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1. ABOUT OPTIMIZATION

The field of optimization is concerned with the study of maximization and minimization
of mathematical functions. Very often the arguments of (i.e., variables or unknowns in)
these functions are subject to side conditions or constraints. By virtue of its great utility
in such diverse areas as applied science, engineering, economics, finance, medicine, and
statistics, optimization holds an important place in the practical world and the scientific
world. Indeed, as far back as the Eighteenth Century, the famous Swiss mathematician and
physicist Leonhard Euler (1707-1783) proclaimed! that ...nothing at all takes place in the
Universe in which some rule of mazximum or minimum does not appear. The subject is so
pervasive that we even find some optimization terms in our everyday language.

Optimization is a large subject; it cannot adequately be treated in the short amount time
available in one quarter of an academic year. In this course, we shall restrict our attention
mainly to some aspects of nonlinear programming and discuss linear programming as a
special case. Among the many topics that will not be covered in this course are integer
programming, network programming, and stochastic programming.

As a discipline, optimization is often called mathematical programming. The latter name
tends to be used in conjunction with finite-dimensional optimization problems, which in fact
are what we shall be studying here. The word “programming” should not be confused with
computer programming which in fact it antedates. As originally used, the term refers to the
timing and magnitude of actions to be carried out so as to achieve a goal in the best possible
way.

General form of a mathematical programming problem

The class of mathematical programming problems considered in this course can all be ex-
pressed in the form
minimize  f(z)

(P) .
subject to x € X

We call f the objective function and X the feasible region of (P). We assume that the
feasible region is a subset of R", and f is a real-valued function on X. In particular, this
means that for each x in the feasible region, the corresponding objective function value is a

'See Leonhardo Eulero, Methodus Inviendi Lineas Curvas Maximi Minimive Proprietate Gaudentes,
Lausanne & Geneva, 1744, p. 245.
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well-defined real number, f(x). The decision variable x may be a vector x = (xy,...,x,) or
a scalar (when n =1).

A problem (P) in which X = R" is said to be unconstrained. The study of unconstrained
optimization has a long history and continues to be of interest. When X is a proper subset
of R", we say that (P) is a constrained optimization problem. In most cases, the set
feasible region X is specified through a system of inequalities or equations—or both. Thus,
X is often given as the set of all solutions of the system

ci(x)<0 i€l
ci(z)=0 €&

Note that Z and £ are index sets. These conditions imposed on the decision variable x
are called constraints, and the c; are constraint functions. In a constrained optimization
problem, either one of the sets Z and £ may be empty. For that matter, both may be empty
if x is still required to belong to a proper subset of R™. As implied earlier, the optimization
problems considered in this course will not involve integer constraints on the individual
variables z; (j = 1,...,n) even though such restrictions are of great importance in many
practical problems.

If the feasible region of a constrained optimization problem is empty, the problem is said to
be infeasible; otherwise it is feasible.

There are many ways to categorize optimization problems. One of the most straightforward
is in accordance with properties of the objective function and constraint functions (if any).
Thus, when f and all the ¢; are affine functions, that is of the form

aixr1 + agxg + -+ -+ ATy + Gpya,

we have what is called a linear programming problem. Linear programming problems
(or linear programs as they are also called) are of great importance in the field, partly
because there are so many real-world problems that are naturally of this type or can be
approximated by them. When f or any of the constraint functions is nonlinear (or not
affine), a constrained optimization problem (P) is called a nonlinear programming problem
(or nonlinear program).

In some cases, constrained optimization problems are classified according to their structure.
This is especially true of linear programs. Since there are many types of nonlinear functions,
there is a wide range of possibilities among nonlinear programs. Among the most simplest—
yet most important—of nonlinear programming problems is the quadratic programming
problem: the optimization of a quadratic function subject to affine constraints.

For information on the historical development of mathematical programming, especially that
of the last half century, see
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e J.K. Lenstra, A.H.G. Rinnooy Kan, and A. Schrijver, History of Mathematical Pro-
gramming, North-Holland, Amsterdam, 1991.

e G.B. Dantzig and M.N. Thapa, Linear Programming 1: Introduction, Springer, New
York, 1997. [See especially pp. xxi—xxxii.|
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2. CONVEX SETS AND FUNCTIONS

2.1 Real n-space; Euclidean n-space

In these pages, R denotes the field of real numbers (the real number system) and R"™ denotes
real n-space, the n-dimensional vector space of all n-tuples (x1,...,2,) with z; € R for
i=1,...,n. The elements of R" are called vectors® or points. The latter term is preferred
in geometric discussions. For all z,y € R", the inner product of x and y is

zly ="z
=1

It is sometimes convenient to use the notation (z,y) for the inner product of x and y. For
x € R", let
Izl = (a"2)"2.

This function is called the Euclidean norm (metric).> When “equipped” with this norm
(also known as the 2-norm), R™ becomes Euclidean n-space, E", where, of course, Euclidean
geometry holds. The Euclidean norm gives rise to the Euclidean metric defined as

d(z,y) = [z =yl
This function is used to measure the Euclidean distance between x and y. As a metric, d
has the following properties:
(i) d(x,y) > 0 with equality if and only if z =y  (definiteness);
(i) d(z,y) = d(y,z) (symmetry)
(iii) d(z,2) < d(z,y)+d(y,2) (triangle inequality).
Note that d(x,0) = ||z||. This is sometimes called the length® of z. There are many other

ways to measure distance, but the one above is the most widely used, and—as stated above—
is what turns R" into Euclidean n-space.

2QOrdinarily, we treat vectors z € R™ as columns (or n x 1 matrices).

3Notice that as with all norms, the property ||[Az| = || - [|z|| holds for all z and all \ € R.

4But note that some authors apply the term “length” to z € R", they mean n, the number of components
(or coordinates) of z. See, for example Nash and Sofer, page 17, line —9.



MS&E 311 December 28, 2004 Reference Class Notes 9

2.2 Convex sets
The following are familiar definitions.
Definition. A subset S of R" is affine if
[z,ye Sanda € R| = az+ (1 —a)y € S.

When x and y are distinct points in R" and o € R, the set of all points z = ax + (1 — a)y
is the line determined by x and y.

//7,//76///

— @

a <0 6 O<ax<xl a>1

Figure 2.1

Definition. A subset S of R" is convez if for all x,y € S and all 0 < a < 1 it follows that
azx+ (1 —a)y € S. The vector z = ax+ (1 — a)y is called a convex combination of x and y.

The concept of the convex combination of two points can be generalized to any finite number
of points. Thus, if 2!,...,2™ are m points in R" and if o, ..., a,, are nonnegative scalars
that sum to 1, then a point of the form

r=axt + -+ apr™
m

is called a convex combination of z',... x

By default or convention, the empty set, (), is convex. Examples of convex sets arise in linear
programming and many other places within the field of optimization. Sets of the form

{z: Az >b} and {y:y= Az,z >0}
are typical examples. So are those of the form
{z:2"Dz <k} k>0, D positive definite.

Convex sets have the interesting and useful property that intersections of convex sets are
again convex.
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Figure 2.2

Definition. A linear variety V in R" is a translate of a linear subspace, that is
V=Aa}+T ={veR":v=a+z, x€T} a € R" (fixed) and T a linear subspace.
Definition. If S is a nonempty subset of R", the carrying plane or affine hull of S is the

linear variety V' (S) of least dimension containing S. The dimension of S is the dimension

of V(9).

V(S)

Figure 2.3

Let Bs(Z) denote the open ball of radius § centered at the point z. This means
Bs(z) = {z : ||z — z[| <0},
The interior of a set S is the set
intS={ze€S:Bs(x)CS for somed > 0}.

Note that int S may be empty, as in the case of a line segment in 2-dimensional space, but
if int S # ), then we say that S is solid. A point T belongs to the boundary of S if every
open ball centered at & meets both S and its complement. The boundary of S is denoted
bdy S or sometimes 05.

Recall that a set S C R™ is said to be open if for each point z € S there is a d > 0 such that
Bs(z) € S. A set S C R" is said to be closed if its complement R"™ \ S is open.
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We say = € S is a relative interior point, symbolically rel int S, if there exists a § > 0
such that (Bs(Z2) N V(S)) C S. The set Bs(z) NV(S) is called a relative neighborhood of .
If x € R™ and every relative neighborhood of z contains an element of S and an element of

R'\S={zeR":x ¢S},

then z € relbdy S, the relative boundary of S. When V(S) = R™ we drop the term
“relative”. In this case, if int S # (), we say that S is solid.

Remark. Compare the above with the discussion in Nash and Sofer, page 16. The develop-
ment there reflects authors’ desire to avoid using the terms relative interior and boundary.
This leads to the kind of difficulties that arise in Exercises 7-9 on page 20.

Definition. If S C R", the convex hull of S is the intersection of all convex sets containing
S. The convex hull of S will be denoted co (5). For all S, co(S) is convex.

This definition is an exterior characterization of the convex hull of a set. The convex hull
of the set S has an interior characterization as well. Indeed, the convex hull of S can be
shown to equal to the set of all convex combinations of finitely many points belonging to .S.

1 m

Definition. The points 2%, z!,..., 2™ are said to be in gemeral position if the vectors
0 0

a2t — =z 7$ — 2V are linearly independent. (Another way to express the fact that the
points 2%, z! , ™ are in general position is to say that dim V ({z°, z! =m.)

Points not in general posm/ Aints in goneral position

Figure 2.4

The convex hull of a finite set of points is called a polytope. An m-simplez is the convex
hull of m+1 points in general position. Hence an m-simplex is a particular kind of polytope.

INGVAN

Figure 2.5
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Lemma. If S is an m-simplex in R", then rel int S # (.

Proof. Let S =co ({z% 2',...,2™}) and define

I B Y
x—m+1§x

(The point Z is the centroidof S.) Clearly z € V(S). Let V! = V ({0, ... 2"t 2"t ... z™})
and let §; = mingcyi ||[xr — Z||. (See Figure 2.6 below.) Then §; > 0 for all i. Take
d = ming<;<, 0;.- Then we have (Bs(z)NV(S)) C S. O

{L‘l

Figure 2.6

Theorem. Every convex set C' of dimension m > 1 has a nonempty relative interior.

Proof. By hypothesis, dim C' > 1, so there exist m + 1 points 2°, 2,..., 2™ in C such that
co({x% z ..., 2™}) is an m-simplex. Since co ({2, z!,... 2™}) C C (by convexity), and
rel int co ({2°, 2%, ..., 2™}) # 0, it follows that rel int C' # (. O

Theorem. If C' is convex, x € rel int C, y € C and = # y, then for all a € [0,1),
z=(1—a)zr+ ay € rel int C.

Proof. We may assume that o > 0. Since = € rel int C, there exists a number § > 0 such
that (Bs(z) N V(C)) C C. Note that z —y = (1 — a)(z — y), so

o<zl o1

I = yll

Let € = §(1 — a). Then (B.(z) N V(C)) C C. Indeed, let w € B.(z) N V(C) be arbitrary.
Define u = z + —(w — ).
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U
q
w
x ; Yy
Figure 2.7
Then
1 1
ol = | — 51 =) =24
=l = - Jhw = 2 < 7=—8(1 = a) = &

Hence u € (Bs(x) NV(C)) C C since z € rel int C. Now (by definition of u)
w=1-au+z—(1—-a)r=(1—-a)ut+ay € C.

Hence z € rel int C. O

One implication of this theorem is that the relative interior of a convex set is itself a convex
set.

Theorem. A polytope co ({z!,...,2™}) is a compact set.
Proof. This is a forthcoming exercise. O
We come now to an interior representation of a convex set.

Lemma. A set C' C R" is convex if and only if it contains every convex combination of every
finite subset of its elements.

Proof. If C' contains every convex combination of every finite subset of its elements, then it
does so for sets of cardinality two, and hence C' must be convex.

Conversely, suppose C' is convex. Let z',...,2™ be arbitrary elements of C' and consider
an arbitrary convex combination z = 37, a;x® of these points. In the present situation, we
may assume that 0 < a; < 1fore=1,...,m. The case of m = 2 is covered by the definition

of convexity. Inductively, assume that any convex combination of m — 1 > 2 points of C
belongs to C'. To prove this for m points, we may write

6%)

e

1 m 1
X a1xr + + A T o + ( Oél) 1 ; 1 |
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By the inductive hypothesis, the term in square brackets belongs to C because 22, ..., 2™ € C
and

Q2 + + A -1
1—0(1 1—061_ ’ 1-@1_

Q;

It is now clear that x has been expressed as a convex combination of two points of C' and
hence must belong to C. O

The following result tells us that if S'is an arbitrary subset of R", the external representation
of co(S) is the same as its internal representation (via convex combinations of finite sets of
points in ).

Theorem. If S C R", then co(95) is the set T of all convex combinations of finitely many
points in S.

Proof. Let C' = co(S). The object is to show that C' = T. Now, C contains S and all
convex combinations of finite sets of points belonging to S. That is, T' C C. Since S C T,
the proof will be complete once we show that 7' is a convex set.

Let x and y belong to T'. Then

_ m 7 m _ -
r=y o, Yrioa=1 o>0 1=1,....m

Y=y, Y =1, p; >0 j=1,....p

where all the points 2 and 3/ belongs to S. Let 6 be a number between 0 and 1 and consider
the convex combination

m . p .
z=0r+ (1-0)y=> Oz’ +> (1—0)uy’.
i=1 j=1

Defining . '
0; = O, 2=z 1=1,...,m,
eerj:(l_e)/l’]? Zm+j:yj7 jzla"'7p7
we may write z = Y5 0,.2F where, clearly, for all k =1,...,m +p

m-+p
eSS 60,>0, and Zekzl.
k=1
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This shows that the point z belongs to T" which therefore must be convex. O

Note that if z € R and 2°,2!,..., 2™ € R", then x € co{z® z!,..., 2™} if and only if there
exists nonnegative scalars A\g, A1, ..., A, such that

[ Jae g 5] 1)

Remark. The following theorem rests in part on a classical result called the Cauchy-
Schwartz inequality which says that for all a,b € R"

|a™d] < [lal| - [[2]
with equality if and only if a and b are linearly dependent.

Theorem. Let C' be a nonempty closed convex subset of R™ and let y € R™\ C. Then there
exists a unique point z € C' such that ||z —y|| <[z —y| for all z € C. [Furthermore, Z is
the minimizing point (i.e., the point of C' closest to y) if and only if (y — z)™(z — z) < 0 for
all z € C]

Proof. This theorem is concerned with minimizing the Euclidean distance from y to C.
Note that this is equivalent to minimizing the square of the Euclidean distance from y to C.

Let * € C be arbitrary. Then {z € C : ||z — y|| < ||J* — y|| } is compact. It follows
that ||z — y||* has a minimum over this set and hence over C'. The minimizer T belongs to
C (by definition) and is unique. (This follows from the Cauchy-Schwarz inequality.) The
remaining condition is a consequence of the gradient inequality for differentiable convex
functions which is given later. O

The point Z in the above theorem is called the projection of y onto C.

Figure 2.8
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Separation and support

Definition. Let H = {z : p"v = a } be a hyperplane in R". (Hence p # 0.) Let S} and S,
be two nonempty subsets of R". Then H separates S, and S, if pTx > « for all x € S; and
plr < a for all z € Sy. Proper separation requires that S; U Sy ¢ H. (Notice that this
would still allow one of the sets to lie in H.) The sets S; and Sy are strictly separated by
H if pz > « for all x € S; and pr < a for all z € S,. (Notice that this does not prevent
points of S; and S5 from becoming arbitrarily close to H.) The sets S; and S, are strongly
separated by H if there exists a number € > 0 such that px > « + € for all € S; and
plr <a—eforall v €8,.

Examples.

0

Properly separated sets Strictly separated sets Strongly separated sets

Figure 2.9

Notice how it is possible to place a slab (the region between two parallel hyperplanes (or
lines in this case)) between strongly separated convex sets.

Theorem. If C is a nonempty closed convex set and y ¢ C, then there exists a vector p and
a real number o« such that pty > o and pTx < o for all x € C.

Proof. Take p =y — 7 and o = sup{ p'z : € C'} as in the previous theorem. 0O

Corollary. If C' is a closed convex proper subset of R", then C' equals the intersection of all
closed halfspaces containing C'.

Proof. This is obvious. 0O

Definition. Let S be a nonempty subset of R", and let z € bdy S. Then the hyperplane

H={z:p"(z—z) =0} is a supporting hyperplane at T if S C H" or S C H~ where
H ={z:pYxz—2) >0},

H ={z:pY(z—-17)<0}.

Proper support requires that S ¢ H.
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Theorem. If C'is a nonempty convex set in R" and ¥ € bdy C, then there exists a hyperplane
that supports C at Z, i.e., there exists a vector p # 0 such that

pi(z—2) <0 forallz€clC.

Proof. This is clear. O
2.3 Convex functions

Definition. Let C' C R" be a nonempty convex set. Then f: C — R is convez (on C) if
for all z,y € C and all « € (0,1)

flax+ (1 —a)y) < af(z) + (1 —a)f(y).

If strict inequality holds whenever = # y, then f is said to be strictly convex. The negative
of a (strictly) convex function is called a (strictly) concave function.

Figure 2.10

Convex functions are of interest in the context of optimization theory for several reasons.
They arise frequently and have many significant properties, among which is the fact that a
local minimum of a convex function (on a convex domain) is a global minimum. This makes
it possible to use local conditions to test for optimality.

Examples.

1. Linear functions are both convex and concave.
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2. Positive semidefinite quadratic forms, i.e., functions xTAx such that zTAz > 0 for all
T, are Convex.

3. Positively-weighted sums of convex functions are convex.

Proposition. If f: C' — R is convex, then for all a € R the level set {z € C: f(z) < a}
Is convex.

Proof. This is an immediate consequence of the definition. O

Remark. The converse of this statement is not true. There are nonconvex functions whose
level sets are all convex.

Theorem. Let C be a nonempty convex set in R", and let f be differentiable on C'. Then f
is convex on C' if and only if for all z,y € C':

fy) > f(x) + (Vf(x) "y —z). (This is called the gradient inequality.)

Proof. Suppose f is convex on C. Let = and y be arbitrary elements of C' and let « € (0, 1).
Then

Let & — 0T; then the right-hand side becomes f(z) + (V f(2))(y — z).

Conversely, let = and y be distinct points in C' and let o € (0, 1). If the gradient inequality
holds, we have

fl@) = fI(1 = a)z + ay] + (VF(1 = a)z + ay])a(z - y),

f) > fl1 = a)z+ ay] + (V1 — @)z + ay]) (1 — ) (y — ).

Multiplying these inequalities by (1 — «) and «, respectively, and then adding the resulting
inequalities, we obtain

(I—a)f(x)+af(y) > fl(1 - a)r + ay]
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which proves that f is convex on C. O

Remark. Let f be differentiable on the convex set C. Then f is strictly convex on C' if
and only if strict inequality holds in the gradient inequality for all pairs of distinct points
x and y in C.

