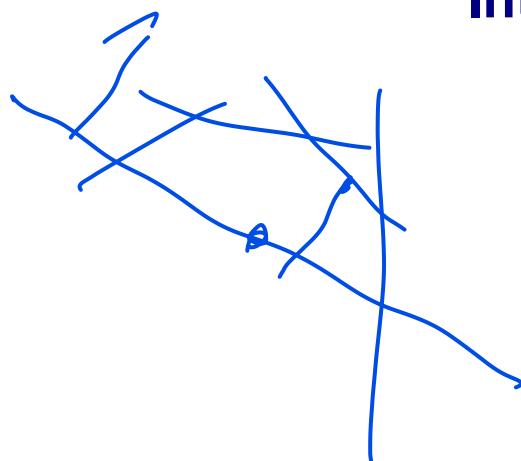


$$\hat{x} = x + \alpha \hat{d} x$$

Interior Point Algorithms II: Potential Reduction



Yinyu Ye

Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

<http://www.stanford.edu/~yyye> (LY, Chapter 5.6-5.7)

Next week: Chapters 5.7, 14.5-14.6

Primal-Dual Potential Function for LP

Typically, a **single merit-function driven** algorithm is preferred since it can adaptively take large step sizes as long as the merit value is sufficiently reduced, comparing to **check and balance** of hyper-parameters/measures of the path-following type of algorithms.

For $\mathbf{x} \in \text{int } \mathcal{F}_p$ and $(\mathbf{y}, \mathbf{s}) \in \text{int } \mathcal{F}_d$, the joint primal-dual potential function is defined by

$$\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) := (n + \rho) \log(\mathbf{x}^T \mathbf{s}) - \sum_{j=1}^n \log(x_j s_j),$$

where $\rho \geq 0$ and it is fixed.

$$\rho \stackrel{0}{\leftarrow} \sqrt{n}$$

$$-\rho \leftarrow \psi_{n+\rho}(\mathbf{x}, \mathbf{s}) = \rho \log(\mathbf{x}^T \mathbf{s}) + \psi_n(\mathbf{x}, \mathbf{s}) \geq \rho \log(\mathbf{x}^T \mathbf{s}) + n \log n,$$

then, for $\rho > 0$, $\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \rightarrow -\infty$ implies that $\mathbf{x}^T \mathbf{s} \rightarrow 0$. More precisely, we have

$$\mathbf{x}^T \mathbf{s} \leq \exp\left(\frac{\psi_{n+\rho}(\mathbf{x}, \mathbf{s}) - n \log n}{\rho}\right).$$

Primal-Dual Potential Reduction Algorithm for LP

Once have a pair $(\mathbf{x}^k, \mathbf{y}^k, \mathbf{s}^k) \in \text{int } \mathcal{F}$, we compute **direction vectors** $\mathbf{d}_x, \mathbf{d}_y$ and \mathbf{d}_s from the system equations:

$$\begin{aligned} \sqrt{n} \quad S^k \mathbf{d}_x + X^k \mathbf{d}_s &= \frac{(\mathbf{x}^k)^T \mathbf{s}^k}{n+\rho} \mathbf{e} - X^k S^k \mathbf{e}, \\ A \mathbf{d}_x &= 0, \\ -A^T \mathbf{d}_y - \mathbf{d}_s &= 0. \end{aligned} \quad (1)$$

cowector

Note that $\mathbf{d}_x^T \mathbf{d}_s = -\mathbf{d}_x^T A^T \mathbf{d}_y = 0$ here. Then choose a step-size scalar $\theta (> 0)$ and assign

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \theta \mathbf{d}_x > \mathbf{0}, \quad \mathbf{y}^{k+1} = \mathbf{y}^k + \theta \mathbf{d}_y, \quad \mathbf{s}^{k+1} = \mathbf{s}^k + \theta \mathbf{d}_s > \mathbf{0}.$$

This is the Newton method for the optimality conditions/equations of the potential minimization problem:

$$\begin{aligned} X S \mathbf{e} &= \frac{(\mathbf{x}^k)^T \mathbf{s}^k}{n+\rho} \mathbf{e}, \\ A \mathbf{x} &= \mathbf{b}, \\ -A^T \mathbf{y} - \mathbf{s} &= -\mathbf{c}. \end{aligned} \quad (2)$$

To simplify rotations, let

$$\begin{aligned}\mathbf{d}_{x'} + \mathbf{d}_{s'} &= \mathbf{r}' := (XS)^{-0.5} \left(\frac{\mathbf{x}^T \mathbf{s}}{n+\rho} \mathbf{e} - XSe \right), \\ A' \mathbf{d}_{x'} &= \mathbf{0}, \\ -(A')^T \mathbf{d}_y - \mathbf{d}_{s'} &= \mathbf{0}.\end{aligned}$$

where

$$D = X^{0.5} S^{-0.5}, \quad A' = AD, \quad \mathbf{d}_{x'} = D^{-1} \mathbf{d}_x, \quad \mathbf{d}_{s'} = D \mathbf{d}_s.$$

Again, we maintain $\mathbf{d}_{x'}^T \mathbf{d}_{s'} = 0$.

