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Primal-Dual Potential Function for LP '

—

Typically, a single merit-function driven algorithm is preferred since it can adaptively take large step sizes

as long as the merit value is sufficiently reduced, comparing to check and balance of
he path-following type of algorithms.

where p > (0 and it is fixed.

="

then, for p > 0, 1,4 ,(x,s) — —oc implies that x” s — 0. More precisely, we have

<¢n+p(x, S) — nlogn)
p .

xl's < exp



Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #14

Primal-Dual Potential Reduction Algorithm for LP

Once have a pair (Xk, y*, Sk) € int ./, we compute direction vectors d,;, d,, and d; from the system

equations:

I

Note that ! d, = —dl AT d,;= —Then choose a step-size scalar (> () and assign
k e k ko p k -
x"t' =x"4+0d, >0, y" =y" +0d,, s""' =s" +0d, > 0.

This is the Newton method for the optimality conditions/equations of the potential minimization problem:

XSe = &'
n—+p ’
Ax = b, (2)
~Aly —-s = —c.
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To simplify rotations, let

dy +dy = 1= (XS) "5 (X5e— XSe),
A'd,, = O,
—(A)'d, —dy = 0.

where
D=X"89%"A"=AD, d,, = D"'d,, dy = Dd.,.

Again, we maintain df,ds/ = 0.

r’||? may be too big to make x + d,, or s + d positive. So that

Unlike in the path-following algorithm,

we need to add a step size 6 to scale r’ such that it makes new iterate feasible.
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Lemma 1 Let the direction vectord = (d, d, . ds) be generated by equation (2), and let

’ _@/min(XSe) %33

il e

where v is a positive constant less than 1. Let

xT =x+6d,, y+:y—|—9dy, and sT =s+ 0d,.

e ,————h—/

Then, we have (x*,y ", s") € int F and

¢n+p(x+> S+) - wn—i—p (Xa S)

< —ay/min(X5e)[|(XS) (e — (n;T‘SP) Xs)|| + 2(1cv_ 5

—
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Logarithmic Approximation Lemma I
2 > N
oo A

We first present a technical lemma: >y \Bj(—\"' ‘L.‘} = A = NG
. LRV S I NU o

Jl 'I.—
A — 1o _u& \wﬁ‘
> R

Lemma 2 Iifd € R" suchthat||d||,, < 1 then

L =d— L‘“ Qe+ 14}‘1-)

= _ [“\)1, L
4z 3 [—
L
The proof is based on the Taylor expansion of In(1 + d;) for —1 < d; < 1. '?Q—C “(A{_ij‘
S C = Uiee] )
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|

Figure 1: Logarithmic approximation by linear and quadratic functions
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Proof Sketch of the Theorem '

ltis clear that Axt = band ATyt +s™ = ¢. We now show that xT > 0 and s™ > 0. This is similar
y

to the previous proof for the path-following algorithm

|12 2 A3 XSe) HI./HQ
oX1d, |12 + 05~ 1d, |2 < 62 I’} _ @ min — a2 <.
| 17+ I = 0 i ge) P2 min(xSe)
Therefore,
xt =x+0d, = X(e—60X"'d,) >0
and

st =s+60d, =S5(e—05"'d,) > 0.
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IA A

IA

Sketch of the proof continued I

Pp(xT,sT) —P(x;s)

(n+ p)log (14 2dxpldes) — 570 (k’g( )+ los(1 +72))
(n+ p) (eds Eﬁd””s) — 2= <1Og( Hlog( )

(n+ o) (deiiedgs) 0TS d, + X 1d;,;) 1 L1057 d. |2|(1+||<5)X A0 D
nE2g(Alx + dTs) — 0e” (S d, + X 'dy) + orias

042

0 (%r2e” (Xd, + 5d,) — e’ (S7'ds + X 'da)) + 5
0 (2i2eT (Xd, + Sd,) — e (XS)"1(Xd, + 5d,)) +
e(gipxse—e) (X8)™H (Xds + Sdy) + 5= a)

0 (X Se —e)" (XSt (X2e— XSe) +

2(1 ) 2
0T 4 2 = o /m(XSe) - L | +

2(1(1—04)
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Let v. = X Se. Then, we can prove the following technical lemma:

Lemma 3 Letv € R" be a positive vector and p > +/n. Then,

— n © .a.(n-(s—\‘
T V)|V e - S L s rEe e

Combining these two lemmas we have

¢n+p(x+v S+) — Yntp (x,s) |

_ A=
2
@
< — 3/4 — —0
A e Tr
f tant & T -
or a constan .
_ 3z + = |=b'j§4 LQD)
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Description of Algorithm I

Given (x",y",s") € int F. Se@z Vnand k := 0.
While (x*)T's* > e do

1. Set (x,s) = (x",s")and v = n/(n + p) and compute (d,., d,, d;) from (2).

2. Letx" ™! =xF +ad,, y" =y" +ad,, and s" Tt = s* + ad, where

a = arg m>ir(}¢n+p(xk + ad,,s® + ady).