Example. This result can be used to prove that the univariate function f(z) = % is strictly
convex when C' is the positive real line. We need to prove that for all distinct real numbers
x,y > 0, we have

This follows from the observation that for distinct x,y > 0,

1 2

(y —x)” > 0.

ya?
Proposition. Let f be a differentiable convex function on C. Then solving the problem
(1) minimize f(x) subject to z € C
is equivalent to the variational inequality problem
(2) Find 7 € C such that (Vf(z))"(y —z) >0 forallye C.
Proof. If Z solves (2), then for all y € C, the gradient inequality gives

fly) = f(@) = (Vf(@) 'y — ) = 0.

Conversely, if Z solves (1), then z must also solve (2), for suppose there exists § € C such
that

(Vf(@)'(g-1)<0.

This says that f decreases when its argument moves away from z in the direction y — z. In
particular, there exists a real number 6 € (0, 1) such that

flL=0)z +0y] = flz +0(y — 1)] < f(2).

But this contradicts the assumption that £ minimizes f on C'. O
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Theorem. Let f be twice continuously differentiable on the open convex set C. Then f is
convex on C'if and only if its Hessian matrix V2 f(z) is positive semidefinite for all z € C.

Proof. Let f be convex on C. Let x € C' and d € R" be arbitrary. For « sufficiently small
x + ad € C because (' is open. Since f is twice continuously differentiable,

o+ ad) — () = a(V(2)'d = S2d V2 f(2)d+ Bz, 2 + ad)|d]

where lim,__¢ 5(z, x4+ad) = 0. When « is sufficiently small, the left-hand side is nonnegative
by the gradient inequality. Hence %dTVQ f(x)d > 0.

Conversely, suppose V2f(z) is positive semidefinite for all z € C. Then with z,y € C,
Taylor’s theorem implies that there exists o € (0,1) such that for z = (1 — a)z + ay :

fy) = (@)= (V@) (y—2) =5y —2)"Vf(2)(y — ).

The right-hand side is nonnegative, hence the gradient inequality holds for all z,y € C. O

Remark. If V2f(x) is positive definite for all x € C, then f is strictly convex on C. But
the converse is false, as shown by the function f(z) = z* with domain C' = R. This function
is strictly convex and twice continuously differentiable on R, but f”(0) = 0 which is not
positive definite.
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2. CONVEX SETS AND FUNCTIONS (CONTINUED)

2.3 Convex functions (continued)

In Handout No. 2 we covered first- and second-order characterizations of convexity for suit-
ably differentiable functions on convex sets. It should be pointed out, however, that not all
convex functions are differentiable. A simple example of a nondifferentiable convex function
is

f@—jel={ © T
€Tr) = |\x| =
—x ifz<0
the graph of which is shown in Figure 2.11.
f(z)
x
Figure 2.11

We can put this example into a more general framework. Note that for every xz € R, we
have |z| = max{x, —x}. That is to say, f(z) = |z| is the (pointwise) maximum of two linear
functions: fi(z) = z and fo(x) = —z. More generally, now, we may consider a function
that is the pointwise maximum of a finite set of linear functions (all of which have the same
domain, R), say

F(z) = max{Fi(x),..., F,(z)}.

Such a function would be convex as well as piecewise linear. A piecewise linear function
@(x) of a single variable, € R (or perhaps an interval [¢,u] C R), is one for which there
is a set of breakpoints r1 < r9 < --- < x, in the domain of the function such that on the
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closed interval defined by two consecutive breakpoints, the function value ¢(z) is given by an
affine function (a constant times x plus a constant). A univariate piecewise linear function
will be continuous if the function values on neighboring subintervals agree at their common
breakpoint. This is illustrated in Figure 2.12 which exhibits two nonconvex piecewise linear
functions.

Not continuous Continuous

Figure 2.12

More will be said later about functions defined in this way. Right now, though, it will
be helpful to bring up an alternate way of looking at convex functions. This requires the
introduction of a new term.

Definition. Let f be a real-valued function on S C R"™. The epigraph of f is the set

epi f = {(z,p) € R"" 1z € S, p> f(a)}.
This is just the set of points in R"™! that lie on or above the graph of f.

Theorem. Let C' C R" be a nonempty convex set. Then f: C — R is convex function if
and only if epi f is a convex subset of R"*1,

Proof. This is an exercise. O

This theorem links convex functions to convex sets; it can be very useful in proving the
convexity of certain functions. Here is one such instance.

Example. Let (a',z) + b; = > aijry + b for i = 1,...,m be a given finite set of
affine functions. Then .
f(z) = max {{(a’,z) + b;}

1<i<m

is a convex function. The theorem makes it easy to see why this must be so. Indeed
the epigraph of f is just the intersection of the halfspaces associated with the inequalities
> {at, ) +b; (i=1,...,m), each of which a convex set. Hence the epigraph of f is convex.

We have seen that a convex function need not be differentiable. As a matter of fact, it is
not even necessary for a convex function to be continuous. This observation is illustrated by
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the function f : [0, 1] — R shown below:

1 ifx=0
flz)=¢ 0 if0<z<l1
1 ifx=1

It should be noticed, however, that the function in this example is continuous on the interior
of its domain. This is a consequence of a general result. We first prove two lemmas.

Lemma (Jensen’s inequality). If f : C' — R is convex, then
for any 2!,...,2™ € C and any \; > 0,...,\,, > 0 such that \; +---+ \,, = 1.

Proof. For m = 2 the inequality is just the definition of convexity. Arguing inductively, we
now assume m > 2 and that the inequality holds for m — 1 points. The rest of the proof is
just a matter of clever writing (as in the lemma on page 6 of Handout No. 2), namely

A2
1A

A m

1— " |

r=MT' o+ A2 = Nt + (1= ) 2.4

and then using the convexity of f together with the inductive hypothesis. O

Lemma. Let f be a convex function on the nonempty convex set C'. Then f is bounded
above on every nonempty compact convex set K contained in the relative interior of C.

Proof. First of all, note that by what we have already proved (see Handout 2, page 5) the
set C' has a nonempty relative interior. By the Heine-Borel Theorem®, we may “cover” K
by a finite collection of simplices each contained in C. By the finiteness of this covering, it
suffices to prove that f is bounded above on a simplex. Suppose the simplex is the convex
hull of the points z!,...,2". Let

u=max{f(2")...., [(z")},

Every point in the simplex is of the form z = >>!_; \;z* where ¥/_; \; = L and \; > 0, i =
1,...,7. We can then write

)= £ (S0 £ A < S hm

i=1

5In some treatments of real analysis, a compact set is defined as one for which every “open cover” has a
finite subcover. (See Royden [1968, p.157] and Rudin [1964, p.32], for example.) The Heine-Borel Theorem
then asserts the equivalence of this definition with the one we customarily use in these notes.
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This shows that f is bounded above on the simplex. Since the given compact convex set is
covered by finitely many simplices, there is a finite upper bound on f. O

We shall use this lemma in proving the following theorem.
Theorem. Every convex function is continuous on the relative interior of its domain.

Proof. Let C be the domain of the convex function f and let z° be a point in the relative
interior of C'. By a simple translation and a minor redefinition of f we may assume that
2% = 0 and f(0) = 0. Now let N(0,\) C C denote a relatively open neighborhood of z°.
(This means that N (0, \) is the intersection of an open ball of radius A and center z° with the
carrying plane of C'.) For an arbitrary € € (0, 1], consider z € N(0, A) such that ||z| < eA.
We can then write

flz)=f {(1 —€)0+¢ (ix)] <ef (11') <ep

€

for some p > 0. Furthermore,

0=70)=1 [1i€x+ (1—i5) <i) (—x)}

(=) 0+ (752 o]

Hence f(z) > —ep. Together, these inequalities imply | f(z)| < ep. This proves the continuity
of fatz’. O

A consequence of this theorem is that if a convex function fails to be continuous, then the
points of discontinuity must lie on the relative boundary of the function’s domain.

Some univariate convex functions®
The second-order criteria for convexity can be used to prove the following:

With regard to the last of these, one can use Jensen’s inequality to demonstrate the inequality
between the arithmetic mean and the geometric mean. The reasoning goes like this. Let

6Based on Rockafellar [1970, Section 4].
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x1,..., %, be a set of positive real numbers and let x = A\jzy + - -+ + A\, z,,, be an arbitrary
convex combination of these m scalars. Using the convexity of f(x) = —logx and Jensen’s
inequality, we get

—log(Mzy + -+ + A\p) < =N logxy — -+ — Ay log .
Multiplying through this inequality by —1 and taking exponentials of both sides yields

MTL+ o+ ATy > xi‘l---xf,;”.

1

T m

In particular, when A\ = --- =\, we get

This is the arithmetic-mean/geometric-mean inequality.

Some general facts about (multivariate) convex functions

From the second-order characterization of convex functions, it follows that a positive semidef-
inite quadratic form f(r) = xTQx is convex on R". Note that the Hessian matrix of f is
just a constant matrix: (). It follows at once that a quadratic function, i.e., one of the form

f(@) = 32"Qx + ' + k&,
is convex if and only if () is a positive semidefinite matrix.

Remark. In most linear algebra books, discussions of positive semidefiniteness include a
symmetry assumption. Thus, in talking about the positive semidefiniteness of a quadratic
form, 2'Qx, or of a matrix, Q, it is assumed that @ = QT. Notice that the definition
2TQxz > 0 for all = does not require a symmetry assumption on . For instance

EiEIE

But when the values of the quadratic form are essentially the issue, it is not restrictive to
assume that () is symmetric because for any square matrix (), we have the identity:

Q= %xT(Q + QM.

>0 for all z; and x».

and the matrix %(Q—i—QT) is symmetric. It is called the symmetric part of (). One motivation
for the symmetry assumption is that any real symmetric matrix has real eigenvalues, and a
symmetric matrix is positive semidefinite” if and only if its eigenvalues are all nonnegative.
This is a useful characterization of positive semidefiniteness. There are others as well. One

"One says that a square matrix Q is positive semidefinite if the associated quadratic form 2TQz is positive
semidefinite (and vice versa).
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of these is that a symmetric matrix is positive semidefinite if and only if each of its principal
minors is nonnegative. Still another is that a symmetric matrix is positive semidefinite if
and only if it equals AA™T for some matrix A. This sort of representation is called a matriz
factorization. Matrix factorizations are briefly discussed in Nash and Sofer [1996, Appendix
A.6]. For much more, see Golub and Van Loan [1983]. Two particular matrix factorizations
are noteworthy. One is called the LD LT factorization. In it, the matrix L is lower triangular
and D is diagonal. Any symmetric matrix possesses such a factorization. But note that
when the diagonal elements of D are nonnegative, it is possible to take their square roots.
Thus, if D = diag(di, .. .,dn,) and all the d;; are nonnegative, then we can define dy; = Vd;;
fori = 1,...,n and obtain LDLT = LLT where L = LD and D = diag(cfn, e sz) The
expression Q = LLT is called the Cholesky factorization® of (). Another criterion for
positive semidefiniteness of a symmetric matrix is the nonnegativity of all principal minors
(i.e., the determinants of all principal submatrices, the submatrices formed by deleting a set
of rows and the same set of columns). For example, the principal minors of Q = QT € R3*?

are det[ | =1, qu1, qo2, gs3,

det qi1 12  det qi1 413 . det 22 ({23 ~and  det Q.
d21 G22 31 (433 432 Q33
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2.4 Polyhedral convex sets

Within the family of convex sets in R", the ones that occur most frequently and are the most
tractable are the polyhedral convex sets. Such sets arise as the feasible regions of linearly
constrained optimization problems. This class includes linear and quadratic programming
problems and many others.

Recall that a hyperplane is the solution set of a (nontrivial) linear equation. Thus, if p # 0
is an n-vector, and « is a scalar (possibly zero), then the linear equation p'z = « defines a
hyperplane

H={ze€R": pw=a}.

Such sets are clearly convex.

A hyperplane is either a linear subspace (as when a = 0) or else is a translate of a subspace.
Suppose for example that a £ 0 in the definition of H above. Let us define

Hy={zr € R": p'z = 0}.

Then Hyj is a linear subspace (of dimension n — 1). Now notice that the point
o

= —

p'p

belongs to H. Furthermore, for arbitrary x € Hy the point x +x* € H. Conversely, if y € H,
then x = y — x* € Hy. This discussion shows that H is a translate of Hy. In particular,

p

T2

Figure 2.13

X1
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This representation is not unique. The point z* used here was chosen as the projection of
the origin on H. Notice that when ||p|| = 1, the scalar a equals the distance from the origin
in R" to the hyperplane H.

Associated with every hyperplane H = {x : p'x = a} is a pair of linear inequalities:
plxr<a and pl>a.

The solution sets of these linear inequalities are called halfspaces; we denote them (somewhat
arbitrarily)

H"={r:p2 <a},
H ={z:p2z>a}.

Note that HT U H~ = R", so the name halfspace seems appropriate. Notice also that every
hyperplane is the intersection of two halfspaces. In particular

H=H"NnH".

In algebraic terms, this says that the linear equation p'x = « is equivalent to (i.e., has the
same solutions as) the pair of linear inequalities

px<a and plx>a.
The significance of this observation is shown in the following definition.

Definition. A polyhedron (or polyhedral convex set) is the intersection of a finite set of
linear inequalities.

Figure 2.14
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Remark. The kind of linear inequalities we have in mind in this definition are of the “weak”
type (“<” or “>”) rather than the “strict” type (“<” or “>”). Notice that H* and H~ are
closed sets since their complements are open sets.

One sees immediately that an inequality such as ¢z < 3 is equivalent to one of the form
px > o where p = —q and o = —3. For this reason, it is not restrictive to say that a
polyhedron is the solution set of a finite system of linear inequalities such as

piTxZOQ-, 1=1,...,m.
This system of linear inequalities can be represented in matrix form as
Py >a
where PT € R™ " (that is, PTis a matrix of m rows and n columns) and a € R™.
Proposition 1. Every polyhedron is a closed convex set.
Proof. Let S be a polyhedron, say
S={z:plr>ai=1,...,m}

Then S is the intersection of m closed convex sets (halfspaces). Since the intersection of
closed sets is closed and the intersection of convex sets is convex, it follows that S is closed
and convex. (It may, however, be empty.) O

There is a slightly more direct way to prove the convexity assertion. If S contains less than 2
points, then it is clearly convex. Assume that S contains at least two distinct points x and y.
For an arbitrary 6 € (0,1), let z = 0z + (1 — 0)y. Then we have

P[0z + (1 —0)y] = 0P + (1 —-0)Py > 0a+ (1 —0)a=a.
This again shows that S is convex.

Simple examples (such as line segments and halfspaces) show that a polyhedron may or
may not be bounded. In the literature, bounded polyhedra are called polytopes. Recall
that in Handout No. 2 we defined a polytope to be the convex hull of a finite set of points.
Some further development is needed before we can justify the use of the term “polytope”
for a bounded polyhedron. This issue is related to the matter of internal and external
representations of convex sets. In fact, our definition of polyhedron is an external one.

2.4.1 Extreme points
For the moment let S denote any convex set, not necessarily a polyhedron.

Definition. A point € S is an extreme point of S if it cannot be expressed as a convex
combination of two other distinct points of 5.
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A convex set need not have any extreme points at all. Certainly an open ball (or any
relatively open convex set) has no extreme points. On the other hand, a convex set (such as
a closed ball) may have infinitely many extreme points. Some convex sets such as polyhedra
have finitely many extreme points, but a convex set with finitely many extreme points is not
necessarily a polyhedron.

Figure 2.15

One thing that makes extreme points interesting is the fact that certain kinds of optimization
problems have extreme point solutions. The most notable example of this is the linear
programming problem which in so-called standard form is

minimize clr
subject to Ax =10
x>0

Notice that the feasible region
S={x:Ax=0b, >0}

is mathematically equivalent to the intersection of the solution sets of a finite collection of
linear inequalities and hence is polyhedral. We shall not express the problem that way just
now because it is important to bring out the connection between the extreme points of S
and certain types of nonnegative solutions of the system Ax = b. To accomplish this (and
many other things), it will be helpful to introduce a little notation.

Let A be areal mxn matrix. The elements of A are ordinarily denoted a;; where: =1,...,m
and j = 1,...,n. The matrix A is just a rectangular array having m rows and n columns. It
is very useful to be able to refer to these rows and columns in a precise way, and that is the
purpose of the notational convention described here. For i = 1,...,m let A;. denote the i-th
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row of A. In like manner, for j = 1,...,n let A.; denote the j-th column of A. These ideas
can be generalized. Let ¢ C {1,...,m} and 7 C {1,...,n}. Then A,, is the submatriz
la;;] of A such that i € o and j € 7. Then, for example, A.; corresponds to the case where
o={1,...,m} and 7 = {j}.

Example. If we let

4 —1 2 5
A= =3 -1 91,
6 1 4 -5
then we have
2
AQ.:[—3 0 —1 9} and A= | —1
4

In terms of this notation, we can write the system of equations Az = b as
n
Z A.jl‘j =b.
j=1

The feasibility condition for the linear programming problem asks for the (right-hand side)
vector b to be expressed as a nonnegative linear combination of the columns of A.

Definition. A vector z € S = {x : Az = b, x > 0} gives a representation of the vector b
as a nonnegative linear combination of columns of A. The representation T uses column j
if and only if z; > 0.

Definition. The support of a vector z is the set of indices (subscripts) j such that z; # 0.
The support of z is denoted supp .

This is a special case of a more general concept.?

Theorem 1. Let A € R™*" be a nonzero matrix and let b € R™ be a nonzero vector. If
S ={x:Ax = b, © > 0} # 0, then there exists an element of S that uses only linearly
independent columns of A in representing b.

Proof. Let 2° € S be given. The hypothesis b # 0 implies that 2° # 0. In other words, z°
has a nonempty support, say 7. If A., has linearly independent columns, we are done. If the
columns of A., are linearly dependent, then there exists a nonzero vector & whose support is
a subset of 7 such that A..Z, = 0. Without loss of generality, we may assume that Z, has at
least one positive component. (Otherwise, use —Z, which does have a positive component.)

9In general, the support of a numerical function is the subset of its domain at which the function value
is nonzero. Vectors and matrices can be regarded as functions defined on their index sets. For example, if
x € R™, then z is a function defined on {1,...,n} and taking values in R. In particular, for j = 1,...,n, we
have z(j) = z;.
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Then for sufficiently small A > 0 the vector x? — AT, > 0 and for some positive value of A
the vector 20 — Az, will satisfy A.,[20 — AZ,] = b and have a smaller support than x° does.
This new vector can be used to replace 2°, and the process can be repeated. Eventually one
obtains a vector that uses only linearly independent columns of A in representing b. O

Definition. Let Z be a solution of the system
Ax=b, x > 0.

If 7 = suppz, and A., has linearly independent columns, then z is called a basic solution
of the system.

Theorem 2. Every basic solution of the system Ax = b, x > 0 is an extreme point of the
set of solutions of the system.

Proof. Let & be a basic solution of the system Az = b, x > 0 and let 7 = supp z. If Z is not
an extreme point of the set S = {x : Az = b, > 0}, then it lies on the open line segment
between two distinct points of S. Let these points be & and . For some o € (0, 1) we have
T =aZ+ (1 —«a)y. It follows from this that

suppZ C 7 and suppy C T.

Since z, x, y € S, we have
A'T'C?’.T = A'TjT = A-Tg‘r =b.

This in turn implies that
A (2, — ;) = Ar(@: — 7-) = 0.