Unlike in the path-following algorithm, $\|\mathbf{r}'\|^2$ may be too big to make $\mathbf{x} + \mathbf{d}_x$ or $\mathbf{s} + \mathbf{d}_s$ positive. So that we need to add a step size θ to scale \mathbf{r}' such that it makes new iterate feasible.

Lemma 1 Let the direction vector $\mathbf{d} = (\mathbf{d}_x, \mathbf{d}_y, \mathbf{d}_s)$ be generated by equation (2), and let

$$\theta = \frac{\alpha \sqrt{\min(XS\mathbf{e})}}{\|\mathbf{r}'\|}, \quad x; s; \quad 0 < \alpha < 1 \quad (3)$$

where α is a positive constant less than 1. Let

$$\mathbf{x}^+ = \mathbf{x} + \theta \mathbf{d}_x, \quad \mathbf{y}^+ = \mathbf{y} + \theta \mathbf{d}_y, \quad \text{and} \quad \mathbf{s}^+ = \mathbf{s} + \theta \mathbf{d}_s.$$

Then, we have $(\mathbf{x}^+, \mathbf{y}^+, \mathbf{s}^+) \in \text{int } \mathcal{F}$ and

$$\begin{aligned} & \psi_{n+\rho}(\mathbf{x}^+, \mathbf{s}^+) - \psi_{n+\rho}(\mathbf{x}, \mathbf{s}) \\ & \leq -\alpha \sqrt{\min(XS\mathbf{e})} \left\| (XS)^{-1/2} \left(\mathbf{e} - \frac{(n+\rho)}{\mathbf{x}^T \mathbf{s}} X \mathbf{s} \right) \right\| + \frac{\alpha^2}{2(1-\alpha)}. \end{aligned}$$

Logarithmic Approximation Lemma

We first present a **technical lemma**:

Lemma 2 If $\mathbf{d} \in \mathbb{R}^n$ such that $\|\mathbf{d}\|_\infty < 1$ then

$$\begin{aligned}
 \mathbf{e}^T \mathbf{d} &\geq \sum_{i=1}^n \log(1 + d_i) \geq \mathbf{e}^T \mathbf{d} - \frac{\|\mathbf{d}\|^2}{2(1 - \|\mathbf{d}\|_\infty)} \cdot \sum_{i=1}^n d_i \\
 &\geq \sum_{i=1}^n d_i - \frac{\|\mathbf{d}\|^2}{2} \cdot \frac{1}{1 - \|\mathbf{d}\|_\infty}
 \end{aligned}$$

The proof is based on the Taylor expansion of $\ln(1 + d_i)$ for $-1 < d_i < 1$.

