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Methodological Philosophy

Recall that the primal Simplex Algorithm maintains the primal feasibility and complementarity while

working toward dual feasibility. (The Dual Simplex Algorithm maintains dual feasibility and

complementarity while working toward primal feasibility.)

In contrast, interior-point methods will move in the interior of the feasible region, hoping to by-pass many

corner points on the boundary of the region. The primal-dual interior-point method maintains both primal

and dual feasibility while working toward complementarity.

The key for the simplex method is to make computer see corner points; and the key for interior-point

methods is to stay in the interior of the feasible region.
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Interior-Point Algorithms for LP

intFp = {x : Ax = b, x > 0} ̸= ∅

intFd = {(y, s) : s = c−ATy > 0} ̸= ∅.

Let z∗ denote the optimal value and

F = Fp ×Fd.

We are interested in finding an ϵ-approximate solution for the LP problem:

cTx− bTy ≤ ϵ.

For simplicity, we assume that an interior-point pair (x0,y0, s0) is known, and we will use it as our initial

point pair.
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Barrier Functions for LP

Consider the barrier function optimization

(PB) minimize −
∑n

j=1 log xj

s.t. x ∈ intFp

and

(DB) maximize
∑n

j=1 log sj

s.t. (y, s) ∈ intFd

They are linearly constrained convex programs (LCCP).
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Analytic Center for the Primal Polytope

The maximizer x̄ of (PB) is called the analytic center of polytope Fp. From the optimality condition

theorem, we have

−(X̄)−1e−ATy = 0, Ax̄ = b, x̄ > 0.

or

X̄s = e

Ax̄ = b

−ATy − s = 0

x̄ > 0.

(1)
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Analytic Center for the Dual Polytope

The maximizer (ȳ, s̄) of (DB) is called the analytic center of polytope Fd, and we have

S̄x = e

Ax = 0

−AT ȳ − s̄ = −c

s̄ > 0.

(2)
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Figure 1: Analytic center maximizes the product of slacks.
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Why Analytic

The analytic center of polytope Fd is an analytic function of input data A, c.

Consider Ω = {y ∈ R : −y ≤ 0, y ≤ 1}, which is interval [0, 1]. The analytic center is ȳ = 1/2 with

x = (2, 2)T .

Consider

Ω′ = {y ∈ R :

n times︷ ︸︸ ︷
−y ≤ 0, · · · ,−y ≤ 0, y ≤ 1},

which is, again, interval [0, 1] but “−y ≤ 0” is copied n times. The analytic center for this system is

ȳ = n/(n+ 1) with x = ((n+ 1)/n, · · · , (n+ 1)/n, (n+ 1))T .
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Analytic Volume of Polytope and Cutting Plane

AV (Fd) :=
n∏

j=1

s̄j =
n∏

j=1

(cj − aTj ȳ)

can be viewed as the analytic volume of polytope Fd or simply F in the rest of discussions.

If one inequality in F , say the first one, needs to be translated, change aT1 y ≤ c1 to aT1 y ≤ aT1 ȳ; i.e.,

the first inequality is parallelly moved and it now cuts through ȳ and divides F into two bodies.

Analytically, c1 is replaced by aT1 ȳ and the rest of data are unchanged. Let

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = 2, ..., n and c+1 = aT1 ȳ.
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Figure 2: Translation of a hyperplane to the AC.
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Analytic Volume Reduction of the New Polytope

Let ȳ+ be the analytic center of F+. Then, the analytic volume of F+

AV (F+) =
n∏

j=1

(c+j − aTj ȳ
+) = (aT1 ȳ − aT1 ȳ

+)
n∏

j=2

(cj − aTj ȳ
+).

We have the following volume reduction theorem:

Theorem 1
AV (F+)

AV (F)
≤ exp(−1).
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Proof

Since ȳ is the analytic center of F , there exists x̄ > 0 such that

X̄ s̄ = X̄(c−AT ȳ) = e and Ax̄ = 0.

Thus,

s̄ = (c−AT ȳ) = X̄−1e and cT x̄ = (c−AT ȳ)T x̄ = eTe = n.