Since A., has linearly independent columns, the above equations imply that = 7 = gy
which is a contradiction. O

Remark. It is clear that a polyhedral set can have at most finitely many extreme points.

2.4.2 Cones

The set of all nonnegative scalar multiples of a nonzero vector is called a ray. If d # 0, then
the ray generated by d is the set

<d>={zx:z=X\d, A >0}
A translate of a ray, that is, a set of the form
{z}+ < d >,
is called a halfiline.

Definition. Let C' be a nonempty subset of a linear space. If C' has the property that it
contains all nonnegative multiples of its elements, then C'is called a cone.
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Examples. The following are some cones:

e The entire space or any subspace thereof.
e The zero vector.
e A ray generated by a nonzero vector.

e The set of all nonnegative-valued functions (for example positive semidefinite quadratic
forms).

e The solution set of the linear inequality system Az > 0. These are called polyhedral
cones. In particular, the nonnegative orthant,

R} ={r € R": x > 0},
is a polyhedral cone.
e The polar of a cone C' in R" is defined to be

C*={y:y'z<0foralzeC}

it is a (closed convex) cone.

Figure 2.16

Remark. Some cones are convex, others are not. Any polyhedral cone i.e., the solution
set of a homogeneous linear inequality system such as Ax > 0 is convex. The set of all
nonnegative multiples of the elements of a nonempty convex set is a convex cone. The cone
generated by all nonnegative multiples of points in the union of two disjoint sets may or
may not be convex. For instance, let one of the sets be the epigraph of the convex function
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e~ where z € R,. Let the other be the ray < (1,0) >. The cone of nonnegative multiples
of points in the union of these two sets is R%, which is convex. But consider the example
illustrated in Figure 2.16. Each of the cones C, Cs, C3 is convex, and each can be considered
as the set of all nonnegative multiples of a convex set (such as a line segment cutting across
the cone). The union of any two of these three cones is not convex.

Proposition 2. Let a',a?,...,a" be vectors in R™. Then the set
<ad'>+<ad®>+-+<ad">={y:y= Az, v >0}
is a convex cone denoted pos A where a/ = A.;.

Proof. This is obvious. O

Cone of this form are said to be finitely generated. Sometimes they are called finite cones,
but they are not finite sets unless they are just the zero vector.

The following is an important result as we shall see later.
Theorem 3. Every finite cone is a closed set.

Proof. Let C be a finite cone. If C'is just {0}, then it is trivially closed, so we assume that
C # {0}. Thus we have
C={y:y= Az, x>0}

where A € R™™ is a nonzero matrix. Let {y*} be a sequence of points in C' converging to
y*. The object is to show that y* € C'. To do so, we prove that there exists a vector z* > 0
such that y* = Ax*.

Now if y* = 0, we may take 2* = 0 and we're done. So we assume y* # 0. For each y*
in the sequence, let x* be a nonnegative vector such that y* = Az* and the columns of A
corresponding to the support of 2* are linearly independent. There must be a subsequence
of {y*} converging to y* such that the corresponding {z*} all have the same support, say
7. To make the notation simple, we may assume that the entire sequence has this property.
Suppose the index set 7 contains r elements (i.e., A., has r columns). Then there exists an
index set ¢ such that the submatrix A,, is nonsingular. It then follows that
oy = ALy, — ALy,
and it is clear that
zt=AClyr > 0.

Ifj ¢, let xf = 0. Then z* > 0 and y* = Ax*, so y* € C. O
Proposition 3. Any linear subspace L of R" is a finite cone.

Proof. Let {a',a? ...,a"} be a basis for L. Then

L=<ad'>+<d®>+  +<ad>+<—-a'>+<—-a’>>+- 4+ < —a" >,
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so L is a finite cone. O
Notice that in the following theorem, the set C' can be specified entirely by linear inequalities.

Lemma. Let A € R™*™ be given. A polyhedral cone of the form
C={zx:Ax=0, >0}
is a finite cone.

Proof. We first dispense with two trivial cases. First, if C' consists of only the zero vector,
then C' = < 0 >. The second case is where A = 0. Then C' = R} and that is clearly the
finite cone generated by the unit vectors e!,...,e" € R". Hereafter, we assume that both
C and A have nonzero elements.! Now a suitable positive multiple of any nonzero element
of C' belongs to

S={r:Az=0, e'z =1, 2 >0}

where e = (1,...,1)T € R™. Notice that the polyhedral set S is properly contained in C. If
n = 2, our assumptions above lead us to the consideration of only one possibility: that the
rank and nullity of A equal 1. Then C' = < p > where p > 0, and S is a single point, which
is an extreme point of S by default.

As an inductive hypothesis, assume that when A has at most n — 1 columns, then every
point of S is expressible as a convex combination of extreme points of S. Since S has only
finitely many extreme points in all, the inductive hypothesis amounts to saying that S is a
polytope. Now suppose A has n columns. If the support of a point & € S has cardinality
less than n (i.e., fewer than n elements), then the inductive hypothesis applies. If z > 0,

e e AR R |

If the columns of A are linearly independent, then Z is an extreme point. If the columns of
A are linearly dependent, then by Theorem 1, there exists an extreme point z* of S. Under
the present assumptions, z* has at least one zero component, and since e'z* = e’z = 1, it
follows that x} > zj for some k. Now define the scalar

*

xX:
A =max — > 1.
7 x'L

It is easy to see that
1

T=——M\z—2x")€S.

L )
But 7 has at most n — 1 positive components and hence is a convex combination of extreme
points of S. From the definition of z, it follows that

__1*+<1_1)~

10This implies n > 1.
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Thus, Z is a convex combination of extreme points of S. Since S has only finitely many
extreme points and every element of (' is a nonnegative linear combination of these extreme
points, it follows that C' is a finite cone. O

This lemma can be expressed as follows.
Corollary 1. If L is a linear subspace of R", then L N R’} is a finite cone.
Proof. Any linear subspace of R" is the nullspace of some matrix A. Hence
LNR} ={x:Az=0, 2>0}=C,
and we have just shown that C' is a finite cone. O
We come now to an important result. Recall that A € R™*™,
Theorem 4 (Minkowski). Every polyhedral convex cone
C={z:Azx >0}
is finite.

Proof. Let L = {y : y = Az, x € R"}. (This is just the column space of A.) Then L is a
subspace of R™, and by the lemma (or by Corollary 1) above, we have

LNRY =<yt>+- <y >

for some vectors y',...,y" € LNR7. For each i =1,...,7 we have y* = Az". If z € C, then
Arx € LN R, so

Axr = Z Nyl = Z i (Az")
i=1 i=1

where \; > 0 for e =1,...,r. Thus,

A (x - Z)w;’) =0.
i=1

This equation means = — Z Mz’ belongs to the nullspace of A which is a finite cone. Hence

i=1
there exist vectors #1,...,4% and nonnegative scalars 1, ..., t, such that

T S
r — Z)\iasi = Zuji“j.
i=1 j=1
Rewriting this equation, we have

T =Y Nt + > pd
i=1 j=1
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in which all the scalar coefficients are nonnegative. Thus we conclude that
CC<a'>+- <" >+<i >4 +<3°>.

The reverse inclusion is straightforward hence we have equality which shows that C'is a finite
cone. U

Minkowski’s theorem says that every polyhedral cone is finite. The next theorem will com-
plete the two-fold representation of convex cones, but before we come to that, we need the
following proposition.

Proposition 4. Let C' be a nonempty cone in R". Then C' = C** (the polar of its polar) if
and only if C' is closed and convex.

Proof. Recall that the polar of a cone is always closed and convex. Since C** is the polar
of the cone C*, it is closed and convex. Accordingly, if C' = C**, then C' must be closed and
convex because C** is so.

For the converse, we first observe that C C C**. Indeed, for all z € C we have y'z <
0 for all y € C*. But y'r = 2. This implies that z € C**. Since x was arbitrary, we have
C C C**, as claimed. Next we claim that the set C**\ C is empty. (In otherwords, there are
no vectors in C** that do not belong to C.) Otherwise, there must exist a vector 2 € C**
such that Z ¢ C. Since 2 € C**, we know (from the definition of the polar) that Ty < 0
for all y € C*. Since C' is assumed to be closed and convex, there exists a hyperplane that
separates Z from C'. Because the latter is a cone—and therefore contains the zero vector—it
follows that there exists a vector ¢ such that

glr <0foralazecC (1)

and

gz > 0. (2)
Equation (1) implies g € C*. But then equation (2) contradicts the assumption that Z € C**.
Hence C** \ C is empty as asserted. O

Theorem 5 (Weyl). Every finite cone is polyhedral.

Proof. Consider the finite cone .
C=> <ad>
i=1
Now consider the polar cone
C*={y:y%a'<0, i=1,...,r}

It is clear that C* is a polyhedral cone. By Minkowski’s theorem, the polar cone C* is finitely
generated. Let

Cr=> <V >
j=1
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Now the polar cone C** of C* is polyhedral. Because C' is closed we have C' = C**. These
observations show that C'is polyhedral. O

As an application of Weyl’s theorem, we can prove something that seems geometrically
obvious but still requires a proof.

Corollary 2. Every polytope is a polyhedral convex set.

Proof. Let S = co{z?!,...,2"}. Then we have
x - z' :

Let C be the finite cone generated by the vectors

By Weyl’s theorem, there exists a matrix A = [A.; ..., A.,, A.,11] such that

ceC <= Aqx1+ -+ Az, + A6 > 0.

Now take
A= [A.l s A.n] and b= _A-n+1-
Then
[ 956' € (C < Ax > €.
Since
resS— [ 317 1 e C,
it follows that Ax > b for all x € S. Conversely, if Ax > b, then [ f € C, and this says
that z is a convex combination of z!,...,2". That is, z € S. This shows

S =co{x',...,2"} = {x: Az > b}
so that S is polyhedral. O
2.4.3 The structure of polyhedra

The definition of a polyhedral set as the intersection of finitely many halfspaces is an external
one. There is another way to generate polyhedral sets as we shall see below.
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Relative to the polyhedral set S = {x : Ax > b} we define the polyhedral cone given by the
linear inequalities

Az —¢b>0, £€>0.

To bring out the similarity with the formulation used earlier, we write

- L] 2]

On one hand, if z € S, then § = [ f } € Y. On the other hand, if Y contains any point

1

=

gz{"g}suchthat§>0,then2§:65and[

finite cone, say

] € Y. By Minkowski’s theorem, Y is a

Y=<y'>+ - +<y>.

If S is nonempty, then Y contains some points y = [ 950 } for which € > 0. Hence at least

one of the generators of Y must have a positive (n + 1)-st component. Let the generators
y', ...,y be separated into two subsets: those with & > 0 and those with ¢ = 0. By positively
scaling and reordering the y*, k= 1,...,t, we may assume they are

RG]

It could happen that » = t, however. Thus, y = [ z } € Y means
T i t i
x x x
=> N + Y
MR

where \; > 0, ¢ = 1,...,t. For every x € S, the point [ i } € Y. The significance of the
equation above for the last component is that Ay + --- 4+ A\, = 1. Thus it follows that

T t
d Nzt €co{z',...,2"} and D Az’ €pos{z’, ... 2"}
i=1 i=r+1
This proves the following important resolution theorem.

Theorem 6 (Motzkin; Goldman). If S = {z : Az > b} is nonempty, it is the sum of a
polytope and a finite cone. O

This theorem has a useful corollary.

Corollary 3. If the polyhedral set S = {x : Ax > b} is nonempty, then it is bounded if and
only if the cone C' = {z : Az > 0} contains only the zero vector.

Proof. If C' contains a nonzero vector, say d, then = + ad € S for any a > 0. This implies
that S cannot be bounded. In plainer language: If S is bounded, C' = {0}. Now assume
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C = {0}. In the proof of the resolution theorem, the generators y* of Y with £ = 0 (i.e.,

Yyt oyt give generators 27T L 2t for C. But if C' = {0}, these generators are zero,

so S is a polytope, and hence is bounded. O
Extreme-point optima

The resolution theorem can be used to prove an important fact about optimal solutions of
linear programs. We shall discuss this result in terms of linear programs in standard form.
This is not restrictive because a feasible region described by the constraints

Ar=0b, x>0
is also expressible as the set of vectors satisfying
Ar >b, —Ax>-b, and x>0,

consequently, the Motzkin-Goldman resolution theorem applies to the feasible region of a
linear programming problem in standard form.

Theorem. If the linear program

minimize cr
(P) subject to Az =1b
x>0

has an optimal solution, then there exists an extreme point of the feasible region of (P) that
is optimal.

Proof. Let S denote the feasible region of (P), and let z € S be an optimal solution of this
linear program. Thus, S is a nonempty polyhedral set. As such, it is the sum of a polytope
and a finite cone. If ¢'Z < 0 for any element 7 of the finite cone, then the objective function
in (P) has no lower bound on S, so there cannot exist an optimal solution such as z. Now
letting

T t
=1

i=r+1

t
et Z Nzt = 0.
1=r+1

Indeed, we have just shown that this quantity must be nonnegative. If it is positive, then

T t s
'z =ct (Z izt + Z )\ixi) > ¢t (Z )\i:ci> .
i=1 i=1

i=r+1

we can see that

Since

Z )\ZJZZ € S,
i=1
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we have a contradiction regarding the optimality of z. We may now assume that all the
points x',... 2" are in fact extreme points of S. (Otherwise remove any points that are
convex combinations of the other points in this set.) Let

r* =argmin{cz’:i=1,...,r}.
Then

t
'z = CT< Z Aﬂ’) > iyt > 'z

i=r+1

Hence z* is an optimal extreme-point solution of (P). O
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2.5 Alternative theorems

What can you say when a system of linear equations Az = b has no solution? One thing you can
say is that the rows of the matrix A must be linearly dependent. This, in turn, implies that there
exists a nonzero vector y such that y* A = 0. But more can be said, as the following lemma reveals.

Lemma. If A € R™*"™ and b € R™, then exactly one of the following systems
Az = b, (i)
yTA =0T yTv>0 (ii)
has a solution.

Proof. It is impossible for both systems—(i) and (ii)—to have a solution, for otherwise, there exist
x and y such that

0=y"Az =y"b>0

which is a contradiction. Now suppose (i) has no solution. From the fact!! that R™ = R(A) +
N (AT), we know there exist vectors x and u such that

b= Az + Z% u

where ZTis a basis for the nullspace of AT. Now y := ZTu # 0 (otherwise system (i) has a solution).
Thus, we have yTA = 0T and

ytb=uTZAz +u"Z Z =0+ yty > 0,

which is to say that (ii) has a solution. O

This lemma will play an important role when we study nonlinear programming. For now, it
illustrates a class of results known as theorems of the alternative. More simply, these are called
alternative theorems or transposition theorems.

1 Courses like Mathematics 113 make a big point of the fact that given A € R™*", the space R™ can be
expressed as the range of A plus the nullspace of AT.
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As an extremely important application of the inequality theory developed in previous sections, we
have other alternative theorem involving pairs of inequality systems!? that use the same data, but
in different ways. What these theorems have in common is the assertion that ezactly one of the
linear inequality systems in the given pair has a solution.

Theorem 3 (Handout 4) says that for any real matrix A, the set pos A = {Az : > 0} is closed.
The following is probably most famous of all alternative theorems.

Theorem 1 (Farkas). If A € R™*" and b € R™, then exactly one of the following systems
Ar=b, x>0, (1)
yTA < 0T, yTb >0 (2)
has a solution.

Proof. First, suppose systems (1) and (2) both have solutions, say & and ¢, respectively. Then we
have
0<g'b=g%(Az) = (§TA)z < 0.

This is a contradiction. Hence at most one of the systems (1) and (2) can have a solution. To
complete the proof, if is enough to show that if (1) has no solution, then (2) does have a solution.

If (1) has no solution, then b ¢ pos A. By the separation theorem (Handout No. 2, middle of page
9) there is a nonzero vector y and a scalar o such that

yI(Az) <a forallz >0 and y'b> o

Letting = 0, we see that o > 0. This implies y*b > 0. Since pos A is a cone, we may assume that
in fact yTz < 0 for all z € pos A. (Otherwise, some positive multiple of z would be larger than yTb
which is impossible.) Now, among the elements of pos A are the columns of A itself. (To see this,
consider A.; for some fixed j. Take z; = 1 and z, = 0 for k # j. Then z = Az = A.; € posA.)
Thus, we may assume « = 0. This shows that y is a solution of the system (2). O

Remark. TFor some reason, Theorem 1 is known in the literature as “Farkas’s lemma.” The
theorem appeared in a paper by the Hungarian mathematician J. Farkas (Theorie der einfachen
Ungleichungen, Journal fir die reine und angewandte Mathematik 124 (1902), 1-27) where it was
identified as a Grundsatz, or principle, not as a Hilfsatz, or lemma. Reluctantly, we follow the well
established tradition.

Farkas’s lemma can be used to establish many other alternative theorems. Our presentation is
not exhaustive but should be extensive enough to make the point that Farkas’s lemma is a useful
theoretical tool. It should be noticed here that in proving alternative theorems, our approach is
first to show that not both systems can have solutions and then to cast one of the two systems as an
equivalent system having the form (1). The application of Farkas’s lemma then implies that some
alternative system does have a solution, and this alternative system is equivalent to the member of
the pair for which we want to demonstrate the existence of a solution.

12By “inequality systems” we mean systems of linear equations and/or linear inequalities that involve at
least some linear inequalities.
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Theorem 2. If A € R™*" and b € R™, then exactly one of the following systems
Az >b, x>0, (3)
y>0, yTA<0T, ¢yTb>0 (4)
has a solution.

Proof. It is impossible for both (3) and (4) to have solutions, for otherwise there would be Z and §
such that
0<g'b<§(Az) = (§7A)Z <0

which is a contradiction.

It is sufficient to prove that if (3) has no solution, then (4) does. Now if (3) has no solution, then
the system

Ar —ITu=b, >0, u>0 (3"

has no solution. Note that (3’) can be regarded as an instance of a system like (1), that is, a system
of linear equations in nonnegative variables. Now if (3’) has no solution, then there exists a vector
y such that

yT [Aa _I] < (OT7 0T)> yTb > 0. (4/)
Any solution of (4') is a solution of (4) and vice versa. This completes the proof. O

As another application of Farkas’s lemma we consider a pair of homogeneous systems. Notice that
the system (5) below has strict inequalities, whereas system (6) involves a nonzero, nonnegative
vector.

Theorem 3 (Gordan). If A € R™*", then exactly one of the following systems
Ax > 0, (5)
y>0, y#0, y"A=0" (6)
has a solution.

Proof. It is impossible for both (5) and (6) to have solutions, for otherwise there would be Z and g
such that
0 <71 (Az) = (7TA)z =0

which is a contradiction.

Assume that (5) has no solution. Then neither does the system Az > e where e is the vector of ones
in R™. Now this is a system like (3) except for the fact that the variables are not sign restricted.
To take care of that we can substitute the difference of two nonnegative vectors for x. Thus, we let
x =2’ — 2" where 2’ > 0 and z” > 0. Then the system under consideration can be written as

Ax' — Ax" >e, 2/ >0, 2" >0. (5"
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Hence if (5) has no solution, then neither does (5’). By Theorem 2, there exists a vector y such
that

y>0, y'lA, —A] < (0%, 07), yle>0 (6)
It follows from (6') that y satisfies the conditions of (6). O
We now turn to another application of alternative theorems.
2.6 Duality in linear programming

With every linear programming problem there is another linear programming problem called its
dual. Relative to this second linear program (LP), the original one is called the primal problem.
These problems are intimately related as we shall see.