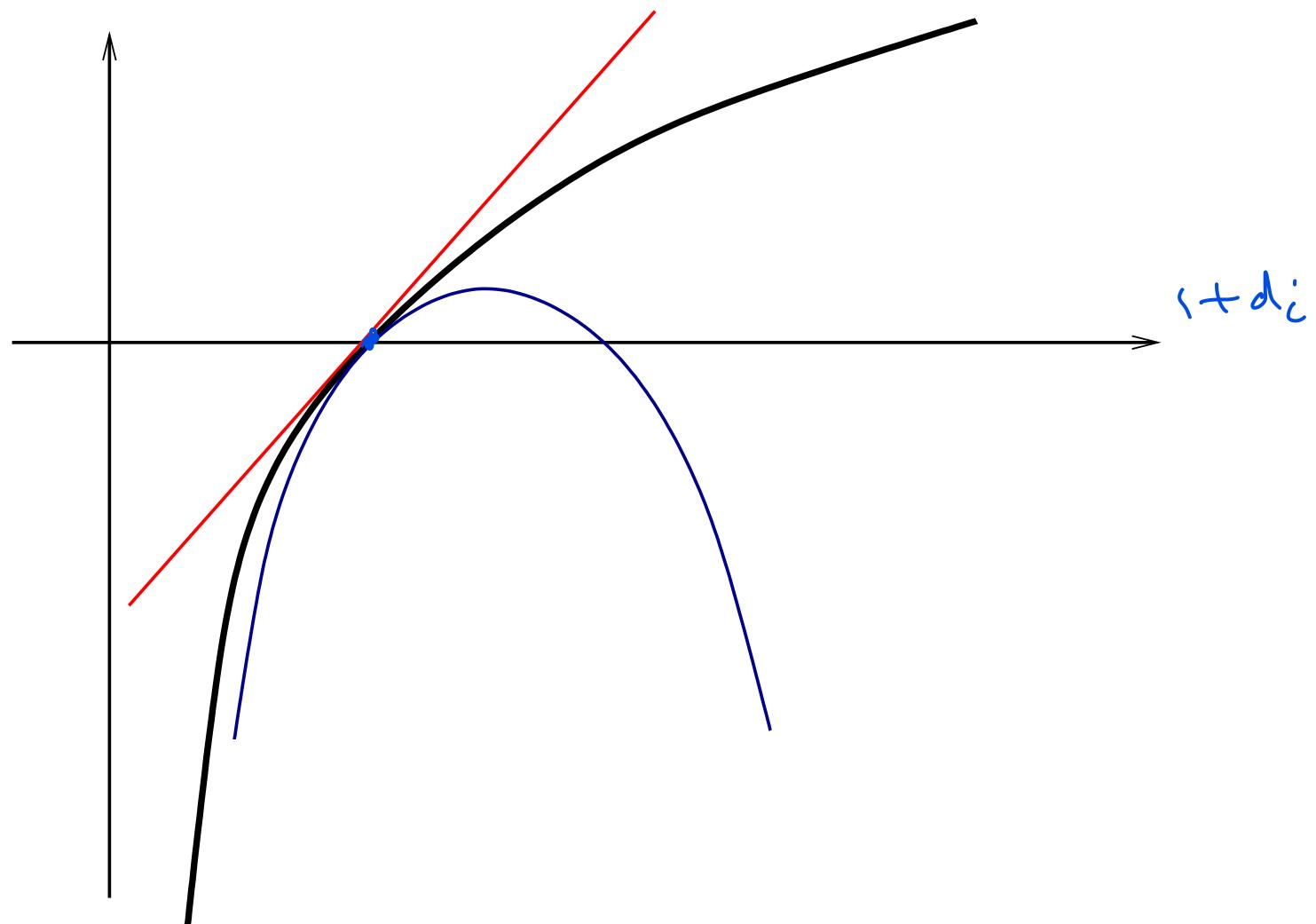


Figure 1: Logarithmic approximation by linear and quadratic functions

Proof Sketch of the Theorem

It is clear that $A\mathbf{x}^+ = \mathbf{b}$ and $A^T\mathbf{y}^+ + \mathbf{s}^+ = \mathbf{c}$. We now show that $\mathbf{x}^+ > \mathbf{0}$ and $\mathbf{s}^+ > \mathbf{0}$. This is similar to the previous proof for the path-following algorithm

$$\|\theta X^{-1}\mathbf{d}_x\|^2 + \|\theta S^{-1}\mathbf{d}_s\|^2 \leq \theta^2 \frac{\|\mathbf{r}'\|^2}{\min(XS\mathbf{e})} = \frac{\alpha^2 \min(XS\mathbf{e})}{\|\mathbf{r}'\|^2} \frac{\|\mathbf{r}'\|^2}{\min(XS\mathbf{e})} = \alpha^2 < 1.$$

Therefore,

$$\mathbf{x}^+ = \mathbf{x} + \theta\mathbf{d}_x = X(\mathbf{e} - \theta X^{-1}\mathbf{d}_x) > \mathbf{0}$$

and

$$\mathbf{s}^+ = \mathbf{s} + \theta\mathbf{d}_s = S(\mathbf{e} - \theta S^{-1}\mathbf{d}_s) > \mathbf{0}.$$

Sketch of the proof continued

$$\begin{aligned}
& \psi(\mathbf{x}^+, \mathbf{s}^+) - \psi(\mathbf{x}, \mathbf{s}) \\
&= (n + \rho) \log \left(1 + \frac{\theta \mathbf{d}_s^T \mathbf{x} + \theta \mathbf{d}_x^T \mathbf{s}}{\mathbf{x}^T \mathbf{s}} \right) - \sum_{j=1}^n \left(\log \left(1 + \frac{\theta d_{s_j}}{s_j} \right) + \log \left(1 + \frac{\theta d_{x_j}}{x_j} \right) \right) \\
&\leq (n + \rho) \left(\frac{\theta \mathbf{d}_s^T \mathbf{x} + \theta \mathbf{d}_x^T \mathbf{s}}{\mathbf{x}^T \mathbf{s}} \right) - \underbrace{\sum_{j=1}^n \left(\log \left(1 + \frac{\theta d_{s_j}}{s_j} \right) + \log \left(1 + \frac{\theta d_{x_j}}{x_j} \right) \right)}_{\theta \mathbf{e}^T (S^{-1} \mathbf{d}_s + X^{-1} \mathbf{d}_x) + \frac{\|\theta S^{-1} \mathbf{d}_s\|^2 + \|\theta X^{-1} \mathbf{d}_x\|^2}{2(1-\alpha)}} \\
&\leq (n + \rho) \left(\frac{\theta \mathbf{d}_s^T \mathbf{x} + \theta \mathbf{d}_x^T \mathbf{s}}{\mathbf{x}^T \mathbf{s}} \right) - \theta \mathbf{e}^T (S^{-1} \mathbf{d}_s + X^{-1} \mathbf{d}_x) + \frac{\|\theta S^{-1} \mathbf{d}_s\|^2 + \|\theta X^{-1} \mathbf{d}_x\|^2}{2(1-\alpha)} \\
&\leq \frac{n+\rho}{\mathbf{x}^T \mathbf{s}} \theta (\mathbf{d}_s^T \mathbf{x} + \mathbf{d}_x^T \mathbf{s}) - \theta \mathbf{e}^T (S^{-1} \mathbf{d}_s + X^{-1} \mathbf{d}_x) + \frac{\alpha^2}{2(1-\alpha)} \\
&= \theta \left(\frac{n+\rho}{\mathbf{x}^T \mathbf{s}} \mathbf{e}^T (X \mathbf{d}_s + S \mathbf{d}_x) - \mathbf{e}^T (S^{-1} \mathbf{d}_s + X^{-1} \mathbf{d}_x) \right) + \frac{\alpha^2}{2(1-\alpha)} \\
&= \theta \left(\frac{n+\rho}{\mathbf{x}^T \mathbf{s}} \mathbf{e}^T (X \mathbf{d}_s + S \mathbf{d}_x) - \mathbf{e}^T (X S)^{-1} (X \mathbf{d}_s + S \mathbf{d}_x) \right) + \frac{\alpha^2}{2(1-\alpha)} \\
&= \theta \left(\frac{n+\rho}{\mathbf{x}^T \mathbf{s}} X S \mathbf{e} - \mathbf{e} \right)^T (X S)^{-1} (X \mathbf{d}_s + S \mathbf{d}_x) + \frac{\alpha^2}{2(1-\alpha)} \\
&= \theta \left(\frac{n+\rho}{\mathbf{x}^T \mathbf{s}} X S \mathbf{e} - \mathbf{e} \right)^T (X S)^{-1} \left(\frac{\mathbf{x}^T \mathbf{s}}{n+\rho} \mathbf{e} - X S \mathbf{e} \right) + \frac{\alpha^2}{2(1-\alpha)} \\
&= -\theta \cdot \frac{n+\rho}{\mathbf{x}^T \mathbf{s}} \cdot \|\mathbf{r}'\|^2 + \frac{\alpha^2}{2(1-\alpha)} = -\alpha \sqrt{\min(X S \mathbf{e})} \cdot \frac{n+\rho}{\mathbf{x}^T \mathbf{s}} \cdot \|\mathbf{r}'\| + \frac{\alpha^2}{2(1-\alpha)}.
\end{aligned}$$