We have

eT X̄ s̄+ = eT X̄(c+ −AT ȳ+) = eT X̄c+

= cT x̄− x̄1(c1 − aT1 ȳ) = n− 1.
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AV (F+)

AV (F)
=

n∏
j=1

s̄+j
s̄j

=
n∏

j=1

x̄j s̄
+
j

≤

 1

n

n∑
j=1

x̄j s̄
+
j

n

=

(
1

n
eT X̄ s̄+

)n

=

(
n− 1

n

)n

≤ exp(−1).
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Analytic Volume of Polytope and Multiple Cutting Planes

Now suppose we translate k(< n) hyperplanes, say 1, 2, ..., k, moved to cut the analytic center ȳ of F ,

that is,

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = k + 1, ..., n and c+j = aTj ȳ for j = 1, ..., k.

Corollary 1
AV (F+)

AV (F)
≤ exp(−k).
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The Analytic Center Method Cutting-Plane Method

Problem: Find a solution in the feasible set F := {y : aTj y ≤ cj , j = 1, ..., n}.

Start with the initial polytope

F0 := {y : aTj y ≤ c0j := cj +R, j = 1, ..., n}

where R is sufficiently large such that ȳ0 = 0 is an (approximate) analytic center of F0.

Check if the (approximate) analytic center ȳk of Fk is in F or not. If not, define a new polytope Fk+1 by

translating one or multiple violated constraint hyperplanes through ȳk as defined earlier, and compute an

approximate analytic centerȳk+1 of Fk+1.

Continue this step till ȳk ∈ F .
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Trajectory of Analytic Centers: Central Path for LP

Now consider the problem

maximize bTy

s.t. ATy ≤ c.

Assume that the feasible region is bounded, and the analytic center of the region is y0.

Start with a polytope

F(R) := {y : ATy ≤ c,

k times︷ ︸︸ ︷
bTy ≥ R, · · · ,bTy ≥ R}

where R is so low such that y0 is also an (approximate) analytic center of F(R).

Define a family of polytopes F(R) by continuously increasing R toward the maximal value and consider

its analytic center y(R): it forms a path of analytic centers from y0 toward the optimal solution set.
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Better Parameterization: LP with Barrier Function

An equivalent algebraic representation of the path is to consider the LP problem with the weighted barrier

function

(LDB) maximize bTy + µ
∑n

j=1 log sj

s.t. (y, s) ∈ intFd,

and also

(LPB) minimize cTx− µ
∑n

j=1 log xj

s.t. x ∈ intFp

where µ is called the barrier (weight) parameter.

They are again linearly constrained convex programs (LCCP).
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Common Optimality Conditions for both LPB and LDB

They share the same first-order KKT conditions:

Xs = µe

Ax = b

−ATy − s = −c;

where we have

µ =
xT s

n
=

cTx− bTy

n
,

so that it’s the average of complementarity or duality gap.

Denote by (x(µ),y(µ), s(µ)) the (unique) solution satisfying the conditions. As µ decreases to zero,

x(µ) form a path in the primal feasible region and y(µ) form a path in the dual feasible region to-warding

optimality respectively.
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Figure 3: The central path of y(µ) in a dual feasible region.
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Central Path for Linear Programming

The path

C = {(x(µ),y(µ), s(µ)) ∈ intF : Xs = µe, 0 < µ < ∞} ;

is called the (primal and dual) central path of linear programming.

Theorem 2 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c). Then for

any 0 < µ < ∞, the central path point pair (x(µ),y(µ), s(µ)) exists and is unique.
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Central Path Properties

Theorem 3 Let (x(µ),y(µ), s(µ)) be on the central path of an linear program in standard form.

i) The central path point (x(µ), s(µ)) is bounded for 0 < µ ≤ µ0 and any given 0 < µ0 < ∞.

ii) For 0 < µ′ < µ,

cTx(µ′) < cTx(µ) and bTy(µ′) > bTy(µ)

if both primal and dual have nontrivial optimal solutions.

iii) (x(µ), s(µ)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point

x(0)P∗ > 0 and the limit point s(0)Z∗ > 0, where (P ∗, Z∗) is the strictly complementarity

partition of the index set {1, 2, ..., n}.
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Proof of (i)

(x(µ0)− x(µ))T (s(µ0)− s(µ)) = 0,

since (x(µ0)− x(µ)) ∈ N (A) and (s(µ0)− s(µ)) ∈ R(AT ). This can be rewritten as

n∑
j

(
s(µ0)jx(µ)j + x(µ0)js(µ)j

)
= n(µ0 + µ) ≤ 2nµ0,

or
n∑
j

(
x(µ)j
x(µ0)j

+
s(µ)j
s(µ0)j

)
≤ 2n.