As an example, consider the linear programming problem in standard form

minimize cx
subject to Az =1b
x>0
The dual of this problem is defined to be
maximize by

subject to ATy < ¢

Notice the following important relationships between this primal/dual pair.

1. The primal is a minimization problem whereas the dual is a maximization problem.

2. The main constraints of the primal are linear equations in nonnegative variables, whereas
the constraints of the dual are linear inequalities (of the < type) and the variables have no
explicit sign restriction on them. Such variables are said to be free.

3. When A € R™*", there are n primal variables and n dual constraints, and there are m linear
equations in the primal and m free variables in the dual. Thus, the variables of each problem
are in one-to-one correspondence with the constraints of the other problem.

To illustrate the intimate connection between an LP and its dual, we begin by considering the
following simple relationship.

Proposition 1 (Weak duality). Let T be an arbitrary feasible solution of the linear program in

standard form -

minimize cx
subject to Ax =b

x>0,
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and let ¢ be an arbitrary feasible solution of the corresponding dual problem

maximize by
subject to ATy < c.

Then

Proof. Using the feasibility of the two vectors Z and 7, we obtain
b= (Az2)y =714y < z%c = 'z

which gives the assertion. O

This weak duality inequality has an important consequence.

Corollary 1. Let z and 7 be feasible solutions of the linear program in standard form and its dual,
respectively. If b%j = ¢z, then Z and § are optimal solutions of their respective linear programs.

Proof. Suppose 7 is not optimal for the dual problem. Then there exists a dual feasible vector
g such that b7y > b7y = ¢'z. This contradicts Proposition 1. Hence § is optimal for the dual
problem. In like manner we can show that Z is optimal for the primal problem. O

One place where an alternative theorem can be put to use is in proving the strong duality
theorem.

Theorem 1 (Strong duality). If # is an optimal solution of the linear program

minimize Tz
subject to Ax =b
x>0,

then there exists an optimal solution § of the corresponding dual linear program and moreover

by = 'z

Proof. It will suffice to prove the existence of a solution to the linear inequality system
ATy <ec
—bly < —c'z

since any solution of the latter system would be a dual feasible solution yielding a dual objective
value equal to the optimal objective value of the primal. Now this system can be converted to an
equivalent system of linear equations in nonnegative variables. That system is

el el Y] )] ]
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v,y u, v > 0.

Now if this system has no solution, then by Farkas’s lemma, there exists a scalar 5 and a vector T
satisfying the follow conditions:

b
z 0
el 10

cli > §~ 'z

o
LAY

T =

IN

Defining £ = —% and é = —5 we obtain a solution to the system

Now we note that f > 0. Otherwise, f = 0, implying that & + A% is primal feasible for all A > 0.
Since ¢(Z +\#) — —o0 as A\ — 400, we see that the primal has no optimal solution, but instead
has an unbounded objective function. Therefore f > 0. Finally, we obtain the contradiction that
(1/€)# is a primal feasible vector for which the primal objective function value is less than the
assumed optimal value ¢'z. O

Remark. In effect, strong duality theorem amounts to the converse of Corollary 1. Thus, a vector
Z that is feasible for the LP (in standard form) is an optimal solution of that problem if and only
if there exists a vector ¢ that is feasible for the dual problem and ¢'z = b%. This is an example of
an optimality criterion, a set of necessary and sufficient conditions for a vector to be optimal for
the linear programming problem. Here is another.

Corollary 2 (Complementary slackness conditions). A vector Z is optimal for the LP (above)
if and only if there exists a vector y such that

Az =b (7)
Alg<e (8)

T (c— AT =0 (9)
z>0. (10)

Proof. Conditions (7), (8), and (10) assert the feasibility of Z and § in the primal and dual
problems, respectively; along with (9), these conditions are equivalent to the equality of the two
objective function values. O
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Looking closely at (9), we see a statement to the effect that the scalar product of two nonnegative
vectors, Z and ¢ — AT is zero. Such a thing holds if and only if

zj(c— ATy); =0, j=1,...,n.

This means that for all j = 1,...,n, at most one of the two factors Z; and (¢ — ATg); can be
positive. Thus, if the jth primal variable Z; is positive, the jth dual constraint (A.;)'y < ¢;
must hold with equality. By the same token, if the jth dual constraint is slack (i.e., does not hold
as equality), then the jth decision variable must be zero. These are known as complementary
slackness conditions; they come up frequently in optimization work.

References

D. Bertsimas and J.N. Tsitsiklis [1997], Introduction to Linear Optimization, Athena Scientific,
Belmont, Mass.

D. Gale [1960], The Theory of Linear Economic Models, McGraw-Hill Book Company, Inc., New
York.

H.W. Kuhn and A.W. Tucker, eds. [1956], Linear Inequalities and Related Systems, Princeton
University Press, Princeton, N.J.

O.L. Mangasarian [1969], Nonlinear Programming, McGraw-Hill, New York. [Reprinted in softcover
by SIAM Publications.]

A. Schrijver [1986], Theory of Linear and Integer Programming, John Wiley & Sons, Chichester.

J. Stoer and C. Witzgall [1970], Convezxity and Optimization in Finite Dimensions I, Springer-
Verlag, New York.



MS&E 311 Handout No. 6
Optimization February 2, 2004
Prof. R.W. Cottle Page 1 of 19

3. OPTIMALITY CONDITIONS

3.1 Generalities

As defined in these notes, the linear programming problem in standard form is

minimize clx
subject to Ax =b
x> 0.

Corollary 2 at the end of Section 2.6 (Handout No. 5, page 7), states the so-called complementary
slackness conditions

These are conditions which—for some g—must hold if Z is an optimal solution of the given LP.
In other words, these are necessary conditions of optimality for the stated linear programming
problem. The vector ¢ is, in fact, an optimal solution of the dual of the given (primal) linear
programming problem. These complementary slackness conditions are also sufficient conditions.
That is to say, if Z and ¢ satisfy them, then, Z is optimal for the primal problem (and ¥ is optimal
for the dual problem). Making minor modifications, we can develop corresponding optimality
conditions for other forms of the linear programming problem. For the time being, we may regard
the treatment of optimality conditions in linear programming as complete.

In these notes, we discuss an important optimization-theoretic question: How does one recognize
an optimal solution to a nonlinear programming problem?

In all forms of mathematical programming, a feasible solution of a given problem is a vector that
satisfies the constraints of the problem. If the problem has the form

(P) minimize f(x) subject to z €S,

a global minimizer is a vector  such that
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zeS and f(z)< f(x) forall xzeb.

Finding a global minimizer is normally the goal of any minimization problem, but sometimes one
has to settle for a local minimizer, that is, a vector ¥ such that

zeS and f(z)< f(x) forall x e SNN(x)

where N(Z) is a neighborhood of z. Typically, N(Z) is just some open ball Bs(Z) centered at
and having what is deemed to be a suitably small radius, § > 0.

The value of the objective function f at a global minimizer or a local minimizer is also of interest.
Accordingly, we can speak of f(Z) as the global minimum value or a local minimum value,
according to whether Z is a global minimizer or a local minimizer, respectively.

In many instances, nonlinear programming problems are specified by functions that are differ-
entiable or even continuously differentiable over the feasible region. Sometimes the functions
are twice continuously differentiable. The theory distinguishes these two cases and develops
first-order optimality conditions and second-order optimality conditions. As the names
suggest, first-order optimality conditions involve derivatives of order no higher than one, whereas
second-order optimality conditions involve derivatives no higher than two.

To put this in a familiar context, consider a differentiable function f of one variable defined on an
open set S. If Z is a local minimizer of f, then f’(Z) = 0. This is a first-order necessary condition.
As is well known, this condition is not, in general, sufficient. It does not distinguish between local
minimizers, local maximizers or points of inflection. However, if the function is twice differentiable
and (in addition to the first-order condition) the second-order condition f”(Z) > 0 is satisfied, then
Z is a local minimizer.

The theory of optimality conditions developed in this chapter will be of a more general nature. In
addition to being applicable to the multivariate case, it will pertain to constrained optimization
problems. The types of constraints considered will first be equations, then inequalities, and finally
combinations of the two. We shall begin by dealing with first-order optimality conditions and then
turn to second-order conditions.
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3.2 Classical first-order conditions
In this section we restrict our attention to first-order optimality conditions.
3.2.1 Descent directions

In many cases, the functions involved in the specification of a nonlinear program are differentiable.
When this is so, there are usually conditions involving (partial) derivatives that must hold. The
following is a familiar simple case from multivariate differential calculus.

Proposition 1. Let U C R" be open and suppose f : U — R is differentiable at the point z € U.
If Z is a local minimizer of f on U, then'3

Vf($):<a'§$(f),...,aa];(?>:0. O

It should be noted that this is a first-order necessary condition of local optimality. This vanishing
of the gradient vector must occur when the hypotheses of the proposition are fulfilled. The condi-
tions are not sufficient, however. That is, a vector that makes the gradient vector vanish need not
be a local minimizer. Plenty of illustrations of this fact are available with differentiable functions
of a single variable. In that case the point in question could be a local maximizer or a point of
inflection. As a two-variable example one thinks immediately of the function f(z1,72) = 23 — 23.
The gradient of this function vanishes (i.e., equals the zero vector) at the origin, but the origin is

not a local minimizer (or maximizer) but rather a saddlepoint.

Let U C R" and let f : U — R be a differentiable function on U. If # € U and there exists a vector
p such that

p'Vf(z) <0,
then there exists a scalar 7 > 0 such that
f(z+7p) < f(z) forall 7€ (0,7).

The vector p (above) is called a descent direction at z.

Recall from multivariate calculus that if Vf(Z) # 0, then Vf(z) is the direction of steepest
ascent at T. (This follows from the Cauchy-Schwarz inequality.) It then follows that —V f(z) is
the direction of steepest descent at .

13Remember that we consider all vectors to be columns unless they are transposed to become row vectors.
In particular, when we write Vf(Z) = (88)‘7(12)7 e %
even though it is written horizontally as if it were a row. The use of parentheses around the components of

the vector is intended to indicate that we are referring to a column vector.

), we are actually referring to a column vector
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3.2.2 The method of Lagrange multipliers

Let us consider the classical equality-constrained problem

minimize f(x)
(P) subject to ¢i(x) =0 i€&
reR"

Let the index set & = {1,...,m}. Collectively, the functions ¢; above can be thought of as the
components of a mapping

c1(x)
c(z) = :
cm ()

from R™ to R™. Thus © = (z1,...,2,) — c(x) = (c1(z), ..., em(2)).

Suppose the functions f,c1,...,c, are differentiable on R™. Accordingly, each of these functions
has a gradient at every point x € R"™ so we can form the Jacobian matrix of the mapping ¢. Our
definition of the Jacobian matrix will be
Oci(x)
oz |’

We are defining the Jacobian of ¢ to be the matrix whose rows are the transposes of the gradients
of functions ¢y, ..., ¢py.

The notation used for the Jacobian of the mapping ¢ in the mathematical (programming) literature
is far from standard.'® The one used here will be

Ve(z) = [agij)] :

It is helpful to remember that when the mapping c¢(z) is the linear transformation Az, the Jacobian
matrix is just Ve(z) = A. Notice that in this special case, the Jacobian is a constant, whereas in
general it is mapping from R™ to R™*™.

For what we are going to consider below, it makes sense to add the restriction that m < n. This is
because we are going to need a linear independence assumption on the rows of the Jacobian matrix.
Since V¢ is an m X n matrix, its rows can be linearly independent only if m < n. A vector Z at
which Ve(Z) has linearly independent rows is sometimes called regular point of the mapping c.
(See, for example, Bertsekas [1995].)

11n fact, it is chaotic.
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The following is another result from multivariate differential calculus. It gives necessary conditions
of local optimality for the equality-constrained problem (P). It should be remembered that the
objective function f and the constraint functions ¢; are assumed to be continuously differentiable
at the local minimizer.

Theorem 1 (Lagrange). Let Z be a local minimizer of (P). If the functions f and ¢y, ..., ¢y, are
continuously differentiable at = and the Jacobian matrix Ve(z) has rank m, then there exist scalars

Y1, - -+, Ym such that

Vf(f) — iyZch(a‘c) =0. O

i=1

Recall that the numbers 41, ..., ¥, are called Lagrange multipliers; the function
m
L(z,y) = f(z) - Z%Q(iﬂ}
i=1

is called the Lagrangian function, or simply Lagrangian, for (P). For any such problem!?, one
can always form the Lagrangian function. In some circumstances, however, the assumptions made
in the theorem might not hold, and hence the theorem’s conclusion might not be valid.

The theorem stated above says, in effect, that when Z is a local minimizer for (P), and the Jacobian
matrix has full rank, then there exists a vector § € R™ such that the pair (z,7) is a stationary
point of the associated Lagrangian function. To appreciate this, it is helpful to define the partial
gradients

me:(aL 8L)'

ox1’ " Oz,

oL oL
VL= (g )
oy Oym
Then, first of all, it is clear that VL(z,y) = (Vs L(z,y), VyL(z,y)). Moreover,
VoL(z,y)=Vf(x)— Z y;Vei(x)
i=1

Y, L{w.y) = —c(x)

3.2.3 The need for a regularity condition

5There is a slightly subtle point here. The Lagrangian function for (P) is given by the functions used to
represent (P). If the functions are changed, the Lagrangian will change correspondingly. Even if the feasible
region is not altered by the change in its representation, the properties of the functions used may be different,
possibly invalidating certain assumptions.
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In the preceding theorem, the assumption that Ve(z) has full rank is an example of a regularity
condition. Lagrange’s theorem is not valid unless this regularity condition holds.

Example 1. Consider the problem
minimize T
subject to 2% + (w2 —1)2-1=0
24 (ra+1)2—-1=0

Notice that this problem has exactly one feasible point: & = (0,0), which must therefore be optimal.
In this case we have

Under these circumstances, there cannot exist Lagrange multipliers ¢ satisfying the condition
V.L(z,y) = 0.

The explanation for what happens in Example 1 is very simple. Indeed, the conclusion of Lagrange’s
Theorem says that V,L(Z,y) = 0. This equation can be written in the form

V@) => 5Ve(a),
=1

an interpretation of which is the statement that V f(z) belongs to the column space of the matrix
(Ve(Z))T. When the latter is rank deficient (as in the example), there will be vectors in R™ that
do not belong to this column space, namely all nonzero vectors in the orthogonal complement of
the column space of the transposed Jacobian matrix, (Vec(z))T. Since any vector in the orthogonal
complement can be regarded as the gradient of an affine function, it follows that when the Jacobian
matrix of ¢ at a local minimizer has linearly dependent rows, there will always be functions f for
which V,L(Z,y) # 0, that is, where the conclusion of Lagrange’s Theorem does not hold.

This material should be somewhat familiar from your multivariate calculus course. If not, you
might wish to brush up on it.'6

3.3 First-order conditions for inequality-constrained problems

Let us now consider the inequality-constrained problem

minimize f(z)

(P)

subject to ¢;(x) >0 i€l

16See, for example, Fleming [1977, p. 161].
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In this case we shall let Z = {1,...,m} and use the functions ¢y, ...,c, as coordinates of the
mapping g : R" — R™. If, at some vector Z, we have ¢;(Z) = 0, then the i-th constraint is said to
be active or binding at z. Relative to this problem, we define the (possibly empty) set

A(z) :={i € T:¢(z) =0}.

3.3.1 The KKT constraint qualification (regularity condition)

Let Z be a feasible point for the inequality-constrained problem (above) in which all the functions are
differentiable. Assume A(Z) # (). We say the Karush-Kuhn-Tucker constraint qualification
is satisfied at Z if for every nonzero solution v of the inequality system

vIVe(Z) >0 for all i€ A(T)

there exists a differentiable curve
~v:10,1] — R"

whose image is contained in the feasible region such that
v(0) =2z, ~'(0)=rv for some k > 0.

Theorem 2 (Karush [1939]; Kuhn & Tucker [1951]). If 7 is a local minimizer for (P), and

the (KKT) constraint qualification is satisfied at Z, then there exist numbers 71, ..., ¥, such that

Vf(:f‘) - igIVcl(jz) =0
=1

yi =20
1=1,...,m
gici(i'):()

Proof. If A(zZ) = 0, take all the g; = 0. If A(Z) # 0, consider the linear inequality system:

vIVf(Z) <0
vIVe(Z) >0 forall i€ A(%)

Notice that any solution v of this system must not be a zero vector. Because of the constraint
qualification, this system cannot have a solution because T is a local minimizer. By Farkas’s
Lemma, there exist scalars y; > 0 for all ¢ € A(Z) such that

i€A(T)

For ¢ ¢ A(zx), take y; = 0. This does it. O
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The first-order necessary conditions of local optimality (in the theorem above) are called the
Karush-Kuhn-Tucker conditions. The vector Z is called a KKT stationary point, and
(z,7y) is called a KKT pair. Thus, to say that Z is a KKT stationary point means that there
exists a vector § such that (z,y) is a KKT pair, i.e., satisfies the KKT (first-order necessary)
conditions of local optimality.

Example 2. The need for a constraint qualification is illustrated by the following problem.

minimize —I

subject to (1 —z1)% — 29 >0
1 >0 .
x9 >0

The feasible region of this problem is the compact (but nonconvex) subset of the first quadrant
lying between the nonnegative axes and the cubic curve. Here we see that z = (1,0) is the one and
only global minimizer. The corresponding index set of active constraints is A(z) = {1, 3}. Denoting
the objective function by f and the three constraints in order as ci, co, c3, we find that

Vf(a:)—[_(l)], vcl(x)—l_?], v(;g(x)—[(l’].

As in the previous example, this reveals that the stationarity condition cannot hold.

Definition. Let S be a nonempty subset of R™, and let T € cl1 .S be given. The cone of feasible
directions at T is the set

D:={deR":d#0, 2+ \d € S for all A € (0,0) for some 0 > 0}.

Note that the cone of feasible directions is not a cone in the strict sense of the word because it
cannot contain the zero vector which is ordinarily required in the definition of a cone. This caveat
pertains to the following term.

Definition. Let the function f be differentiable at the point Z € R™. If Vf(Z) # 0, the cone of
descent directions at T is the open halfplane

Fo:={d e R":d*Vf(z) < 0}.

If S is the feasible region of a minimization problem in which f is the objective function, then
FoND = can be regarded as a geometric condition for T € cl.S to be a local minimizer.

Now consider a nonlinear programming problem
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minimize f(z)
(P) subject to ¢i(z) >0 i=1,...,m

x € X  nonempty, open

Define the set
Go:={d:d"Ve¢;(z) >0 forallic A(z)}.
Then the statement
FoNnGo=10

can be regarded as a necessary condition of local optimality for (P).

Example 3. Consider the optimization problem

minimize (21 — 1)% + (22 — 1)?
subject to (1 — a1 —22)3 >0
(P)

11120

IL‘QZO

). The feasible region of (P) is the same as

N[

This problem has a unique optimal solution: = = (%,
that with constraints
z1+22 <1, 2120, x22>0.