3. Let k := k + 1 and return to Step 1.

11
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Theorem 1 Letp > \/n and 1,1 ,(x",s") < plog((x”)"'s”) + nlogn. Then, the Algorithm
terminates in at most O (plog((x")?'s" /€)) iterations with

(Xk)TSk _ CTXk o bTyk <e.

el 5)—nlog
P
'(pn—l—p(xoaso)_n logn—p log((XO>TSO/€) )

D
plog(x°,s”)—plog((x°)"'s%/e) )

The adaptively search of best p?

L_P - T xact
[5FS

12
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Termination with Exact Optimizers I

e The first is a “cross-over” procedure to find a basic feasible solution (BFS, corner point) whose

e ——

objective value is at least as good as the current interior point. Le<r A, b, c b integers and@e their
bit length, and let a second best BFS solution be %" and the optimal objective value be z*. Then

cTy2nd _ xS 2—L.% — RES

TR

Thus, one can terminate interior-point algorlthm when
2 y=1L @ bTy* @

e The second approach is to compute a strictly complementary solution pair. The method uses the

primal-dual interior-point pair to identify the strict complementarity partition (P*, Z*) and then “purify
or project” the primal interior solution onto the primal optimal face and the dual interior solution onto

the dual optimal face, based on the following theorem:

Theorem 2 Given an interior solution x* and s” in the solution sequence generated by an

13
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T, A skwdlev

interior-point algorithm, define

PR ={j: :Uf > s?, Vil and Z% ={1,..,n}\ P*.

Then, we have PF = P* When@
—~——

Txb —pTy* <ol

N
Thus, the worst-case iteration bound for interior-point algorithms is O (+/n.L) if the initial point pair
(xV)1'sV < 2%,

14
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A b, C

f~0. o0z, >0}

Initialization ' B
§ (:ﬂo: A\V{O—f§:ﬁl§)>a}

e Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to
find a feasible point of the problem. Theoretically, this approach can retain the currently best

complexity result.

e The big M/ method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty
parameter V] to force solutions to become feasible during the algorithm.

e Phase |-then-Phase Il method, i.e., first try to find a feasible point (and possibly one for the dual
problem), and then start to look for an optimal solution if the problem is feasible and bounded.

e Combined Phase |-Phase Il method, i.e., approach feasibility and optimality simultaneously. To our
knowledge, the “best” complexity of this approach € O (n log(R/¢)).

Tt N

15
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' >0 AXE b

o >0 Homogeneous and Self-Dual Algorithm I

e |t solves the linear programming problem without any regularity assumption concerning the existence

——

of oEti/maI, feasible, or interior feasible solutions, while it retains the currently best complexity result
e |t can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big V] penalty parameter or lower bound.

e Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms. @ LA PV N

e |f the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and

optimality simultaneously; if the problem is infeasi r unbounded, the algorithm will produce an

infeasibility’ certificate for at least one of the primal and dual problems. P

16
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Primal-Dual Alternative Systems I

A pair of LP has two alternatives ?
(Solvable) Ax — b = (Infeasible) Ax =0
_ATy + C Z 07 —ATY Z 07
0
bly —c'x =0, by —c'x >0,
y free, x >0 y free, x >0

17
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An Integrated Homogeneous System I

The two alternative systems can be homogenized as one:

—Z =0
(HP) Ax —br =0
—Aly+ecr =s>0,
bly —clx =k>0,
y free, (X; 7‘)/_3(_)__ .7 =D

where the two alternatives are

(Solvable) : (7 > 0,k =0) or (Infeasible): (7 =0,k > 0)

/

X=0_ k=4

18
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The Homogeneous System is Self-Dual I

(HP) Ax —br =0, (y) (HD) Ax" — bt =0,
~Aly +er =s>0, (¥) Aly' —er’ <0,
bly —cfx =x>0,(7) ~bly +ctx’ <0,

y free, (x;7) >0 y’ free, (x';7') >0

Theorem 3 System (HP) is feasible (e.g. all zeros) and any feasible solution (y,x, T,s, k) is

self-complementary: Ao ST X
oy =0 )
— ' s,  bax = o (s
Furthermore, it has a strictly self-complem feasible solution X =0
~ X+ S U G O S
— > 0, _ =
M= — M - <— or, Mo ==
-~ > D
M+ =0 =7

19
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Let’s Find Such a Feasible Solution '

Givenx' =e > 0,5 = e > 0,and y' = 0, we formulate
(HSDP) min 0
s.t. Ax —br +bb =0,
—Aly +cr —cf >0,
bly —c'x +z60 >0,
yfree, x>0, 72>0, 6 free,
where

b=b—Ae, ¢=c—e, z=cle+1.

But it may just give us the all-zero solution.

20
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A HSD linear program I

Let’s try to add one more constraint to prevent the all-zero solution

(HSDP) min (n+1)0
s.t. Ax  —br +bf =0,
—Aly +cT —cf >0,
by —c'x +z60 >0,
~bly +efx  —z7 = —(n+1),
yfree, x>0, 72>0, 0 free.

Note that the constraints of (HSDP) form a skew-symmetric system and the objective coeffcient vector is
the negative of the right-hand-side vector, so that it remains a self-dual linear program.