Let $\mathbf{v} = XSe$. Then, we can prove the following **technical lemma**:

Lemma 3 Let $\mathbf{v} \in \mathbb{R}^n$ be a positive vector and $\rho \geq \sqrt{n}$. Then,

$$\sqrt{\min(\mathbf{v})} \left\| V^{-1/2} \left(\mathbf{e} - \frac{(n + \rho)}{\mathbf{e}^T \mathbf{v}} \mathbf{v} \right) \right\| \geq \sqrt{3/4}.$$

Potential

Combining these two lemmas we have

$$\underbrace{\psi_{n+\rho}(\mathbf{x}^+, \mathbf{s}^+) - \psi_{n+\rho}(\mathbf{x}, \mathbf{s})}_{\alpha = \frac{1}{2}}$$

$$\leq -\alpha \sqrt{3/4} + \frac{\alpha^2}{2(1 - \alpha)} = -\delta$$

$$-\frac{\sqrt{3}}{4} + \frac{1}{4} = \frac{1 - \sqrt{3}}{4} (< 0)$$

for a constant δ .

Description of Algorithm

Given $(\mathbf{x}^0, \mathbf{y}^0, \mathbf{s}^0) \in \text{int } \mathcal{F}$. Set $\rho \geq \sqrt{n}$ and $k := 0$.

While $(\mathbf{x}^k)^T \mathbf{s}^k \geq \epsilon$ **do**

1. Set $(\mathbf{x}, \mathbf{s}) = (\mathbf{x}^k, \mathbf{s}^k)$ and $\gamma = n/(n + \rho)$ and compute $(\mathbf{d}_x, \mathbf{d}_y, \mathbf{d}_s)$ from (2).
2. Let $\mathbf{x}^{k+1} = \mathbf{x}^k + \bar{\alpha} \mathbf{d}_x$, $\mathbf{y}^{k+1} = \mathbf{y}^k + \bar{\alpha} \mathbf{d}_y$, and $\mathbf{s}^{k+1} = \mathbf{s}^k + \bar{\alpha} \mathbf{d}_s$ where $\bar{\alpha} = \arg \min_{\alpha \geq 0} \psi_{n+\rho}(\mathbf{x}^k + \alpha \mathbf{d}_x, \mathbf{s}^k + \alpha \mathbf{d}_s)$.
3. Let $k := k + 1$ and return to Step 1.

Theorem 1 Let $\rho \geq \sqrt{n}$ and $\psi_{n+\rho}(\mathbf{x}^0, \mathbf{s}^0) \leq \rho \log((\mathbf{x}^0)^T \mathbf{s}^0) + n \log n$. Then, the Algorithm terminates in at most $O(\rho \log((\mathbf{x}^0)^T \mathbf{s}^0 / \epsilon))$ iterations with

$$(\mathbf{x}^k)^T \mathbf{s}^k = \mathbf{c}^T \mathbf{x}^k - \mathbf{b}^T \mathbf{y}^k \leq \epsilon.$$

$$\begin{aligned} (\mathbf{x}^k)^T \mathbf{s}^k &\leq \exp\left(\frac{\psi_{n+\rho}(\mathbf{x}^k, \mathbf{s}^k) - n \log n}{\rho}\right) \\ &\leq \exp\left(\frac{\psi_{n+\rho}(\mathbf{x}^0, \mathbf{s}^0) - n \log n - \rho \log((\mathbf{x}^0)^T \mathbf{s}^0 / \epsilon)}{\rho}\right) \\ &\leq \exp\left(\frac{\rho \log(\mathbf{x}^0, \mathbf{s}^0) - \rho \log((\mathbf{x}^0)^T \mathbf{s}^0 / \epsilon)}{\rho}\right) \\ &= \exp(\log(\epsilon)) = \epsilon. \end{aligned}$$

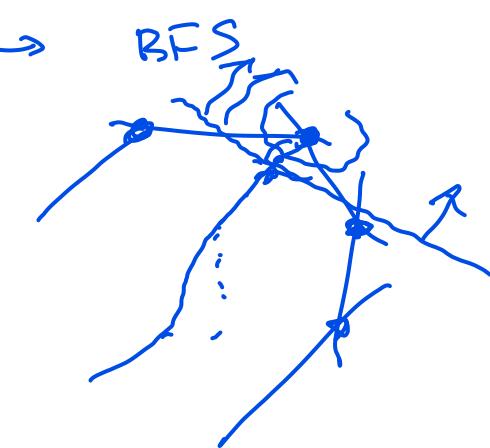
The adaptively search of best ρ ?