Let & = (Z1,%2) be any point satisfying Z; + Zo = 1. With ¢1(z) = (1 — 21 — 22)3, we have
- - N -1 0
Vei(#) = 3(1 = &1 — &2)° [ -1 ] - l 0 ] :

so Gg = 0 and hence Fy N Gg = 0.

This example illustrates the fact that the necessary condition of optimality given above can be
satisfied by infinitely many nonoptimal points in the feasible region as well as by the optimal
solution. The example also gives an instance of a (feasible) set that can be represented by linear
constraints as well as nonlinear constraints. It must be conceded, however, that this example is a
bit of a museum piece. Such cases are not normally encountered in practice.

3.3.2 Fritz John’s Theorem
Theorem 3 (F. John [1948]). If  is a local minimizer of the optimization problem
minimize f(z)

(P) subject to ¢;(z) >0 i=1,...,m

x € X  nonempty, open
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in which the functions f and ¢; (i = 1,...,m) are differentiable on X, then there exists a set of
nonnegative scalars A\g, A1, ..., Ay not all of which are zero such that

Xici(z) =0, 1=1,...,m,

and .
V() =) AiVei(z) = 0.
=1

Proof. We may assume that A(z) # (). Since Z is a local minimizer of (P), the system
VIV F(Z) <0
vIVe(7) >0 for all i € A(Z)

has no solution. Accordingly, by Gordan’s Theorem (Handout No. 5, page 3), there exist nonneg-
ative scalars Ao, A; (i € A(Z)) not all of which are zero such that

MVf(@) = Y ANiVe(z)=0.
i€ A(T)

Ifie{1,...,m}\ A(z), define A; = 0. This completes the proof. O

Remark. Notice that this theorem requires no constraint qualification, yet we know that a con-
straint qualification is required. So what’s the catch? The catch is that the scalar A\g might equal
zero. Notice, though, that if Ay > 0, then the conclusion of the Karush-Kuhn-Tucker theorem holds
with the multipliers A1 /Ao, ..., Am/Ao. Notice also that if \g = 0, then the vectors Ve¢;(Z) must
be (positively) linearly dependent. Hence any condition that rules out such linear dependence will
imply Ag > 0.

3.3.3 Variables with sign restrictions

The preceding discussion applies to problems with sign restricted variables. Consider, for instance,
the problem

minimize f(z)
(P) subject to ¢(z) >0
x>0

Corollary 1. If Z is a local minimizer of (P) and the constraint qualification is satisfied at Z, then
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there exist numbers ¥, ..., ¥, such that
Vi@) =) 5iVei(@) 20
i=1

yi >0
1i=1,....m
yici(z) =0

zt lVf(a:) — f: yivci(:c)] =0. O
i=1

3.3.4 Some sufficient conditions for optimality!”

Let us consider again the inequality-constrained problem

minimize f(x)
(P) . .
subject to ¢;(z) >0 i=1,...,m
Theorem 4. If f and —cy, ..., —¢,, are differentiable convex functions, then the first-order (KKT)

optimality conditions are sufficient for the global optimality of a feasible vector in the inequality-
constrained problem, (P).

Proof. Let (z,y) be a KKT pair for (P) in which Z is a feasible vector. Consider the Lagrangian
function L(z,y) = f(z) — y'c(x) associated with (P). Let x be feasible and let y be nonnegative.
Then, by our hypotheses, L is a convex, differentiable function of . Hence by the gradient inequality
applied to L

L(z,9) > L(Z,9) + (x — )TV, L(Z,5) for all feasible x.
More explicitly,
f(z) = gle(x) > f(2) = §'e(@) + (z — ) [VF(2) — 5" Ve(a)).
Hence,
flx) = f(z) +yle(z) > f(2).
This proves that Z is a global minimizer for (P). O

Remark. Notice that the preceding theorem does not mention the constraint qualification (CQ).
It is simply given that (z,y) is a KKT pair, and this being the case, no CQ assumption is required.
The convexity assumption is a big one, however. This assumption can be weakened, slightly, as we
shall see later on.

1"Theorem 4 below states the frequently invoked sufficient conditions for optimality in (P). These can be
generalized by using the concepts of quasiconvezity and pseudoconvexity which we do not have time to cover
in this course. For details, see Mangasarian [1969, Chapters 9 and 10].
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3.4 Problems with equality constraints

We now consider first-order optimality conditions for problems having both inequality and equality
constraints. These can be denoted!®

minimize f(z)
(P) subject to ¢i(z) >0 i€l

Typically, we take
I=A{1,....,m} and &={1,...,¢}.

Our aim in this discussion is to establish analogues of the Fritz John and Karush-Kuhn-Tucker
first-order necessary conditions of optimality in (P). For any feasible point & of (P) we have the
sets

A(Z)={i €T :c¢(z)=0}
Fo={de R":d*"Vf(z)} <0}

Go=1{d:d"Ve;(z) >0 forallic A(Z)}.

To these sets, we add
Ho={d:d'Vhi(z) =0 foralliecE&}.

If h were an affine mapping, it would be intuitively clear that FoNGoNHy = @ would be a necessary
condition of local optimality of Z, for an element of this set would be a feasible descent direction.
The object of the discussion below!? is to show that if Z is a regular point with respect to h, the
set Fo NGy N Hyp is empty even if h is not affine.

3.4.1 A necessary condition of optimality

Theorem 5. Let & be a local minimizer for (P). If the functions ¢; are continuous at & for all
i ¢ A(Zx), the functions ¢; are differentiable at = for all ¢ € A(Z), the functions h; are continuously
differentiable at z for all i € £, and the rows of Vh(Z) are linearly independent, then

FoNGoNHy=0.

Proof. Suppose there is a vector v € Fy N Gy N Hg. The object is to show that there is a curve 7
in the feasible region of (P) with that starts at Z and has a positive multiple of v as its tangent at
that point. This will give a contradiction to the local optimality of Z.

18Notational practice varies on how the functions involved in the equality constraints of (P) are represented.
Some authors (see, e.g., Gill, Murray, and Wright [1981]) use the same letter for both the equality and
inequality constraints and distinguish the two groups only by their index sets. Others use different letters
for the functions in addition to different index set names for their subscripts. We follow the latter notational
system because it seems to facilitate the discussion somewhat.

19This material is adapted from Bazaraa, Sherali and Shetty [1993].
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For 6 > 0 consider the differential equation and boundary condition

d

(6 = P(O)u, 4(0) = .

In this differential equation, P(6) denotes a projection matrix into the null space of Vh[y(0)].
The existence of a solution to this differential equation follows from the fact that h is continuously
differentiable at  and Vh(z) has full rank. The matrix P(-) is continuous in 6 and has the property
v(0) — 7 as § — 0T,

Now if 8 > 0 is sufficiently small, we have

d

@Ci(v(ﬂ)) = (Vei(v(0) ' P(O)v  for all i € A(Z).
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By definition, v is in the null space of Vh(Z) so that when 6 = 0 the equation P(0)v = v is satisfied.

Next we have p

do
for all i € A(Z). This means ¢;(y(#)) > 0 for § > 0 and sufficiently small. Indeed, for sufficiently
positive 6, the curve satisfies ¢(y(0)) > 0.

ci(7(0)) = vTVe(z) > 0

Next we need to show that when 6 > 0 is sufficiently small, the curve satisfies h;(y(6)) = 0 for all
i € £. Now the mean value theorem implies that

B2 (6)) = hi((0)) + 8- hi(+(8)) = 00 hi((6))

where @ € (0,6). By the chain rule, we obtain

Shi(2(8)) = Vhi(0) P @)

This implies that P(f)v lies in the null space of Vh;(v(0)), so we have

d _
@hz‘(’Y(e)) =

It now follows that h;((0)) =0 for all i € £ if v > 0 is sufficiently small.

Using similar reasoning, we can show that

& 56(0)) = V@) <0

whence f(y(0)) < f(z) for all sufficiently small § > 0. Assembling these facts, we see that a
contradiction has been obtained. Hence Fo NGy N Hg = 0 as asserted. O

3.4.2 The Fritz John Theorem

Theorem 6. Let T be a local minimizer for (P). If the functions ¢; are continuous at T for
all i ¢ A(Z), the functions ¢; are differentiable at z for all i € A(z), and the functions h; are
continuously differentiable at  for all ¢ € £, then there exist multipliers Ag, A1,..., A, f1, - - -, e
not all zero such that

l
AoV f(Z Z AiVei(T Z wiVhi(z
= i=1
Xici(Z) =0 foralli=1,...,m
Ao, Ay >0 forallt=1,...,m
Proof. First note that if the rows of the Jacobian matrix VAi(Z) are linearly dependent, then

taking Ao, A1,..., An = 0, we can satisfy the required conditions, albeit trivially. The case where
the rows of the Jacobian matrix are linearly independent is more interesting. In this case, we can
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invoke the conclusion of the previous theorem. The existence of the desired multipliers follows from
an alternative theorem, rather like that of Gordan. We leave the details as an exercise. O

3.4.3 The KKT Theorem again

Theorem 7. Let Z be a local minimizer for (P). Assume the functions ¢; are differentiable at
z for all ¢ € Z, and the functions h; are continuously differentiable at z for all ¢ € £. If all the
vectors V¢;(z) for i € A(z) and Vh;(Z) for i € € are linearly independent, then there exist (unique)
multipliers A1, ..., Am, i1, - - -, e such that

m l
Vf<i') - Z )\ZVCZ({Z') — Z MZVhZ({Z') =0
=1 =1
Xici(z) =0 foralli=1,...,m

Ai >0 foralli=1,...,m

Proof. Since the hypotheses of this theorem are stronger?? than those of the corresponding (Fritz
John) Theorem 6, the conclusion of that theorem holds. In particular, the “Fritz John” multiplier
Ao must be positive, for otherwise we obtain a contradiction of the linear independence assumption.
By virtue of the homogeneity of the first-order optimality conditions of the Fritz John Theorem, we
may assume that A\g = 1. Under this condition, the uniqueness of the remaining multipliers follows
from the linear independence assumption. O

Remark. The linear independence assumption used in Theorem 7 can be weakened somewhat.
This is accomplished in the so-called Mangasarian-Fromovitz constraint qualification. See
Mangasarian and Fromovitz [1967], Mangasarian [1969, p. 173] and Bazaraa, Sherali, and Shetty
[1993, Exercise 5.20, p. 197].

3.5 Saddlepoint problems

Let F': A x B — R be a given function. If (z,y) € A x B and
F(z,y) < F(z,y) < F(z,y) forall (z,y)€ Ax B,

then (z,7) is called a saddlepoint of F on A x B.

Now consider the inequality-constrained problem

(P)

minimize f(z)
subject to ¢(z) >0

and define its associated Lagrangian function L(z,y) = f(z) —y'c(x) on the set Ax B = R" x R
(Notice that this means that ¢ must be a mapping from R" into R™.)

20We have assumed differentiability of all the ¢;, not just those which are active at .
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The following theorem relates saddlepoints of L to (global) minima for (P).
Theorem 8. If (z,7) is a saddlepoint of L (as defined above), then Z solves (P).

Proof. The vector  is feasible for (P), for if ¢(Z) has a negative component, then the inequality
L(z,y) < L(z,y) for all y >0 cannot hold. Moreover, 7'c(Z) = 0 since

yle(z) > gle(z) >0 forall y >0,

and the value 0 is attainable. The vector Z is a global minimizer, for otherwise there exists a vector
Z such that ¢(Z) > 0 and

F(@) =g'e(@) < f(&) < [(2) = f(@) = g'e(@) < f(@) = §e(@).

This is a contradiction. O

Remarks. The condition of being a saddlepoint of the Lagrangian function L for the problem (P)
is obviously very strong, for it yields sufficient conditions for a vector to be a global minimizer
using

e no differentiability assumption,

e no regularity assumption, and

e 1o convexity assumption.

To obtain necessary conditions, we normally make regularity and convexity assumptions.
Example 4 (Nonexistence of a saddlepoint).
This example exhibits a nonlinear program having a globally optimal solution but no saddlepoint

for the Lagrangian function. Consider the problem (P)

minimize —T
subject to 3 — 23 >0

—{L‘QZO

Then # = (0,0) is the (unique) global minimizer. Indeed, since 0 > zo > 27 > 0 it is the only
feasible solution. The associated Lagrangian function is

L(x1,72,91,92) = —x1 — y1(x2 — 23) + yao.
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Note that L(z,y) = 0 for all y. If there exists a saddlepoint (z,y), then
0< —x1 — §1(x2 — 23) + Goxg = L(zx, ) for all x.

Let 9 = 0. If 1 > 0 and sufficiently small, we get L(z,y) < 0, whereas for (Z, §) to be a saddlepoint,
we need 0 = L(z,y) < L(z,7), so we have a contradiction.

3.6 Appendix. Is the KKT constraint qualification indispensable?

If Z is a local minimizer and the KKT conditions hold at Z, does the KKT constraint qualification
have to hold there as well? The following example?! shows that it does not.

Example 5. Define the functions s(t), and ¢(t) of the real variable t:

tsinl ift#£0
s(t) = ! 7
0 ift=0

c(t) =

t4cos% ift#0
0 ift=0

These functions are continuously differentiable. The functions and their derivatives vanish at 0.

Now consider the nonlinear program

minimize  f(x) = 9

subject to ci(z) = s(z)—xz2+2? > 0
c2(z) = xz9—22—c(r1) > 0
cs(z) = 1—23 > 0

The feasible region lies between the curves xo = 22 + 2} and z2 = 2?7 — x{. Indeed,
23—z} < 224c(zy) < xp < 22 4s(xy) < 2P 4]
The feasible region also lies between the lines 1 = —1 and 1 = +1. It is easy to see that the
unique optimal solution to the problem is z = 0.
In this instance, we have A(z) = A(0) = {1, 2}. Moreover,

Ver (0)= (0, -1),
VCQ(O) = (0, 1).

21See Abadie [1967, p. 35].
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If v is a solution of
vIVe(0) >0, i=1,2,

then vy is arbitrary and v = 0. It can be shown that the only curve in the feasible region is
identically 0. [To see this, compute

1 1
z3 + s(x1) — (22 + c(xy)) = 2] (sin — — CoS ) .
1 Ty

This is not always nonnegative.] The derivative of this curve is not a positive multiple of v = (v1,0)
where v1 # 0. This means that the KKT constraint qualification does not hold at z = 0.

On the other hand, the KKT conditions for this problem give:

URENRG

u9 Z 0
This reduces to

Thus, z = 0 and any @ > 0 such that 1+ u; — uy = 0 (for example, 47 = 1 and ug = 2) will satisfy
the KKT conditions.
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3.7 Second-order optimality conditions

In the case of nonconvex nonlinear optimization, satisfaction of the KKT conditions not is not
enough to guarantee that a vector is a local minimizer. As in the case of unconstrained univariate
optimization, one needs second-order conditions to distinguish local minimizers from other kinds of
points. The results covered here are largely due to McCormick [1967]. The latter work also appears
in the historically important little book of Fiacco and McCormick [1968].

Here we take up the nonlinear programming problem (P):

minimize f(z)
subject to ¢i(z) >0 i€z
cilz)=0 €&
€ R"

Let us assume all the functions in (P) are twice continuously differentiable.

Let S denote the feasible region of (P). For z € S, we have the set A(Z) of active constraints.
Relative to these ingredients, consider the set??

T(z):={z:2"Ve;(z) =0, forallic A(z), 2T Ve;(z) =0, forallicE}.

Actually, T'(Z) is a linear subspace of R"™; it is sometimes called the tangent space at z.

Definition. The second-order constraint qualification holds at z if for every nonzero
z € T(Z) there is a twice continuously differentiable curve « : [0, 1] — R™ such that

da(0)
do

a(0) =z, =krz (k>0)
and for all 6 € [0,1]
ci(a(f)) =0, forallie A(z), ci(a()) =0, forallief.

The second-order constraint qualification (SOCQ) requires that every nonzero vector in the tangent
space be tangent to a twice continuously differentiable curve lying in the boundary of the constraint

22Recall that A(Z) is a set of indices, whereas T(Z) is a set of vectors.
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set. Asin the KKT constraint qualification®? case, the conditions are designed to facilitate the proof
of a theorem on necessary conditions of local optimality.

Theorem (Second-order necessary conditions). Let  be a local minimizer of (P) and let @, v
denote vectors such that (z, @, v) satisfies the KKT conditions of (P). If the second-order constraint
qualifications holds at z, then

V2L(E,0,0)2 >0 for all z € T(Z).

Proof. The condition obviously holds when z = 0. Let z be an arbitrary nonzero vector in
T(z). Let o denote a twice continuously differentiable curve as guaranteed by the SOCQ, and let

k =1 (scaling z, if necessary). Now define w = dzj;go) € R™. By the SOCQ and the chain rule of
differentiation, we obtain

2.
dczd(;(o)) = TV2(2)2 + WV (3) = 0 for all i € A()
and
2 ..
dCZd(GO;(O)) = 2TV2%¢(2)z + w'Ve(2) =0  forallieé&.

By assumption the triple (z, @, v) satisfies the KKT conditions, so we have
Vf(f) — Z ﬂzVCl(i‘) — Z l_JiVCi(.f) =0. (11)
i€T icE

By (1) and the definition of T'(Z):

€T €€

d*f(a(0))

4f((0)) _ 0, we have — 7= > 0. This translates into

. _ . . . . d
Since Z is a local minimizer and if 20

d*f((0))

T 2TV ()2 +wtVf(z) > 0.

The conclusion of the theorem now follows. O

23This is also known as the first-order constraint qualification or FOCQ, for short.
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The SOCQ is difficult to verify in general. See Fiacco and McCormick [1968, page 26] for a proof
of the following result.

Theorem. Given the nonlinear program (P), the SOCQ holds at the feasible point  if the vectors

Vei(z) for all i € A(Z)
Vei(z) forallie &

are linearly independent. O

The following two examples are given in Fiacco and McCormick [1968], pages 27-28. They demon-
strate the independence of the FOCQ and the SOCQ. In other words, neither one implies the
other.

Example 1. (FOCQ satisfied; SOCQ not satisfied.) Consider the nonlinear program

minimize T2
subject to —2y + 23>0 (c1)
)+ 23>0 (c2)
24 (ra+1)2—-12>0 (c3)

The feasible region of this nonlinear program is the nonshaded region shown in Figure 3.1. This
problem has the optimal solution Z = (0, 0). It is easy to show that in this example, the first-order
constraint qualification is satisfied at Z. The elements of the tangent space T'(Z) are of the form
z = (21,0)T where z; # 0. However, there is no arc in S along which all the ¢; vanish, hence the
SOCQ is not satisfied here. It can also be shown that the second-order necessary conditions of
optimality fail in this example.

Example 2. (FOCQ not satisfied; SOCQ satisfied.) Consider the constraints

1—z? — (22— 1)?

[ \/

0
1—2? — (22 +1)2>0
0

| V

The only point satisfying these inequalities is Z = (0,0). (See Figure 3.2 on the next page.) The
SOCQ is satisfied vacuously at T since T'(z) = {0}. However, the first-order constraint qualification
is not satisfied in this instance.
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— T
Figure 3.1
T2
z1
Figure 3.2

Example 3 (G.P. McCormick [1967]). Consider the optimization problem
minimize  (v1 — 1)% + 23

2
subject to —x1 + % >0 6>0



MS&E 311 December 28, 2004 Reference Class Notes 73

L2

z1

Figure 3.3

It can be shown that the first- and second-order constraint qualifications are satisfied at & = (0, 0).
Question: For what values of the parameter 3 is this point a local minimizer?