Thus, x(µ) and s(µ) are bounded, which proves (i).
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Proof of (iii)

Since x(µ) and s(µ) are both bounded, they have at least one limit point which we denote by x(0) and

s(0). Let x∗
P∗ (x∗

Z∗ = 0) and s∗Z∗ (s∗P∗ = 0), respectively, be any strictly complementary solution pair

on the primal and dual optimal faces: {xP∗ : AP∗xP∗ = b, xP∗ ≥ 0} and

{sZ∗ : sZ∗ = cZ∗ −AT
Z∗y ≥ 0, cP∗ −AT

P∗y = 0}. Again, we have

n∑
j

(
s∗jx(µ)j + x∗

js(µ)j
)
= nµ,

or ∑
j∈P∗

(
x∗
j

x(µ)j

)
+

∑
j∈Z∗

(
s∗j

s(µ)j

)
= n.

Thus, we have

x(µ)j ≥ x∗
j/n > 0, j ∈ P ∗

and

s(µ)j ≥ s∗j/n > 0, j ∈ Z∗.
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This implies that

x(µ)j → 0, j ∈ Z∗

and

s(µ)j → 0, j ∈ P ∗.
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The Primal-Dual Path-Following Algorithm

In general, one can start from an (approximate) central path point x(µ0), (y(µ0), s(µ0)), or

(x(µ0),y(µ0), s(µ0)) where µ0 is sufficiently large.

Then, let µ1 be a slightly smaller parameter than µ0. Then, we compute an (approximate) central path

point x(µ1), (y(µ1), s(µ1)), or (x(µ1),y(µ1), s(µ1)). They can be updated from the previous point

at µ0 using the Newton method.

µ might be reduced at each stage by a specific factor, giving µk+1 = γµk where γ is at most 1− 1
3
√
n

,

where k is the iteration count.

This is called the primal, dual, or primal-dual path-following method.

25



Yinyu Ye, MS&E, Stanford Simons Institute Lecture Note #1

The Path-Following Newton Method

Given a pair (x,y, s) ∈ intF in a neighborhood to the central path, that is, for a constant 0 < η < 1

∥XSe− µe∥2 ≤ ηµ,

we compute direction vectors dx, dy and ds from the Newton equations:

Sdx +Xds = µ+e−XSe, where µ+ = (1− 1
3
√
n
)µ,

Adx = 0,

−ATdy − ds = 0.

(3)

(Note that dT
xds = −dT

xA
Tdy = 0 here.) Then we update

x+ = x+ dx, y
+ = y + dy, s

+ = s+ ds.

Then we can prove x+ > 0, s+ > 0 and

∥X+S+e− µ+e∥ ≤ ηµ+.
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The Path-Following Newton Method in Large Neighborhoods

Large neighborhoods were proposed

∥XSe− µe∥∞ ≤ ηµ or ∥(XSe− µe)−∥∞ ≤ ηµ.

we compute direction vectors dx, dy and ds from the system equations:

Sdx +Xds = µ+e−XSe, where µ+ = (1− 1
3n )µ

Adx = 0,

−ATdy − ds = 0,

(4)

and let

x+ = x+ dx, y
+ = y + dy, s

+ = s+ ds.

But it is slower than the smaller neighborhood algorithm!
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The Fast Corrector-Method in Large Neighborhoods

Repeatedly solve the following system from i = 1, ..., r:

Sdi
x +Xdi

s = µ+e−XkSke−
∑r

i=1 w
iDi−1

x Di−1
s e

Adi
x = 0,

−ATdi
y − di

s = 0,

(5)

for some given weights wi. Then we let

x+ = x+ dr
x, y

+ = y + dr
y, s

+ = s+ dr
s

and they remain in the large neighborhood with

µ+ = (1− 1

3n(r+1)/2r
)µ.

Implementations?
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