LP: Exact
BFS

Termination with Exact Optimizers

- The first is a “cross-over” procedure to find a basic feasible solution (BFS, corner point) whose objective value is at least as good as the current interior point. Let $A, \mathbf{b}, \mathbf{c}$ be integers and L be their bit length, and let a second best BFS solution be \mathbf{x}^{2nd} and the optimal objective value be z^* . Then

$$\mathbf{c}^T \mathbf{x}^{2nd} - z^* > 2^{-L}. \quad \left. \right\}$$



Thus, one can terminate interior-point algorithm when

$$L = L$$

$$\mathbf{c}^T \mathbf{x}^k - \mathbf{b}^T \mathbf{y}^k \leq 2^{-L}.$$

- The second approach is to compute a strictly complementary solution pair. The method uses the primal-dual interior-point pair to identify the strict complementarity partition (P^*, Z^*) and then “purify or project” the primal interior solution onto the primal optimal face and the dual interior solution onto the dual optimal face, based on the following theorem:

Theorem 2 *Given an interior solution \mathbf{x}^k and \mathbf{s}^k in the solution sequence generated by an*

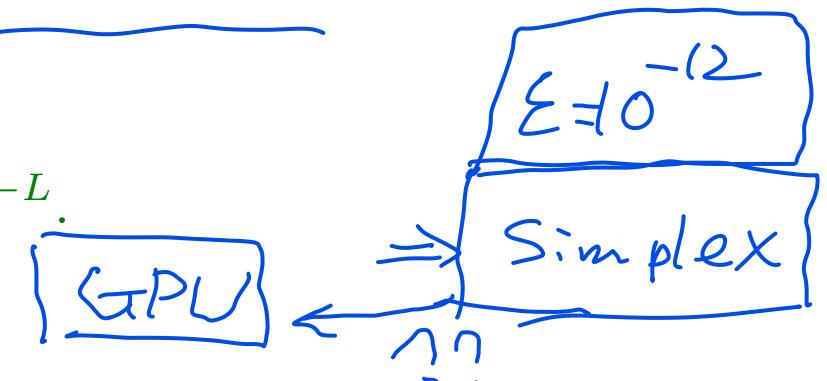
IPM, 1st-iter

interior-point algorithm, define

$$P^k = \{j : x_j^k \geq s_j^k, \forall j\} \quad \text{and} \quad Z^k = \{1, \dots, n\} \setminus P^k.$$

Then, we have $P^k = P^*$ whenever

$$\mathbf{c}^T \mathbf{x}^k - \mathbf{b}^T \mathbf{y}^k \leq 2^{-L}.$$



Thus, the **worst-case iteration bound** for interior-point algorithms is $O(\sqrt{n}L)$ if the initial point pair $(\mathbf{x}^0)^T \mathbf{s}^0 \leq 2^L$.

$A, b, c,$

Initialization

$$\{ x^0: Ax^0 = b, x^0 \geq 0 \}$$

$$\{ y^0: A^T y^0 + s^0 = c, s^0 \geq 0 \}$$

- Combining the primal and dual into a single **linear feasibility** problem, then applying LP algorithms to find a feasible point of the problem. Theoretically, this approach can retain the currently best complexity result.
- The **big M** method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty parameter M to force solutions to become feasible during the algorithm.
- Phase I-then-Phase II method**, i.e., first try to find a feasible point (and possibly one for the dual problem), and then start to look for an optimal solution if the problem is feasible and bounded.
- Combined Phase I-Phase II method**, i.e., approach feasibility and optimality simultaneously. To our knowledge, the “best” complexity of this approach is $\mathcal{O}(n \log(R/\epsilon))$.

Inf.

\sqrt{n}

$$\begin{array}{l} x^0 > 0 \\ s^0 > 0 \end{array} \quad \left| \begin{array}{l} Ax^0 \neq b \end{array} \right.$$

Homogeneous and Self-Dual Algorithm

- It solves the linear programming problem without any regularity assumption concerning the existence of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result $\mathcal{O}(n)$
- It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive orthant (cone), and it does not use any big M penalty parameter or lower bound.
- Each iteration solves a system of linear equations whose dimension is almost the same as that solved in the standard (primal-dual) interior-point algorithms. $m \approx n$
- If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an infeasibility certificate for at least one of the primal and dual problems. P