The Lagrangian function for this problem is

2
)

L(z,u) = (x1 — 1)> + 22 —u 5

Forall 3 # 0, z = (0,0) and u = 2 satisfy the KKT conditions of this problem. We have A(z) = {1}
and

T(z)={z:2€ R? 2z =0}.
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If z is to be a local minimizer, then for all z € T(Z):

T
svaa [ T L0
Z2 0 Q_B 22

:(z—é)zgzo.

This can hold only if § > 2. In particular, the Hessian matrix of L evaluated at (z,
for f < 2,80 = (0,0) cannot be a local minimum for such values of f3.

) is indefinite

Definition. Suppose Z is a feasible point for (P). Then Z is an isolated (strict, strong) local
minimaizer if there exists a neighborhood N(Z) of Z such that f(z) < f(z) for all z € SN N(z).

Theorem (Second-order sufficient conditions). Let z € S, and let (¥, u,v) satisfy the KKT
conditions for (P). Then Z is an isolated local minimizer if

ZYV2L(%,1,0)2 > 0
for all nonzero vectors z € R™ satisfying

ZTVCi(i‘) =0 ifuw; >0
2TVei(z) >0 ifi € A(Z) and @; = 0
Ve () =0 forallieé&

Proof. Suppose Z is not an isolated local minimizer. Then there exists a feasible sequence z¥ — Z

such that f(z) > f(«*) for all integers k > 1. Put 2" =+ dek_where 0r > 0 and ||d*|| = 1.
Without loss of generality, we may assume (6, d") — (0, d) where ||d || = 1.

By the mean value theorem:
Cz(.%k) — Cz(f) = Hk(dk)TVcl(f + Ulkekdk) >0 1€ .A(.f)
ci(zF) — ci(2) = 01(d") 'V ei(z + 5j101d") =0 i€ &

F@®) = f(2) = 0h(d") TV f(Z + 04pd") <O

where o1, Gk, 0 € (0,1). Dividing by 6;, and taking limits, we obtain
d™Vei(z)>0 i€ AZ)
d™Vei(z)=0 i€
dTVf(z)<0
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If d'Vei(z) > 0 for some i € A(Z) such that 4; > 0, then the KKT conditions lead to the
contradiction that d 'V f(z) > 0. Hence %; > 0 implies that d *V¢;(Z) = 0.

Next, apply Taylor’s Theorem and the hypothesis about the sequence {z*} to obtain
Cl(l‘k) = Cl(i‘) + Ok(dk)TVCZ(.T) + %Qi(dk)TVZCl(i‘ + legkdk)dk >0
ci(2%) = ci(2) + 0(d¥) T Vei(z) + 202 (d)TV2hi(z + Tjpbpd)d =0 (i € &)

F(a®) = f(@) = 0,(d") TV f(2) + 367(dF)T V2 f (7 + 7.6pd")dh < 0
where 7k, Tjk, 7 € (0,1). It now follows that

0> 6, (d*)T {Vf(:i) - i u;Vei(2) = @-Vci(f)}
=1

1€€

+;9,%(d’“)T{V2f(x + Tkgkdk) — Z ﬂivzci(f + legkdk)
=1

= 0 Viei(z)(z + mekd’“)} d*.

i€€

The first term in curly brackets equals zero. Now divide by %9,% and take limits to obtain a
contradiction.

Definition. The set
St ={re R": ||z =1}.

is called the unit sphere in R".

Definition. Let (z,u,v) satisfy the KKT conditions for the nonlinear program (P) above. Then
Ap(z)={i e AZ) : u; > 0},
Ao(z)={i € A(Z) : u; = 0}.

Constraints for which i € A, (Z) are said to be strongly binding at Z, whereas those for which
i € Ay(z) are said to be weakly binding at .

Definition. Recall the definition of T'(z). The set T’ (&) consists of the (necessarily nonzero) vectors
z € S"1 satisfying the homogeneous linear conditions

2tV (2)=0 for all i € A, (%),

2TVei(z) >0 for all i € Ag(Z),
2'Vei(z)=0 forallic&.
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Theorem (Second-order sufficient conditions). Let z € S, and let (Z,@,v) satisfy the KKT
conditions for (P). Define the set

Y(e,0) ={y €S :|y—z| <eforsomezec T (z), z+5y€S, 0<5, <5, ¢>0}
If there exists a set Y = Y (€,0) such that for all (y,\) € Y x [0,1]
yIV2L(Z 4+ \oyy, @, 0)y > 0,
then z is a local minimizer for (P).

Proof. Suppose the theorem is false. Then there exists a sequence of points z* converging to Z
such that f(z%) < f(@) for all k. Let 2* = Z + §xd* where d* € 571 and o, > 0. Without loss of
generality, we may assume the entire sequence {(dy,d*)} converges to (0,d) where d € S™ 1.

Now if d*'V¢;(z) > 0 for some i € A, (T), we get the same contradiction as in the previous theorem.
If d*Ve;(z) = 0 for all i € Ay (%) or if A, (Z) = (), then (by definition) d € T, (z). By Taylor’s
expansion, we have

5 2
L(z",u,0) = L(%,1,9) + 6 (d") "V, L(Z, 4, 7) + (’;)<d’“)TviL(n’“, @, 0)d"
where nk =T+ )\ékdk and 0 < A < 1. From the assumptions, we have
(T2 L(n*, a,0)d" <0  for all k.
But for k sufficiently large, d¥ € Y (€,0). Hence, by the hypothesis, when k is large enough,
(d*)"V2L(", u,0)d" > 0

which contradicts the inequality above. O
3.8 Second-order optimality criteria for quadratic programming

We have a theorem on second-order necessary conditions for local optimality in nonlinear pro-
gramming, and we have a separate theorem on second-order sufficient conditions for an isolated
local minimizer in such a problem. This is not a symmetrical state of affairs. In the case of quadratic
programming, the situation is somewhat better: There is a single set of second-order conditions

that are both necessary and sufficient for local optimality.

Consider the quadratic program (QP) of finding x € R™ so as to
minimize  f(z) = ¢z + 2TQx

subject to Ax > b.

Let S denote the polyhedral feasible region of (QP). Let Z € S be any point such that A(Z) # 0.

The nonzero solutions of the system

Aj.v>0 forall i e A(Z) (12)
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are called feasible directions at z. Let F denote the collection of all solutions of (1). Note that
0 € F and that F is a polyhedral cone.?* If A(Z) = ), we put F = R". In the literature, the set
F is sometimes call called the cone of feasible directions at z, even though it contains the zero

vector which is not a genuine direction.

Remark. The inequality
Viz) >0 foralveF (13)

is just another way of stating the Karush-Kuhn-Tucker conditions. To see this, note that (2) is

equivalent to saying
Ajov >0 forall i e A(Z)

Viz) v <0

has no solution. Farkas’s lemma says that for all i € A(Z) there exist A; > 0 such that

(14)

Vi@T= Y Nd.=0.

1€ A(Z)
Setting A\; = 0 for all ¢ ¢ A(Z), we see that T and A = (A1,..., \y,) satisfy the KKT conditions for
(QP).

Theorem. If z € S is a local minimizer of (QP), then the following two conditions hold:

(i) Vf(@) Tv>0 forallve F;
(i) vTQu >0 forallv e FN{Vf(z)}+.
Proof. Since the first-order local optimality (KKT) conditions must hold at z, condition (i) follows

by the remark above. Accordingly, we turn to condition (ii). There are two cases.

Case 1. If A(Z) = 0, then Z is an interior point of S. Since Z is a local minimizer,

1. Vf(z) =0,
2. F= R = {Vf@)},
and assertion (ii) of the theorem follows from a standard theorem of multivariate differential cal-

culus, namely second-order necessary conditions of local optimality for a twice continuously differ-

entiable function on an open set.

24Recall the “cone” D of feasible directions (see Handout No. 6, page 8). Thus, in the present notation,
we have F =D U {0}.
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Case 2. Assume A(Z) # 0. If v is a nonzero vector in F N {V f(z)}*, then 7v = z — 7 for some
x € SNN(z) and 7 > 0. Then

flz)=f(z+7v)=f(Z)+ TVf(a_c)Tv + %TQUTVQ.]C(Q_?)U;

it follows that
3720TQu = f(z) — f(Z) > 0,

which proves (ii). O

Remark. The two necessary conditions of local optimality in (QP) are also sufficient for local

optimality. The proof of this result is long and delicate, hence must be omitted.?,

Example. Consider the (nonconvex) quadratic program

minimize %xl — %xg — %x% + %x%
subject to —2x1 —x9 > —6
T, —4x9 > —6
T Z 0
T2 Z 0

We shall examine three solutions of the KKT conditions and show that one of them is not a local

minimizer (or a local maximizer) whereas two of them do correspond to local minima of the QP.
2

! X1
(3,0)

Figure 3.4

2For the details see Contesse [1980]. This paper, gives a more rigorous proof than the one in Majthay
[1971].
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First, the KKT conditions are satisfied by (z,y) = (3,3,0,0,0,0). We have f(z) = f(3,3) = 0.

For sufficiently small e, the points (3 +¢,3) and (3,2 + €) are feasible. Now note that
f(3+e3)=—€/2<0 and f(3,54+¢€ =¢/2>0.

Thus, there are feasible directions of descent and ascent at . Hence T cannot be a local minimizer.
Note that for z = (3, 3) we have A(zZ) = 0. In this case, 7 = R? and since Vf(3,1) = (0,0) we
have {V f(Z)}*+ = R%. The theorem says that for Z to be a local minimizer, the matrix Q = V2 ()

would have to be positive semi-definite, but it is not.

Next consider the point # = (0,3). In this case, A(Z) = {3}. This means that in any KKT
point (&,9), we must have §; = §2 = 94 = 0. The cone F at z is given by {v : v; > 0}. Since
V(&)= (3,0), it follows that

V@) >0 forallveF.
Now {Vf(£)}* = {v: v1 = 0}, and clearly we have

vIQu=10}>0 forallve FN{Vf(z)}

Hence & = (0, 1) is a local minimizer. We note that f(&) = —1/8.

Finally, consider z* = (3,0). Here we have A(z*) = {1,4}, and Vf(2*) = (—5/2,—1/2). The cone

of feasible directions is given by
—27)1 — V2 2 0

vy >0
so —2v1 > vy > 0, and v; < 0. With these inequalities, we can show that Vf(x*)Tv > ( for all
v € F, so the first-order conditions are satisfied. If v € F N {Vf(z*)}*, we have in addition
5v1 + vg = 0. This implies that for such v, vTQuv = 24v? > 0. The first- and second-order sufficient
conditions are satisfied at z*, so it must be a local minimizer. Note that f(z*) = =3 < —1/8 = f(Z)

which means that it is a better local minimizer of (QP). In fact, it is the global minimizer.

Remark. One might wonder why the statement of the theorem involves {V f(Z)}*. Could one just
forget about it? In particular, when Z is a local minimizer for (QP), is it necessary for v'Qu to

take nonnegative values on all of 77 The following example answers this question.
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Example. Consider the quadratic program
minimize  f(z) = 21 + 22 — 23
subject to 1 <1
T < 1
T Z 0
X9 Z 0
T2
(0,1)
T

Figure 3.5
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Note that in this example, we have
0 0
It is easy to see that the feasible point £ = (0,1) is a local (in fact, global) minimizer. Indeed,

f(@) =0, and f(x) > 0 for all z in the feasible region. We have
A(z) ={2,3} and Vf(z)=(1,-1).
The cone of feasible directions at this point is
F={v:vy >0>uwv}

and

(V@) ={v:v — vy =0}

T2

(Vi@

Figure 3.6
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The first-order condition is satisfied at & since
Vi@ w=v,—vy >0 forallveF.

For all v € R?, we have vTQu = —2v3 < 0. This takes on negative values for some elements of F,
but
F{vi@)} = {0},

so vTQu = 0 there. In this case, (ii) is satisfied on FN{V f(Z)}+, but it is not satisfied on all of F.
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5. OPTIMIZATION ALGORITHMS

5.1 Introduction

Algorithms for linear and nonlinear programming problems tend to be iterative procedures. Starting
from a given point xg, they generate a sequence {z} of iterates (or trial solutions).?6 The algorithms
we shall study here produce these iterates according to well determined rules rather than some
random selection process. The rules to be followed and the procedures that can be applied depend

to a large extent on the characteristics of the problem to be solved.

5.1.1 Generalities

1. Classes of problems. Some of the distinctions between optimization problems stem from

a) differentiable versus nondifferentiable functions;

(
(b

unconstrained versus constrained variables;

(c) one-dimensional versus multi-dimensional variables.
(¢) convexity versus nonconvexity of the minimand and feasible region.

2. Finite versus convergent iterative methods. For some classes of optimization problems (e.g.,
linear and quadratic programming) there are algorithms that obtain a solution—or detect
that the objective function is unbounded—in a finite number of iterations. For this reason,
we call them finite algorithms.?” Most algorithms encountered in nonlinear programming
are not finite, but instead are convergent—or at least they are designed to be so. Their object

is to generate a sequence of trial or approximate solutions that converge to a “solution.”

3. The meaning of “solution” is needed. What is meant by a solution may differ from one

algorithm to another. In some cases, one seeks a local minimum; in some cases, one seeks

26Notice that we are using subscripts rather than superscripts to denote the elements of a sequence.
27Tt should be mentioneod, however, that not all algorithms for linear and quadratic programming are
finite.



MS&E 311 December 28, 2004 Reference Class Notes 84

a global minimum; in others, one seeks a stationary point of some sort as in the method of
steepest descent discussed below. In fact, there are several possibilities for defining what a
solution is. Once the definition is chosen, there must be a way of testing whether or not a

point (trial solution) belongs to the set of solutions.

4. Search directions. Typically, from a given point g, a nonlinear programming algorithm

generates a sequence of points

Tp41 = Tk + QP

where py, is the search direction and oy, is the step size or step length. In fact, if {xy}

is any sequence of distinct vectors,

Th4+1 — T = QgPL

where, say, ||px|| = 1 and aj > 0. Thus, it is not very informative simply to say that the
sequence {zj} has the property xp+1 = x + agpr. The point is that once xj, is known, then
Pk is some function of x, and the scalar a may be chosen in accordance with some special

rule.

5. The general idea. One selects a starting point xo and (efficiently) generates a possibly
infinite sequence of trial solutions each of which is specified by the algorithm. The idea is to
do this in such a way that the sequence of iterates generated by the algorithm converges to
an element of the set of solutions of the problem. Convergence to some other sort of point is

undesirable—as is failure of the sequence to converge at all.

5.1.2 Convergent sequences of real numbers

Let {ax} be a sequence of real numbers.?® Then {a;} converges to 0 if and only if for all real

numbers € > 0 there exists a positive integer K such that
lag| <e forall k> K.

Let {z1} be a sequence of real numbers. Then {x} converges to z* if and only if {ay} = {xr—2*}

converges to 0. For example, the sequence {x;} = {1/k} converges to 0.

5.1.3 Types of convergence

28Through the introduction of norms, for example the Euclidean norm, we can (and do) talk about
convergent sequences of vectors.
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If there exists a number ¢ € [0, 1) and an integer K such that
|xps1 — 2| < clzp — ™| forall k > K,

then {zy} converges to z* g-linearly. If there exists a number ¢ € [0,1) and an integer K such
that

|Zpp1 — 2| < ez, — 2| forall k > K,

then {xy} converges to x* g-quadraticly. If {c;} is a sequence of nonnegative reals converging to
0 and

|xpr1 — 2| < cglzg — ¥ forall k > K,

then {x} converges to z* g-superlinearly.
5.2 Unconstrained minimization of smooth functions?’

5.2.1. A generic algorithm. Let f be a smooth function on R™. We seek z* € R™ such that
f(x*) < f(x) for all z € R". Depending on the properties of f, it may be necessary to adopt a
more modest goal than finding a global minimum. (For one thing, it may be impractical or even
impossible to test whether a point is a global minimum or not.) We may instead have to look for
a local minimum or a stationary point of the minimand, f. These considerations give rise to the
different possible notions of what a solution is. Let us assume we have a way to decide whether or

not any given point is a “solution.”

(A1) Test for convergence If the termination conditions are satisfied at zy, then it is taken (ac-
cepted) as a “solution.” In practice, this may mean satisfying the desired conditions to within

some tolerance.

(A2) Compute a search direction, say py # 0. This may for example be a direction in which the

function value is known to decrease.

(A3) Compute a step length, say oy such that

flxg + onpr) < flag).

This may necessitate the use of a one-dimensional (or line) search algorithm.

29 Although the meaning of the term “smooth function” differs from one author to another, it is generally
agreed that it means at least “continuously differentiable.”
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(A4) Define the new iterate by setting

Tkl = Tk + QkPk
and return to step (Al).
5.2.2. The gradient method (steepest descent method).?° Let f be a differentiable function
and assume we can compute V f. We want to solve the unconstrained minimization problem
min f(z).

In the absence of further information, we seek a stationary point of f, that is, a point x* at which

Vf(z*)=0.

For this algorithm, we use the direction py = —V f(x) as the search direction at xx. The number

ap > 0 is chosen “appropriately,” namely to satisfy
ap € argminf(zr — oV f(zg)).
Then the new iterate is defined as
Tp1 = xp — oV f (k).

Now, if Vf(xg) # 0, then —V f(z) is a direction of descent at xy; in fact, it is the direction of

steepest descent at xy.

Example. Let f(z) = c'z + %xTQx where Q € R™ " is symmetric and positive definite. This
implies that the eigenvalues of @ are all positive. The unique minimum z* of f(x) exists and is

given by the solution of the equation
Vix)=c+Qx=0,

or equivalently

Qr = —c.
Of course, we have z = —Q 'c. (This is a case where we have a closed-form solution of an
optimization problem.) We can also solve the equation Qx = —c¢ directly (i.e., by pivoting, or by

matrix factorization) but that is not the point of this example. In the steepest descent method,

the iterative scheme

Th4+1 = Tk + QP

30This algorithm is associated with the French mathematician, A. Cauchy (1789-1857).
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becomes
Th4+1 = T — Oék(C + Q.’Ek)

by virtue of the definition, py = —(c+ Qx). With the search direction chosen, we need to compute

the step size, ay. To this end, we consider

far + apg) = cM(zy, + apg) + 3 (zk + apr)"Q(zk + ap)
= 'z + ac'py + 32} Quy, + axf Qpr + 50°pi Qi

which is a strictly convex quadratic function of a. As such, its minimizer «y, is the value of o where

the derivative f’(xj 4+ apy) vanishes, i.e., where

oy + L Qpr, + apl Qp = 0.

Thus
(c"+ 2 Q)pk _ _ pipr
piQpy PLQpr

The recursion for the method of steepest descent now becomes

= —
PR Qpr

ap = —

where py = —(c + Q).
Convergence of the steepest descent method. The following theorem gives some conditions

under which the steepest descent method will converge.

