /\A

so that it's the average of complementarity or duality gap.

Denote by (x (1), y (1), s(x)) the (unique) solution satisfying the conditions. As /. decreases to zero,
x (1) form a path in the primal feasible region and y (;4) form a path in the dual feasible region to-warding

optimality respectively.

18
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The objective hyperplanes )

Figure 3: The central path of y (/) in a dual feasible region.
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Central Path for Linear Programming I

C={(x(p),y(pn),s(p)) €eintF: Xs=pe, 0<p<oo};

is called the (primal and dual) central path of linear programming. A é*“ Vo w
Vel

Theorem 2 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c). Then for

The path

any 0 < p < oo, the central path point pair (x (1), y (1), (1)) exists and is unique.

/
~————

20
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Central Path Properties.

Theorem 3 Let (x(11),y(14),s(14)) be on the central path of an linear program in standard form.

i) The central path point (x(11),s()) is bounded for 0 < ;1 < ¥ and any given 0 < ;¥ < oc.

——

i) ForO < p/ < p,

O

T / T T / T
< d b > b
¢ x(y) <c x(y) and b y(w) >by(p)

if both primal and dual have nontrivial optimal solutions.

iii) (x(1),s(p)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point
x(0) p+ > 0 and the limit points(0) z= > 0, where (P*, Z™) is the strictly complementarity
partition of the index set {1,2,...,n}.
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Proof of (i) I

(x(n”) = x(u)" (s(1") — s(n)) = 0,
since (x(1Y) —x(p)) € N(A) and (s(p¥) —s(p)) € R(A'). This can be rewritten as

Z (s(u”)jz(p); +z(n’);s(m);) = n(p’ + p) < 2np’,

or
n

Z ( x(u)j‘ 4 S(M)j) < 2n.

—\a(ud); - s(w?);

Thus, x (1) and s( 1) are bounded, which proves (i).

22
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Proof of (iii) I

Since x (1) and s( 1) are both bounded, they have at least one limit point which we denote by x(0) and
S(O). Let xp. (x7,. = 0)and s7,. (sp. = 0), respectively, be any strictly complementary solution pair
on the primal and dual optimal faces: {xp« : Ap«xp+ = b, xp« > 0} and

{sz+: sz« =cy — ALy >0, cp- — AL.y = 0}. Again, we have

n

> (sia(p); + xfs(p);) =np,

J

> (o) * % () =

jep* VISV

or

Thus, we have
r(p); > x;/n>0,5¢€P"
and

s(p)j > s:/n>0,j€Z".

23
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This implies that
r(pn); =0, j€2”

and
s(pu); =0, 5 € P".

24
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The Primal-Dual Path-Following Algorithm I /,Ao ~> O

In general, one can start from an (approximate) central path poin(;(,uo), (y(u2), S(uo);Jor
(x (1Y), y (1Y), s(1?)) where 11V is sufficiently large. -

Then, let ,ul be a slightly smaller parameter thanﬂo. Then, we compute an (approximate) central path
point x(11), (y (i), s(pt)), or (x(pt), y (i), s(ut)). They can be updated from the previous point

at 11” using the Newton method. X(}'\(‘\ )y(/u ), & (/u )
33w
(4 might be reduced at each stage by a specific factor, giving ,LL"“L =77 where{ 7 is at mos!@ — 7>
where k is the iteration count. {
This is called the primal, dual, or primal-dual path-following method. ) 1
‘.

25
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The Path-Following Newton Method I
Given a pa@eﬁm F ia a neighborhood to the central path, that is, for a constant 0 < 7 < 1

- > — ME
X Se — piells < . e
@L%N(\(-g-‘ebs

<+ LAS

=Y
Ad\*&\l\\‘/\o Sd, + Xd, = pte— XSe, whe-‘ri pt=(1- ﬁ)u, /@

we compute direction vectors d,;, d,, and d from the Newton equations:

+
Ad, = O,QB %gﬁ:ﬁf?—ax fo  ©
- (KAd), ¢ LS+as) =
:ATdy - ds — 0
Aoy =0
(Note thatd. dy = —d’ A"d, = 0 here.) Then we update
x"=x+d,, y =y+d,, st =s+d,.
’ d ’ el Q-J/\)‘}%
Then we can prove x* > 0,s™ > 0 and M= 3w

LN
| XTSTe — ,LLJFeHZS nut. DQ:> = Q"‘;g:,.\ N

26
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The Path-Following Newton Method in Large Neighborhoods

C. = 4] _O\ /A
Large neighborhoods were proposed L\ _9\> M
L U é | X Se — pe|loo < nu or j W=0.44
we compute direction vectors dx, d and d; from the system equations: I n
A 1
~ Ad, \' (4)

—Ald, —ds; = 0
S

X+:X—|—dx,y+:y—|—dy,s = s+ d;.

dx &S

But it is slower than the smaller neighborhood algorithm! O\)L}

27
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The Fast Corrector-Method in Large Neighborhoods I

DCM 0, XS

Repeatedly solve the following system from 7 = 1, ..., r

XkSke — > w' DD e

L>> Sdi + Xd, = _
o R = —— —
Adi = o, v ) M )
~ATdl —di = 0 MT =0
\
| ro (V-5 ) M
for some given weights w*. Then we let A 2V
xT =x+d, y" =y +d,, st =s+d]
and they remain in the large neighborhood with Y_,*
1 _ >/
+ _ (1 _ N=2 / 4
pt=(1 3, (r+1)/2r JH-
Implementations? '- o
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