Primal-Dual Alternative Systems

A pair of LP has **two** alternatives

$$\left. \begin{array}{ll} \text{(Solvble)} & \begin{array}{l} Ax - b = 0 \\ -A^T y + c \geq 0, \\ b^T y - c^T x = 0, \\ y \text{ free, } x \geq 0 \end{array} \end{array} \right\} \text{or} \left. \begin{array}{ll} \text{(Infeasible)} & \begin{array}{l} Ax = 0 \\ -A^T y \geq 0, \\ b^T y - c^T x > 0, \\ y \text{ free, } x \geq 0 \end{array} \end{array} \right\}$$

An Integrated Homogeneous System

The two alternative systems can be **homogenized** as one:

$$\begin{aligned}
 (HP) \quad & Ax - b\tau = 0 \\
 & -A^T y + c\tau = s \geq 0, \\
 & b^T y - c^T x = \kappa \geq 0, \\
 & y \text{ free, } (x; \tau) \geq 0
 \end{aligned}$$

$\tau \geq 0$

$\kappa, \tau = 0$

where the **two alternatives** are

$$\text{(Solvable)} : (\tau > 0, \kappa = 0) \quad \text{or} \quad \text{(Infeasible)} : (\tau = 0, \kappa > 0)$$

$\tau = 0, \kappa = 0$

The Homogeneous System is Self-Dual

$$\begin{array}{ll}
 (HP) & \begin{array}{l} A\mathbf{x} - \mathbf{b}\tau = \mathbf{0}, (\mathbf{y}') \\ -A^T \mathbf{y} + \mathbf{c}\tau = \mathbf{s} \geq \mathbf{0}, (\mathbf{x}') \\ \mathbf{b}^T \mathbf{y} - \mathbf{c}^T \mathbf{x} = \kappa \geq 0, (\tau') \\ \mathbf{y} \text{ free, } (\mathbf{x}; \tau) \geq \mathbf{0} \end{array} \\
 (HD) & \begin{array}{l} A\mathbf{x}' - \mathbf{b}\tau' = \mathbf{0}, \\ A^T \mathbf{y}' - \mathbf{c}\tau' \leq \mathbf{0}, \\ -\mathbf{b}^T \mathbf{y}' + \mathbf{c}^T \mathbf{x}' \leq 0, \\ \mathbf{y}' \text{ free, } (\mathbf{x}'; \tau') \geq \mathbf{0} \end{array}
 \end{array}$$

Theorem 3 System (HP) is feasible (e.g. all zeros) and any feasible solution $(\mathbf{y}, \mathbf{x}, \tau, \mathbf{s}, \kappa)$ is self-complementary:

$$\mathbf{x}^T \mathbf{s} + \tau \kappa = 0.$$

Furthermore, it has a strictly self-complementary feasible solution

$$\begin{aligned}
 \mathbf{M} &= -\mathbf{M}^T \\
 \mathbf{M} + \mathbf{M}^T &= \mathbf{0}
 \end{aligned}$$

$$\begin{pmatrix} \mathbf{x} + \mathbf{s} \\ \tau + \kappa \end{pmatrix} > \mathbf{0},$$

$$\left\{ \begin{array}{ll}
 \min & \mathbf{c}^T \mathbf{x} \\
 \text{s.t.} & \mathbf{M} \mathbf{x} \geq \mathbf{0} \quad (\mathbf{s}) \\
 & \mathbf{x} \geq \mathbf{0}
 \end{array} \right.$$

$$\left\{ \begin{array}{ll}
 \max & \mathbf{c}^T \mathbf{s} \\
 \text{s.t.} & -\mathbf{M}^T \mathbf{s} \leq \mathbf{0} \\
 & \mathbf{s} \geq \mathbf{0}
 \end{array} \right.$$

Let's Find Such a Feasible Solution

Given $\mathbf{x}^0 = \mathbf{e} > \mathbf{0}$, $\mathbf{s}^0 = \mathbf{e} > \mathbf{0}$, and $\mathbf{y}^0 = \mathbf{0}$, we formulate

$$\begin{aligned}
 (HSDP) \quad \min \quad & \theta \\
 \text{s.t.} \quad & A\mathbf{x} - \mathbf{b}\tau + \bar{\mathbf{b}}\theta = \mathbf{0}, \\
 & -A^T\mathbf{y} + \mathbf{c}\tau - \bar{\mathbf{c}}\theta \geq \mathbf{0}, \\
 & \mathbf{b}^T\mathbf{y} - \mathbf{c}^T\mathbf{x} + \bar{z}\theta \geq 0, \\
 & \mathbf{y} \text{ free, } \mathbf{x} \geq \mathbf{0}, \quad \tau \geq 0, \quad \theta \text{ free,}
 \end{aligned}$$

where

$$\bar{\mathbf{b}} = \mathbf{b} - A\mathbf{e}, \quad \bar{\mathbf{c}} = \mathbf{c} - \mathbf{e}, \quad \bar{z} = \mathbf{c}^T\mathbf{e} + 1.$$

But it may just give us the all-zero solution.

$$e^T x + e^T s + k + \bar{z} \geq 1$$

A HSD linear program

Let's try to add one more constraint to prevent the all-zero solution

$$\begin{aligned}
 (HSDP) \quad \min \quad & (n+1)\theta \\
 \text{s.t.} \quad & \begin{array}{lllll} Ax & -\mathbf{b}\tau & +\bar{\mathbf{b}}\theta & = \mathbf{0}, \\ -A^T \mathbf{y} & +\mathbf{c}\tau & -\bar{\mathbf{c}}\theta & \geq \mathbf{0}, \\ \mathbf{b}^T \mathbf{y} & -\mathbf{c}^T \mathbf{x} & +\bar{z}\theta & \geq 0, \\ -\bar{\mathbf{b}}^T \mathbf{y} & +\bar{\mathbf{c}}^T \mathbf{x} & -\bar{z}\tau & = -(n+1), \\ \mathbf{y} \text{ free, } & \mathbf{x} \geq \mathbf{0}, & \tau \geq 0, & \theta \text{ free.} \end{array}
 \end{aligned}$$

Note that the constraints of (HSDP) form a **skew-symmetric system** and the objective coefficient vector is the negative of the right-hand-side vector, so that it remains a **self-dual** linear program.