Theorem. Let f: R" — R be given. For some given point 2o € R", let the level set
Xo={z e R": f(z) < f(x0)}

be bounded. Assume further that f is continuously differentiable on the convex hull of Xy. Let
{zr} be the sequence of points generated by the steepest descent method initiated at xo. Then

every accumulation point3! of {x;} is a stationary point of f.

Proof. Note that the assumptions imply the compactness of Xj. Since the iterates will all belong
to Xp, the existence of at least one accumulation point of {zj} is guaranteed by the Bolzano-

Weierstrass Theorem. Let Z be such an accumulation point. For the sake of contradiction, assume

31 An accumulation point of a sequence is the limit of a convergent subsequence.
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Vf(z) # 0. Then there exists a value @ > 0 and a 6 > 0 such that f(z —aV f(z))+ ¢ = f(z). This

means that & — aV f(Z) is an interior point of Xj.
For an arbitrary iterate of the sequence, say x, the Mean-Value Theorem implies that we can write

flae —aVf(zr) = f(@—aV@) + (V) ((zx —2) + V(@) = V()

where yj, lies between z, — aV f(x) and z — aV f(Z). Now as an accumulation point of {z}, the

vector T is the limit of a subsequence of {zj}. Denote this subsequence by {z,}. Then

{Vfyr)} — Vf(@ - aVf(z))

and

{(zx, — ) —a(Vf(zr,) - VF(Z))} — 0.

For sufficiently large k¢, the vector yj, is an element of the convex hull of Xy. Moreover,

N O

Flan, — V1)) < (@~ GV @) + 5 = (@) -

Let ay, be the minimizer of f(xx, — ak,V f(xg,)). Since the sequence {f(zg,)} is monotonically

decreasing and converges to f(Z), it follows that

IR

f(@) < flan, — an,Vf(2r,) < [z, —aVf(zg)) < f(7) -

which is a contradiction. Hence V f(z) = 0. O

Remark. According to this theorem, the steepest descent method initiated at any point of the
level set Xy will converge to a stationary point of f. This is a nice feature; it means that (de-
pending on the size of Xj), the starting point z¢ could be far away from the point z* to which the
sequence converges. In other words, it is not necessary to start the process in a neighborhood of

the (unknown) solution.

Remark. The convergence rate of the steepest descent method applied to quadratic functions

is known to be linear. Suppose ) is a symmetric positive definite matrix of order n and let its
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eigenvalues be A\; < --- < \,. Obviously, the global minimizer of the quadratic form f(z) = 21Qx
is at the origin. It can be shown that when the steepest descent method is started from any nonzero
point xg € R™, there will exist constants ¢; and co such that

f(@rt1) (/\n—)\l)2
0 < 2T e < | ——= 1 k=0,1,... .
< = f(xk) S0 = An‘i‘)\l < ) )

Remark. Intuitively, the slow rate of convergence of the steepest descent method can be attributed
the fact that the successive search directions are perpendicular. Indeed, consider an arbitrary iterate
xg. At this point we have the search direction py = —V f(xg). To find the next iterate xp,1 we
minimize f(xy — aV f(zy)) with respect to a > 0. At the minimum «g, the derivative of this

function will equal zero. Thus, we obtain V f(zx1)TVf(2x) = 0.
5.2.3 Newton’s method

As we know, all unconstrained local minimizers of a differentiable function f are stationary points:

they make the gradient V f vanish. Finding a solution of the stationarity condition
Vfi(x)=0

is a matter of solving a system of (possibly nonlinear) equations.?? In the case of functions of a

single real variable, the stationarity condition is

which is a single (possibly nonlinear) equation in one variable. When f is a twice continuously
differentiable function, Newton’s method can be a very effective way to solve such equations and

hence to locate a stationary point of f.

It should be emphasized, however, that Newton’s method is a procedure for solving equations. It
is not necessarily a descent method, hence it cannot even be relied upon to find a local minimizer.

It can, however, be modified so as to be a descent algorithm.
Newton’s method for solving the equation g(z) =0

Although the iterative scheme associated with Newton’s method uses only first derivatives, the
working hypothesis is that the function g—of which we want to find a zero—has continuous second

derivatives.

32Tf f is a function of n variables, then this is a system of n equations in these n variables.
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For simplicity, we start with the univariate case. Given a starting point xy, Newton’s method for

solving the equation g(x) = 0 is to generate the sequence of iterates

g(zy)
g (xx)

Tht+1 = Tk —

Notice that the iteration is well defined provided that ¢'(zx) # 0 at each step. The iteration stops

if g(xx) = 0, for then a solution of the equation has been found.

The interpretation of this iteration goes as follows. For a given iterate, zj such that g(xy) # 0, let

T = xx + p. By linearizing g at z; we obtain

g(x) = g(ax +p) = g(xr) + pg (z1).

We seek a value of p at which the expression g(xy) + pg’(xr) = 0. Under the assumptions above,
there will be such a value provided ¢'(zy) # 0. It’s a matter of where the tangent line crosses the
horizontal axis. When ¢'(x;) = 0, the tangent line is parallel to the horizontal axis, and there is

no intersection. This anomaly is illustrated in Figure 5.1.

Without some further stipulations, there is no guarantee that the sequence of points defined by the
iterative scheme above will converge to a zero of the function g. This can be illustrated by the case
where

g(z) = 2'/%.

In this instance, the sequence diverges unless xg = 0, the zero of g. See Figure 5.2 below.

Theorem. If g is twice continuously differentiable and x, is a zero of g at which ¢'(z.) # 0, then

provided that |zg — x| is sufficiently small, the sequence generated by the iteration

g(zx)
g (xx)

Tyl = T —
converges quadratically to z, with rate constant C' = |¢"(z.)/2¢' (x4)|.

Proof. See Nash and Sofer [1996, page 40| or Luenberger [1989, page 202]. O
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R Y

Figure 5.1

/ |

Figure 5.2

Newton’s method for solving a system of equations g(x) = 0

Before we begin to develop the multivariate case, it will be helpful to restate our notational

convention regarding the Jacobian matrix that was stated on page 4 of Handout No. 14. There we

have a mapping

and we define the Jacobian of g as
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Vg(z) = [891'(5”)] '

8:@
The rows of Vg(x) are the transposes of the gradient vectors Vgi(z),..., Vge(z). This convention
is in agreement with most books on multivariate calculus.

As a method for solving a system of n equations in n variables, Newton’s method is rather analogous

to the one-variable case, but—as should be expected—the computational demands are much greater.

For the system g(z) =0, i.e.,
the iteration is given by

Ter1 = ap — (Vg(ar) g(ar).
This formula follows from the use of a Taylor series approximation to g at the point zj, namely
9@k +p) = g(@k) + Vg(r)p.

When we set the right-hand side of this equation to zero, we can solve it for p, provided that the
Jacobian matrix is nonsingular. When this value of p is used, 11 = xp + p becomes our new

approximation of x,, the zero of g that we seek.
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Some computational issues
When the number of variables n is very large, there can be some difficulties.

As an optimization technique, Newton’s method, in its pure form, requires knowledge of (or the
capacity to compute) the first and second derivatives of the minimand.?® In an environment where

individual function evaluations are expensive, this could be a drawback.

In a large-scale problem, the computation of p could also turn out to be a time-consuming task.
The literal inversion of the transpose if the Jacobian matrix is not really required (no matter what

the size of the problem). Instead, one solves

(Vg(zr))p = —g(wk)

using matrix factorization methods. It should be recognized that in the optimization context,
g(z) would be the gradient vector of the minimand f so that the Jacobian matrix of g would
be the Hessian matrix of f. In the neighborhood of a minimizer, the Hessian would be positive
semidefinite, and if this matrix is to be nonsingular, it must then be positive definite. The LDLT

factorization would be used to compute p.

Storage can also be a factor in using Newton’s method, though with the storage capacity of today’s

computers, this issue does not loom as large as it once did.

When it is very important to keep the overall running time low, there is a question of whether
the relatively small number of iterations required by Newton’s method is worth the cost of the
computing at each iteration. This consideration motivates the use of quasi-Newton methods
which generally speaking, use a surrogate for the true Hessian matrix. Under some circumstances,
it can be shown that such variants of Newton’s method possess superlinear convergence to a local

minimizer.
Descent

For an arbitrary twice-continuously differentiable function f, there is no reason to expect Newton’s
method produce a sequence of iterates that converge to a local minimizer of f. In fact, as we
have seen, convergence to anything is not guaranteed without additional hypotheses. Inasmuch as
Newton’s method strives to produce a stationary of f, it is only with a satisfactory second-order

(or curvature) condition that we can be sure of having—or getting to—a local minimizer.

33That is, the function being minimized.
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If our search direction at a point, say Z is

p=—(V*f(2))"'Vf(@),

then it is a descent direction only if

PV (@) = —(V(@)(Vf(2) V@) <0
which is to say that
(V@) (V2 (@) (V@) > 0.
This will hold, of course, if V2f(Z) is a positive definite matrix. This is only a sufficient condition,

however. It is often too strong a condition to impose when what we really want is pT V f(z) < 0.

In the case where V2f(Z) is not positive definite, we can modify it by adding to it a suitable
diagonal positive definite matrix F so that the sum V2f(Z) + E is positive definite. That such a
thing can be done is evident from the determinantal characterization of positive definiteness (i.e.,
positivity of the leading principal minors of the matrix.) For example, if A € R"*™ is an arbitrary
symmetric matrix, then for any value of the scalar #, the determinant of A 4 61 is a polynomial of
degree n. For sufficiently large 6 the value of this polynomial is positive. This idea can be applied
to each of the leading principal submatrices of A + 6I. Hence, for § sufficiently large, A 4+ 61 will
be positive definite. One could use £ = 01 for suitably large #. This would mean adding the same
amount to each diagonal entry of A, but it is not generally necessary use such a restrictive form of

perturbation.

Nash and Sofer [1996] give the following modified Newton algorithm that uses the idea sketched

above to find a stationary point of f.
Modified Newton Algorithm with Line Search

Initialize the algorithm with the point ¢ and the tolerance € > 0. For £k = 0,1,..., perform the

following sequence of steps.

o (Termination criterion.) If ||V f(xr)|| < ¢, stop. Report xj, as an approximation to a station-

ary point, x,.

e (Modify the Hessian.) For some diagonal positive definite matrix F, so that V2f(x) + E is

also positive definite, compute the matrix factorization

LDLT = V%f(x;) + E.
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e (Compute the search direction.) Solve the equation
LDLYp = -V f(x}).

Denote the solution by py.

e (Compute the step length.) Do a line search to determine the step length ay.

e (Compute the new iterate.) Compute

Th+1 = Tk + QgPk-
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5.3 Linearly constrained problems

Probably the most tractable of all constrained optimization problems are those with linear con-
straints: either linear equations or linear inequaltiies or a mixture of both. This class of optimiza-
tion problems includes linear programs, quadratic programs, and the nonlinear programs having
nonquadratic objective functions. Naturally, there are an enormous number of applications for

problems of this sort.

For linearly constrained problems of the form

minimize  f(x)

subject to Ax =b

where f is sufficiently differentiable and the feasible region is specified by a system of linear equa-
tions, there are modifications of the standard unconstrained optimization techniques such as steep-
est descent, Newton’s method, quasi-Newton methods, and the method of conjugate gradients. (See
Gill, Murray and Wright [1981] for some details on these methods.) For the time being, we shall

be concerned with linearly constrained problems having at least some linear inequality constraints.

Algorithms for linearly constrained optimization problems can be classified according to whether or
not the iterates they generate are feasible.>* Our discussion will focus on primal feasible algorithms

and the special issues they present. The usual (generic) algorithmic outline3® will be in force here.
Some issues

Except for the very special case of (box) constraints that are exclusively simple bounds on the

variables, i.e., constraints of the form

<z <u, (15)

34This is by no means the only way to classify these algorithms. For example, some algorithms aim to
solve a problem by attacking its dual. Others are of what is called a primal-dual type.
35See page 3 of this handout.
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the first issue that comes up is that of finding a feasible solution if one exists. As a rule, such
a vector is needed in the initialization of the algorithm. The field of linear programming has a

methodology for doing this, and we shall cover it here.

The next issue that comes up is that of retaining feasibility once the algorithm choses the search
direction. Fortunately, the linearity of the constraints makes this relatively straightforward as will

be seen below.

But there are many other issues, both theoretical and practical. With the Simplex Method of linear
programming, for instance, there is the issue of degeneracy. There are several ways to describe
degeneracy, and we shall come to them below. The important point about degeneracy is that it
can lead to a type of algorithmic behavior called cycling and thereby prevent an algorithm from
making progress and terminating. There are several techniques for handling this complication, but
we can give them only scant attention here due to the shortage of time. The subject of degeneracy

is discussed in MS&E 310 (Linear Programming).

Over and above these matters, there are the issues of computational efficiency, reliability and
computational complexity. As we have seen, the problems in this class—especially those having
at least some inequalities—have a decidedly combinatorial quality about them. Driven by a desire
to satisfy the necessary (and sometimes sufficient) first-order optimality conditions, these methods
lead to subproblems of solving of linear equations (which of course should be done efficiently). The
combinatorial aspect arises out of the indeterminacy of which systems are ultimately to be solved.
Recognition of this combinatorial aspect has a major impact on the field. We shall touch on this

development only lightly. Both of these issues deserve serious attention.

5.4 Linear programming via the Simplex Method

The standard way to solve linear programming problems is by the Simplex Method of G.B. Dantzig.
Introduced over 50 years ago, this algorithm is the one of the most widely used scientific computa-
tional procedures of all time. Our development of it will necessarily be a brief one. See for example
Bertsimas and Tsitsiklis [1997], Dantzig and Thapa [1997], [2003]. Nash and Sofer [1996]. For a
collection of selected publications of G.B. Dantzig, see Cottle [2003].

We shall study the Simplex Method for treating linear programs in the standard form

minimize clx

subject to Ax =b (16)
x> 0.
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As we know, any mixture of linear equations and linear inequalities can be brought to the form
appearing in (2). We shall further assume that the system of linear constraints Az = b is neither
vacuous nor trivial. That is, these equality constraints are really present, and the constraints of
the problem are not equivalent to a system of the form (1). A linear programming problem whose

constraints are only simple bounds is either unsolvable or trivially solvable.
A consequence of the Motzkin-Goldman resolution theorem

In Handout No. 4, page 13 we have the resolution theorem of Motzkin [1936] and Goldman [1956],
which says that a nonempty polyhedral set is the sum of a polytope and a finite cone. This
ss important structural property of polyhedral sets has the following implication for the linear

programming problem.

Theorem. If the feasible region S of the linear program

minimize T
(P) subject to Az >b
x>0

has an optimal solution, then it has an optimal extreme point solution. Hence once can seek an

optimal solution of (P) among the extreme points of S.

1 1

Proof. There exist vectors z',..., 2" and "1, ... 2! such that x € S if and only if there exist

nonnegative scalars \i, ..., \; such that
x . ! ! !
HEHER)
We may assume that z!,..., 2" are the full finite set of extreme points of S. It is clear that the

objective function ¢z is bounded below on S if and only if ¢Ta? > 0 for all i = r 4 1,...t in which

case, one (or more) of the points x!,..., 2" must be an optimal solution of (P). O

This theorem is one way to motivate the search for an optimal solution among the extreme points
of S.

What else we know

1. Extreme points of the feasible region correspond to basic feasible solutions of the constraints.
2. If the LP (2) is feasible, it has a basic feasible solution.

3. There are only finitely many extreme points of S.
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4. An optimal solution (if one exists) will occur at a basic feasible solution of the constraints.

5. If the LP (2) has an optimal solution, then so does its dual; moreover, the optimal values of

the primal and dual objective functions are the same.
6. If z is an optimal solution of the primal (2) and ¢ is an optimal solution of its dual then

;>0 = gTA.j = ¢;j. (17)

These facts play an important role in the Simplex Method for linear programming.
Geometric description of the Simplex Method

The geometric idea behind this method is as follows: Start at an extreme point of the (polyhedral)
feasible region, S. Test it for optimality. If it does not pass the optimality test, look for an edge
of the polyhedral feasible region along which objective function value decreases. (This amounts to
choosing a search direction.) Move along that edge until either it is determined that the edge is
unbounded, in which case the objective function is not bounded below and the procedure stops, or
another extreme point is reached and the sequence of steps is repeated. Of course, some algebra is

needed in order to implement these geometrically described steps.
Finding a basic feasible solution

The Simplex Method needs to be initiated at an extreme point of the feasible region, S. In some
cases, one is at hand®% or is easily produced.®” But when no starting point is at hand, how is
one to be found? The answer to this question comes from a remarkable idea: create an auxiliary
problem of the same type which does have an obvious basic feasible solution as its starting point.
What is remarkable about this idea is that essentially the same kind of methodology is used for
solving the auxiliary problem as the original problem, the main difference being that the auxiliary
problem must have a finite optimal solution. The algorithm cannot terminate with the news that

the objective function is unbounded.

In the linear programming literature, the auxiliary problem mentioned above is called the Phase
I Problem. To formulate the Phase I Problem, we (can) begin with the LP problem in standard
form (2). Multiplying each of the constraints A;.x = b; by —1 if necessary, we can assume that the

constraints of (2) already have b > 0.

36This would be the case, if the problem has been solved with the same constraints and a different objective
function.
37Sometimes the addition of slack variables takes care of this.
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Let us assume that A € R™*". Identifying a basic feasible solution of a problem in standard form

(2) is easy if for every i = 1,...,m there is a column of A, say A.;, such that
0
A, =| 1| « i-throw
L 0]

Notice that A.j, is just the i-th column of an m x m identity matrix. Some columns of this form
may already be part of A, having been created by the addition of slack variables to convert linear
inequalities of the form < to equations in nonnegative variables. To form the Phase I Problem, one
adjoins new columns as needed to assure that a column of the form A.;, exists for each ¢ = 1,...,m.
These adjoined columns are said to be artificial and the variables we associate with them are called

artificial variables. A numerical example will help to clarify the ideas.

Example. Consider the system

X1
4 =2 0 6 0] | a9 2
1 728 1||as|=]| 8 2; >0, j=1,...,5
7 351 0] a4 15

Ts5

In this case, the matrix A already contains a column of the 3 x 3 identity matrix. In particular, we
have A.5 = I.5. We need two artificial columns to complete the set. These will look like I.; and I.3.

Thus, the system for the auxiliary (Phase I) problem will be

T
x2
I3 2

x| =| 8 ; >0, j=1,...,7.
xIs5 15

Te
x7

\]ll—‘ﬂk
W I N
ot N O
— 00 O
O = O
S O =
— o O

In this system, xg and x7 are artificial variables (relative to the original system). Notice that the

augmented system in this case has an obvious basic feasible solution

(Il) L2,T3,T4,T5,T6, .’E7) - (O) O) O) Oa 85 27 15)
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Now to complete the formulation of the Phase I Problem, we introduce an objective function. The
goal of the Phase I Problem is to find a basic feasible solution of the augmented system in which the
artificial variables are nonbasic—and hence have value zero. This cannot always be done. If it can
be done, then the original system (containing no artificial variables) must be feasible. But since
not every system is feasible, we need to have a way of detecting this outcome. The device used in
formulating the Phase I Problem is to minimize the sum of the artificial variables. Note that the
objective function of the Phase I Problem is the sum of a set of nonnegative variables. As such, it
is bounded below by zero. Note also that the dual of the Phase I Problem is always feasible. For
these reasons, we know that the Phase I Problem has an optimal solution (and so does its dual). If
the optimal objective function value in the Phase I Problem is positive, it follows that the original

system must be infeasible.