(y =0, x=e, 7 =1, 0 =1)is astrictly feasible point for (HSDP).

21
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(HSDP) min (n+1)0
s.t. Ax —br +bf =0,
— ATy +cT —cl =s2>0,
bly —c'x +z0 =k >0,
~bly +efx  —z7 =—(n+1),
yfree, x>0, 72>0, 0 free.

Denote by 7, the set of all points (y, x, 7, 0, s, k) that are feasible for (HSDP). Denote by 7} the set of
interior feasible points with (x, 7,s, k) > 0 in J},. By combining the constraints, we can derive the last

(equality) constraint as
elrt+els+7+r—(n+1)0=(n+1),

which serves indeed as a normalizing constraint for (HSDP) to prevent the all-zero solution.

22
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Theorem 4 Consider problems (HSDP) and (HSDD).

i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP) with (y,x, T, ¢) being replaced
by (y',x",7".0").
i) (HSDP) has a strictly feasible point

y=0 z=e>0, 7=1, =1 s=e>0, k=1

iii) (HSDP) has an optimal solution and its optimal solution set is bounded.

iv) The optimal value of (HSDP) is zero, and

(y,x,7,0,8,k) € Fp, impliesthat (n+ 1) = x''s + 7K.

v) There is an optimal solution (y*,x*, 7*,0" = 0,8™, k™) € F}, such that
Yy

x* + s*
>0,

23
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which we call a strictly self-complementary solution. (Similarly, we sometimes call an optimal solution

to (HSDP) a self-complementary solution; the strict inequalities above need not hold.)

A - J)L X
¢r /—k*;\D/%?O AA=0
g x<0
AV o \D\V& C'
R
{ o 20

24
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Theorem 5 Let (y*,x*, 7", 0" = 0,8", k*) be a strictly self complementary solution for (HSDP).

i) (LP) has a solution (feasible and bounded) if and only if 7* > 0. In this case, x* /T is an optimal
solution for (LP) and (y* /7, s* /7") is an optimal solution for (LD).

ii) (LP) has no solution if and only if x* > (. In this case, x* /k* ors* /k* or both are certificates for
proving infeasibility: if ¢’ x* < 0 then (LD) is infeasible; if —b’ y* < 0 then (LP) is infeasible; and if
both ¢! x* < 0 and —b’ y* < 0 then both (LP) and (LD) are infeasible.

25
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Theorem 6 i) Forany 1 > 0, there is a unique (y,x, T,0,s, k) in ]—",?, such that

XS
= Le.
TK

i) Let(d,,d,.d,,dg,ds,d,.) beinthe null space of the constraint matrix of (HSDP) after adding

surplus variables s and k, i.e.,

= ]
Ad, —bd. +bd, = 0,
~AT4q, ted, —cdg | —d, - 0, "
b’d, —c’d, +Zdy —d, = 0,
_—-b"d, +c'd, -—zd, = 0

26
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Endogenous Potential Function and Central Path I

Unip(x,8,7,5) = (n+ 1+ p)log(x"s +7k) — > log(x;s;) —log(k),
j=1

and

Xs r
C = (y,X,T,Q,S,KL)EF}?Z _ = SR
TK n+1

Obviously, the initial interior feasible point proposed in Theorem 4 is on the path with ;1 = 1 or
(x) s + 7960 =n + 1.

27
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Solving (HSDP) I

Consider solving the following system of linear equations for (d,,, d.., d,, dg, ds, d,;) that satisfies (4)
and

Xd, + 5d, Xs
k k —THeT
7%d,. + K" d, TK

Theorem 7 The O(+/nlog((x")?s" /¢)) interior-point algorithm, coupled with a termination technique
described above, generates a strictly self-complementary solution for (HSDP) in

O(y/n(log(c(A, b, c)) + logn)) iterations and O (n?(log(c(A, b, c)) + logn)) operations, where
c(A, b, c) is a positive number depending on the data (A, b, c). If (LP) and (LD) have integer data with
bit length L, then by the construction, the data of (HSDP) remains integral and its length is O(L).
Moreover, c(A, b, c) < 2L, Thus, the algorithm terminates in O (/1 L) iterations and O (n>L)
operations.

28
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Example I

Consider the example where

A:<—1 0 0), b=1.  and c:(O 1 —1).

Then,
y*:27 X*:(07271)T7 7‘*:0, 9*207 5*2(2707O)T7 K-=1

could be a strictly self-complementary solution generated for (HSDP) with
T % *
cx =1>0, by =2>0.

Thus (y*, s™) demonstrates the infeasibility of (LP), but x* doesn’t show the infeasibility of (LD). Of
course, if the algorithm generates instead x* = (0, 1, 2)T, then we get demonstrated infeasibility of both.

29
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N wfpla&
Software Implementation I 3P
=)
i .SEDUMETCJCP ://sedumil.mcmaster.ca/ ©op-2n ( —Tos S—(—u’w‘h

MOSEK: http://www.mosek.com/products_mosek.html

IPOPT: https://projects.coin-or.org/ Ip@
e ——

hsdLPsolver: Sparse Linear Programming Solver (Matlabe .m file).
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