$(\mathbf{y} = \mathbf{0}, \mathbf{x} = \mathbf{e}, \tau = 1, \theta = 1)$ is a **strictly** feasible point for (HSDP).

$$\begin{aligned}
 (HSDP) \quad & \min && (n+1)\theta \\
 \text{s.t.} \quad & Ax - \mathbf{b}\tau + \bar{\mathbf{b}}\theta = \mathbf{0}, \\
 & -A^T \mathbf{y} + \mathbf{c}\tau - \bar{\mathbf{c}}\theta = \mathbf{s} \geq \mathbf{0}, \\
 & \mathbf{b}^T \mathbf{y} - \mathbf{c}^T \mathbf{x} + \bar{z}\theta = \kappa \geq 0, \\
 & -\bar{\mathbf{b}}^T \mathbf{y} + \bar{\mathbf{c}}^T \mathbf{x} - \bar{z}\tau = -(n+1), \\
 & \mathbf{y} \text{ free}, \quad \mathbf{x} \geq \mathbf{0}, \quad \tau \geq 0, \quad \theta \text{ free}.
 \end{aligned}$$

Denote by \mathcal{F}_h the set of all points $(\mathbf{y}, \mathbf{x}, \tau, \theta, \mathbf{s}, \kappa)$ that are feasible for (HSDP). Denote by \mathcal{F}_h^0 the set of interior feasible points with $(\mathbf{x}, \tau, \mathbf{s}, \kappa) > \mathbf{0}$ in \mathcal{F}_h . By combining the constraints, we can derive the last (equality) constraint as

$$\mathbf{e}^T \mathbf{x} + \mathbf{e}^T \mathbf{s} + \tau + \kappa - (n+1)\theta = (n+1),$$

which serves indeed as a **normalizing constraint** for (HSDP) to prevent the all-zero solution.

Theorem 4 Consider problems (HSDP) and (HSDD).

i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP) with $(\mathbf{y}, \mathbf{x}, \tau, \theta)$ being replaced by $(\mathbf{y}', \mathbf{x}', \tau', \theta')$.

ii) (HSDP) has a *strictly feasible point*

$$\mathbf{y} = \mathbf{0}, \quad \mathbf{x} = \mathbf{e} > \mathbf{0}, \quad \tau = 1, \quad \theta = 1, \quad \mathbf{s} = \mathbf{e} > \mathbf{0}, \quad \kappa = 1.$$

iii) (HSDP) has an optimal solution and its optimal solution set is *bounded*.

iv) The optimal value of (HSDP) is zero, and

$$(\mathbf{y}, \mathbf{x}, \tau, \theta, \mathbf{s}, \kappa) \in \mathcal{F}_h \quad \text{implies that} \quad (n+1)\theta = \mathbf{x}^T \mathbf{s} + \tau\kappa.$$

v) There is an optimal solution $(\mathbf{y}^*, \mathbf{x}^*, \tau^*, \theta^* = 0, \mathbf{s}^*, \kappa^*) \in \mathcal{F}_h$ such that

$$\begin{pmatrix} \mathbf{x}^* + \mathbf{s}^* \\ \tau^* + \kappa^* \end{pmatrix} > \mathbf{0},$$

which we call a *strictly self-complementary solution*. (Similarly, we sometimes call an optimal solution to (HSDP) a *self-complementary solution*; the strict inequalities above need not hold.)

$$\begin{array}{l}
 \text{max } \bar{c}^T x \\
 \text{s.t. } \bar{A}^T y + s = \bar{c} \\
 \quad \quad s \geq 0
 \end{array}
 \quad \quad \quad
 \left| \begin{array}{l}
 x \\
 \bar{A} \cdot x = 0 \\
 \bar{c}^T x < 0
 \end{array} \right.$$

Theorem 5 Let $(\mathbf{y}^*, \mathbf{x}^*, \tau^*, \theta^* = 0, \mathbf{s}^*, \kappa^*)$ be a strictly self complementary solution for (HSDP).

- i) (LP) has a solution (**feasible and bounded**) if and only if $\tau^* > 0$. In this case, \mathbf{x}^*/τ^* is an optimal solution for (LP) and $(\mathbf{y}^*/\tau^*, \mathbf{s}^*/\tau^*)$ is an optimal solution for (LD).
- ii) (LP) has **no solution** if and only if $\kappa^* > 0$. In this case, \mathbf{x}^*/κ^* or \mathbf{s}^*/κ^* or both are certificates for proving **infeasibility**: if $\mathbf{c}^T \mathbf{x}^* < 0$ then (LD) is infeasible; if $-\mathbf{b}^T \mathbf{y}^* < 0$ then (LP) is infeasible; and if both $\mathbf{c}^T \mathbf{x}^* < 0$ and $-\mathbf{b}^T \mathbf{y}^* < 0$ then both (LP) and (LD) are infeasible.

Theorem 6 i) For any $\mu > 0$, there is a unique $(\mathbf{y}, \mathbf{x}, \tau, \theta, \mathbf{s}, \kappa)$ in \mathcal{F}_h^0 , such that

$$\begin{pmatrix} X\mathbf{s} \\ \tau\kappa \end{pmatrix} = \mu\mathbf{e}.$$

ii) Let $(\mathbf{d}_y, \mathbf{d}_x, d_\tau, d_\theta, \mathbf{d}_s, d_\kappa)$ be in the null space of the constraint matrix of (HSDP) after adding surplus variables \mathbf{s} and κ , i.e.,

$$\left[\begin{array}{ccc|c} A\mathbf{d}_x & -\mathbf{b}d_\tau & +\bar{\mathbf{b}}d_\theta & = 0, \\ -A^T\mathbf{d}_y & +\mathbf{c}d_\tau & -\bar{\mathbf{c}}d_\theta & = 0, \\ \mathbf{b}^T\mathbf{d}_y & -\mathbf{c}^T\mathbf{d}_x & +\bar{\mathbf{z}}d_\theta & = 0, \\ -\bar{\mathbf{b}}^T\mathbf{d}_y & +\bar{\mathbf{c}}^T\mathbf{d}_x & -\bar{\mathbf{z}}d_\tau & = 0. \end{array} \right] \quad (4)$$

$$(\mathbf{d}_x)^T \mathbf{d}_s + d_\tau d_\kappa = 0.$$

Endogenous Potential Function and Central Path

$$\psi_{n+\rho}(\mathbf{x}, \mathbf{s}, \tau, \kappa) := (n + 1 + \rho) \log(\mathbf{x}^T \mathbf{s} + \tau \kappa) - \sum_{j=1}^n \log(x_j s_j) - \log(\tau \kappa),$$

and

$$\mathcal{C} = \left\{ (\mathbf{y}, \mathbf{x}, \tau, \theta, \mathbf{s}, \kappa) \in \mathcal{F}_h^0 : \begin{pmatrix} X\mathbf{s} \\ \tau\kappa \end{pmatrix} = \frac{\mathbf{x}^T \mathbf{s} + \tau \kappa}{n + 1} \mathbf{e} \right\}.$$

Obviously, the initial interior feasible point proposed in Theorem 4 is on the path with $\mu = 1$ or $(\mathbf{x}^0)^T \mathbf{s}^0 + \tau^0 \kappa^0 = n + 1$.

Solving (HSDP)

Consider solving the following **system of linear equations** for $(\mathbf{d}_y, \mathbf{d}_x, d_\tau, d_\theta, \mathbf{d}_s, d_\kappa)$ that satisfies (4) and

$$\begin{pmatrix} X\mathbf{d}_s + S\mathbf{d}_x \\ \tau^k d_\kappa + \kappa^k d_\tau \end{pmatrix} = \gamma\mu\mathbf{e} - \begin{pmatrix} X\mathbf{s} \\ \tau\kappa \end{pmatrix}.$$

Theorem 7 *The $O(\sqrt{n} \log((\mathbf{x}^0)^T \mathbf{s}^0 / \epsilon))$ interior-point algorithm, coupled with a termination technique described above, generates a **strictly self-complementary solution** for (HSDP) in $O(\sqrt{n}(\log(c(A, \mathbf{b}, \mathbf{c})) + \log n))$ iterations and $O(n^3(\log(c(A, \mathbf{b}, \mathbf{c})) + \log n))$ operations, where $c(A, \mathbf{b}, \mathbf{c})$ is a positive number depending on the data $(A, \mathbf{b}, \mathbf{c})$. If (LP) and (LD) have integer data with **bit length** L , then by the construction, the data of (HSDP) remains integral and its length is $O(L)$. Moreover, $c(A, \mathbf{b}, \mathbf{c}) \leq 2^L$. Thus, the algorithm terminates in $O(\sqrt{n}L)$ iterations and $O(n^3L)$ operations.*

Example

Consider the example where

$$A = \begin{pmatrix} -1 & 0 & 0 \end{pmatrix}, \quad b = 1, \quad \text{and} \quad \mathbf{c} = \begin{pmatrix} 0 & 1 & -1 \end{pmatrix}.$$

Then,

$$y^* = 2, \quad \mathbf{x}^* = (0, 2, 1)^T, \quad \tau^* = 0, \quad \theta^* = 0, \quad \mathbf{s}^* = (2, 0, 0)^T, \quad \kappa^* = 1$$

could be a strictly self-complementary solution generated for (HSDP) with

$$\mathbf{c}^T \mathbf{x}^* = 1 > 0, \quad b y^* = 2 > 0.$$

Thus (y^*, \mathbf{s}^*) demonstrates the infeasibility of (LP), but \mathbf{x}^* doesn't show the infeasibility of (LD). Of course, if the algorithm generates instead $\mathbf{x}^* = (0, 1, 2)^T$, then we get demonstrated infeasibility of both.