For theoretical purposes, it does no harm to assume that an artificial variable is needed for each of

the m rows of the system.?® Thus, the Phase I Problem can be formulated as follows:

n+m
minimize Z T
j=n+1
n 18
subject to Zaijxj—f—xn_,_i =b, i1=1,...,m ( )
j=1
z; >0, j=1,....,n+m
In matrix form, the formulation above reads
minimize ez,
subject to Ax + Iz, =b (19)

x>0, z, >0
where x denotes the index set {n +1,...,n + m} corresponding to the artificial variables.

The Phase I Problem has the basic feasible solution = 0, x, = b. The basis corresponding to

this basic feasible solution is [A I]., which is just the identity matrix.

Since the technique used to solve the Phase I Problem is the same as the Simplex Method itself,

we postpone further discussion of the Phase I problem to see how the Simplex Method works.

The concept of a feasible basis

380nly computational efficiency is affected by introducing superfluous artificial variables.
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Let us assume that we have a system of linear equations in nonnegative variables, say
Az =b, z>0. (20)

For this discussion, we assume that the m rows of A are linearly independent and that we know

an m X m matrix of columns

B = A=A Ay -+ Auj, ]

such that
x5 =B"'b>0. (21)

Notice that xg solves the equation
B.CEﬂ =b. (22)

Taking x; = 0 if j ¢ [ then gives rise to a basic feasible solution of the system (6). The matrix B

is called a feasible basis; we shall call 3 a feasible basis index set.
Testing for optimality

A feasible basis, determines a feasible point, say Z. (In fact, Z is an extreme point of S). How do
we test T for optimality? We wish to know if the optimality conditions are satisfied there. This
is where matters get a little bit delicate. To simplify the discussion, we assume that all the basic
components of T are positive, i.e., that g > 0. When this is the case, T is a nondegenerate basic
feasible solution.?® Moreover, we can say that Z is an optimal solution if and only if there exists

a dual feasible vector, say ¢ such that (3) holds. Under the present circumstances, this means
JA =cj (23)

Now as long as B = A.g is a nonsingular m X m matrix, the equation (9) can be solved for . That

is, (9) is solvable, even if 7 is a degenerate basic feasible solution.

Having g, we want to test for optimality. To do so, we shall need to take degeneracy into account,

but let’s begin with the nondegenerate case.

Proposition. If B is a feasible basis for the constraints of (2), and the corresponding basic feasible
solution Z is nondegenerate, then Z is optimal for (2) if and only if the solution g of (9) satisfies

the linear inequalities
yra<ch. (24)

390therwise, it is a degenerate basic feasible solution.
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Proof. Suppose y satisfies (9) and (10). Then together, T and § are primal and dual feasible
vectors, respectively, that satisfy the complementary slackness conditions. They must both be
optimal for their respective problems. This shows the sufficiency®” of (9) and (10) for the optimality
of z in (2).

As for the necessity, suppose that z is optimal for (2), y is obtained from (9), and (10) fails to hold.

Then it must be the case that for some s
Co— P A = H;Zlél{c] —§TA.;} <. (25)
J

We shall show that, under these conditions, the value of the primal objective function over the set
S can be decreased by increasing zs. Indeed, denoting the value of the primal objective function

by z, we have

2= ¢wj+ csus (26)
j€p
where it is understood that all primal variables not appearing in (12) are fixed at value zero. Now

we also have the relationship

Apxg+ Acszs = b (27)

which implicitly decribes how the basic variables g behave as functions of the nonbasic variable

5. In more explicit form, this equation becomes
xg = A._ﬁlb — AfﬂlA.sxS. (28)
Substituting this expression for zg into equation (12), we get
z = cEAfﬁlb + (cs — chfﬁlA.s)xs. (29)

The first term on the right-hand side of (15) is the value of z at the current basic feasible solution
(where s = 0). The rest of the right-hand side of (15) is a negative number (see (9) and (11))
times a nonnegative variable, x;. When this variable is made even the least bit positive, the value

of z will decrease. O

The question then becomes: how much can zs be increased? When z;, = 0 (as it is in the basic
solution Z), the value of the vector x5 is positive; in fact it is just Z3. According to (14), it will
remain so for all sufficiently small positive values of x5,. Moreover, depending on the sign of the

vector —A._ﬁlA. s, it might remain so for all nonnegative values of x,. Indeed, it will do so if and

4ONotice that this sufficiency part does not make use of the nondegeneracy assumption.
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only if —A._BlA.s > 0. If this sign configuration holds, then x4 can be increased indefinitely and
the corresponding solution will remain in S, thereby making z decrease to —oo. If, however, this
sign configuration does not hold, there will be a limit to how much x4 can be increased before some

component of x3 becomes negative and feasibility is lost. To determine this amount, we compute

. (ASb)s L
min ¢ ——5——: (A._ﬂ As)i >00. (30)
1<i<m | (A5 Aus);
e
If r belongs to the argmin of this expression, then we know that the basic variable x;, associated

with the r-th equation is (among) the first to decrease to zero as z increases.
Changing the basis and carrying on

In the preceding calculations, we identified two indices: s and r. The index s is associated with
a nonbasic column A.,. The index r is associated with a row and also with a basic column A.; .
When the nonbasic variable x4 reaches its maximum allowable value (relative to the current basis),
the basic variable x; decreases to zero. When this occurs, we change the basis, specifically by
replacing the current A.; by A.,. This amounts to revising the definition of j,, namely by setting

its value to s.

Once the basis is changed, there is a new basic feasible solution. In the next iteration, the Simplex
Method would test the new basic feasible solution for optimality and repeat the procedure outlined

above.
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The finiteness argument (assuming nondegeneracy)

If all the basic feasible solutions encountered are nondegenerate, the Simplex Method either detects
unboundedness or obtains an optimal solution in a finite number of steps. The reasoning behind

this is quite simple:

e The algorithm examines basic feasible solutions at each of which the objective function is

uniquely determined.

e With each step from one basic feasible solution to the next, there is a strict decrease of the

objective function value, hence no basic feasible solution can re-occur.
e There are only finitely many basic feasible solutions.

e Hence after finitely many steps, the algorithm either detects unboundedness (in which case

it stops) or it finds an optimal basic feasible solution of the problem.

What about the degenerate case?

When a degenerate basic feasible solution is encountered, the steps of the Simplex Method can
still be performed, but the finiteness argument given above breaks down. In particular, one can
no longer be sure of a strict decrease in the value of the objective function. When degeneracy
is present, it is possible for the Simplex Method to cycle. When this happens, the sequence of
feasible bases may return to one that was previously encountered. It then “cycles around this loop”

without ever terminating. This sort of behavior is exhibited by the problem

minimize — 2x7 — 3x2 + x3 + 1214
subject to — 27 — 922 + x3 + 924 <0
%x1+x—%x3—2x4§0

€, €2, €3, T4 > 0

The style of argument given above is valid if it can be guaranteed that only finitely many iterations
will occur between strict decreases in the objective function value. This kind of behavior is called
stalling, and it is commonly experienced in practice. This means, of course, that degeneracy must

also be quite prevalent.

To counteract the theoretical (and occasionally practical) problem of cycling, researchers have

devised degeneracy resolution schemes that keep the algorithm from stalling forever. Random
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selection, perturbation (of the right-hand side), lexicographic ordering, and least-index rules are
the names of some of the techniques found in the literature. In actually implementing a degeneracy
resolution scheme in an LP code, one has to guard against creating intolerable computational and

storage requirements.

Interpretation of dual variables

We wish to exhibit some valuable information that is available after solving a linear programming
problem. For this purpose, we denote by (P) the (primal) linear programming problem in standard

form:

minimize cle
subject to Ax =b
x > 0.

Relative to (P), the dual problem (D) is

maximize yTb
subject to yTA < T

To ease the discussion, we assume that the matrix A is m X n and has rank m. This is not a
particularly restrictive assumption.
Assume that 7 is an optimal basic*! feasible solution of (P). This means that there exists an index
set 3 such that:

1. A.s is nonsingular;

2. Zg=A4b>0;

3. jev={l,....,n}\ =17, =0.
Recall that if Z is a nondegenerate basic feasible solution, its support has cardinality m; in these
circumstances Tg > 0. For the time being, we assume that our Z is nondegenerate. Then, as

assured by the Proposition on page 17 of this handout, the basis matrix B = A.g yields an optimal

solution of the dual problem (D), namely

4INote that it is sometimes possible for a nonbasic feasible solution to be optimal.
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§T=c5AL

Notice that because z,, = 0, we have
'z = cg@; = cE(Afﬁlb) = (chfﬁl)b =g'b.

Remark. Imagine a real-world situation where the elements of the vector ¢ represent “unit pro-
duction costs” and those of the vector b represent “requirements.” (Note that by adopting a sign
convention on the b;, we can handle both inputs and outputs. For example, our convention could
be that if item 4 is an input to production (a resource), we let b; be positive, whereas if item ¢ is an
output, then we let b; be negative. Just the opposite convention might also be used, but whatever
convention is adopted, it must be consistent.) The components x; of the decision vector = represent
“activity levels”. They tell us how much of the various production activities are used. Accordingly,
the scalar product ¢''Z is in units of money. By what is called dimensional analysis, this means
that the quantity §*b should be in monetary units. But since b; is the quantity of i either required
(as an output) or available (as an input), it follows that the individual components g; of the optimal
solution to (D) must be interpreted as monetary units per unit of item i. In the jargon of
fields such as economics and operations research, the values of the g; are called shadow prices.
Relative to the production costs (given by ¢) and technology (given by A), the shadow prices are

used to assess the value of resources or the cost of requirements.
An important consequence of nondegeneracy

Continuing with the preceding setup—in particular the nondegeneracy assumption—we note that

Afﬂlb >0= Afﬁlb' > 0 for all b’ sufficiently close to b.

This means that if the right-hand side is slightly perturbed, the previously optimal basis will remain

feasible.

We also notice that changing the right-hand side vector b does not affect the feasibility of the dual
problem. In particular, the vector § remains dual feasible. In fact, provided b’ is close enough to b,

taking ¥ such that zg = Afﬁlb’ and Z,, = 0 yields an optimal solution for the modified problem (P’)
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having o’ as its right-hand side. Indeed, Z and ¥ satisfy the primal feasibility, dual feasibility, and

complementary slackness conditions for the modified problem, and this verifies their optimality.

Let us now consider perturbations of a particular form, namely those in which only one component

of b is altered. Thus, for some fixed & let

b =b+de, where d€R and e, = L.

This has the effect of altering just the kth component of b. Assuming that |§| is small enough
to guarantee that A._ﬁlb’ > 0, we compare the optimal objective functions of the two programs,
(P) and (P). In fact, the optimal objective function values for (P) and (P’) can be written,

respectively, as
2(b) =70 and z(b)=7V.
From this—and the special form of ¥'—we conclude that
2(V) — z(b) = gL (' — b) = 7 (dex) = ST

This equation implies
0z(b)

Oby,

= Uk-
This says that g measures the marginal value of the kth right-hand side item bg. This kind of

information can be quite valuable.

Another point that is worth noting is that when the primal problem (P) has a nondegenerate
optimal solution, the dual problem (D) has a unique optimal solution. The truth of this assertion

is a simple consequence of the complementary slackness conditions:
Zj(c;—yTA;)=0 forallj=1,...,n.

This and the positivity of Z; for j € 3 imply that yt = CﬁA._ﬁl. But this is how we defined 7.

Thus, the dual problem has only one optimal solution.
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A key assumption in this discussion is that the optimal solution of the primal problem is nonde-
generate. When this is not the case (the solution is degenerate), there is ambiguity in the choice of
optimal solution for the dual problem. This fact makes it difficult to speak of an optimal solution

to the dual as a definitive set of “prices.”
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5.5 Quadratic programmming

As commonly understood, a quadratic programming problem (QP) involves the optimization (say
minimization) of a quadratic function subject to linear constraints, ordinarily involving at least
some linear inequalities or sign-restricted variables. This definition allows for a considerable range
of problem types, several of which we shall discuss below. It does not allow for nonlinear constraints

of any kind.*?
About the objective function

In general, a quadratic function is the sum of three expressions: a constant, a linear form, and

a quadratic form (the latter often multiplied by 3). Such a thing looks like
f(x) =K+ 'z + s21Qu.

Since the additive constant K does not affect the location of an optimal solution, it can be dropped
from the formulation. It is usually assumed that the matrix () appearing in the definition of f is
symmetric. This is not a restrictive assumption as long as the value of the quadratic form z'Qz is

what matters.

It should be noted that when @ = 0 (the zero matrix), the function ¢’z + %xTQaf reduces to a
linear function. There is a significant difference between linear and quadratic functions vis-a-vis
convexity. As we know, a function is both convex and concave if and only if it is affine (linear plus
a constant). Thus, a (truly) quadratic function could be convex, concave, or neither. With R™
regarded as the domain, these alternatives are equivalent to @) being positive semidefinite, negative
semidefinite, or indefinite. Where quadratic functions are concerned, it is the Hessian matrix @
that determines whether a function is convex or not. If the domain of the function (e.g., the feasible
region of the QP) is full-dimensional, then a quadratic function will be convex on that domain if
and only if its Hessian matrix is positive semidefinite (thus making the function convex on the

whole space). The general situation is that a quadratic function is convex on a convex set if and

42Nowadays, some people are interested in the optimization of quadratic functions subject to quadratic
constraints (typically inequalities). Such problems are properly called quadratically constrained
quadratic programs.
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only if it is convex on the affine hull (carrying plane) of that set. This means that a quadratic
function f of n variables defined on a convex set S having dimension less than n could be convex

on S even though its Hessian matrix is not positive semidefinite.

Example. The following case illustrates the idea just stated. Here we have n = 2. Let
fl1,22) = 21 + 22 — F2120,

and

S = {(1’1,1‘2):1’1—!—932 =1, 21 >0, 9 20}

The function f is not convex on R?. However, since z € S implies zo = 1 — 1, we may write the

constrained quadratic function as
1 _ 1 1.2
r14+ (1 —21) — 521(1 — 21) = 1 — 501 + 527,
which is convex on R!.

Interesting as this example may be, one seldom gets a chance to use this sort of analysis in practice.
Nevertheless, if one can analytically determine the affine hull of the feasible region, it possible to

decide whether or not a given quadratic function is convex there.

Remark. This preoccupation with convex functions is pertinent to minimization problems. In such
quadratic programs, the necessary first-order optimality conditions are also sufficient for optimality.
By finding a solution of the KK'T conditions, we will have found a global optimizer of the minimand.
For maximization problems, we would want a concave objective function. And while we are at it, let
us note that the minimization of a concave (truly) quadratic function can lead to local (non-global)
minimizers, and, in some cases, lots of them.

Example. In R", the problem
1T

minimize —5T°X

subject to —e<z<e
gives rise to 2" local minimizers. All of them are global minimizers. But just imagine what could
happen if the feasible region were more irregular or the minimand were strictly concave but more

complicated.
About the constraints

As stated above, the constraints of a quadratic programmng problem can come in many different
forms, just as they can in a linear programming problem. Often the forms that are chosen as

“standard” enable one to develop a particular aspect of the theory in a particularly nice way.
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For our purposes, it will suffice to regard the quadratic programming problem as having the form

P, T, 1.7
minimize ¢+ 52 Qx

(31)
subject to  Ax > b.

Notice that as far as the theory is concerned, this problem has free variables. Nevertheless, it is

possible to include variables with explicit upper or lower bounds in such a format.

In connection with certain algorithms (particularly active set methods), it is necessary to consider
equality-constrained quadratic optimization problems of the form
minimize ¢z + %a:TQx (32)
subject to Az =b.
This kind of problem may arise when one has to minimize the objective of (1) over the active
constraints relative to some feasible point. In that case, the matrix A and vector b in (2) would be

made up of rows of A and b.

Remark. This is an opportune point at which to bring up another notational convention. In
general, if f is a function with domain X and if S is a nonempty subset of X, then the restriction

of f to S is the function fg with domain S such that fg(x) = f(z) when = € S.
5.4.1 Equality-constrained quadratic optimization problems

We shall begin this algorithmic discussion with equality-constrained quadratic optimization problem
such as (2), but to make the notation simpler, we dispense (temporarily) with the hats on A and
b. Let us also make the simplifying assumption that A € R™*™ and that the rows of A are linearly
independent. Under such circumstances, there will exist a basis in A, that is, a nonsingular m x m
matrix B consisting of m columns of A. Let the indices of these columns be ji,...,j». Then we

could say that B = A.g where 8 = {j1,...,jm}. Let
v={j:1<j<n, j¢p}
With these notations in place, we can write
Az, +Agrg=Db (33)
from which we immediately obtain the relation

rg = A._ﬁl(b — Ao my). (34)
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Permuting the indices if necessary, we may assume that z = (z,, zg) and then write the objective

T T
o) — Cy Ty 1 Ty Quv Quﬁ ‘| [ Ty ‘| 35
e [Cﬂ][mﬂ]+2[x6] [Qﬁv Qpp | L zp &

Our goal is to minimize the quadratic function f (which is defined on X = R™) for = belonging to

function in the form

the set S of vectors that satisfy the linear equality constraints Az = b. In other words, we want to
minimize fg. Now, to do this, we can use (4) to eliminate g from the formula (5) by which f(z)

is given. This process yields

Fz,) = cjA b+ 3bTA S QppAb
+ (e — ch A Au + 0T A Qp — VTAS QppA A, (36)
+ %xE(QW - QQVBA:BIA-V + A-TVATQTQBﬁAT,BlA-V)ZEm

which is just an unconstrained quadratic function of z, € R"™. (The tiny example at the top of
page 24 illustrates this process.) Equation (22) says that to evaluate fg we can use the formula for
F.

Our equality-constrained quadratic optimization problem is a matter of minimizing fg, that is to
say, F'. The first-order optimality condition VF'(z,) = 0 will have to hold at a local minimizer z,
of F. If the Hessian matrix of F' is positive semidefinite, these necessary conditions will also be
sufficient for the optimality of such stationary point of F'. If this Hessian matrix is positive definite,

the minimizer of F' will be unique.
Null space methods

We are dealing here with the set S = {z : Ax = b} where A € R™*". A simple observation is that

any two elements of S, say x and z’, differ by an element of the null space® of A. Indeed,
Az =b and Az'=b = A(@—-2")=b-b=0.

To phrase this the other way around, if we have a point « € S, and we wish to obtain another point

of S, then we shall have to move (from z) in a direction that belongs to the null space of S.

The null space of A is certainly a vector space, a subspace of R"™. If the rows of A are linearly

(n—m)

independent, the null space of A will have dimension n — m. Now let Z € R™ be a basis

43That is, the set of all vectors p such that Ap = 0.
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matrix for the null space of A. In terms of the discussion above (where A = [A., A.g]),

2= ] 3
—A A

is such a matrix. It has the prescribed order, and its columns are linearly independent. Moreover,
since AZ = 0, it follows that AZv = 0 for any v € R™ . But notice that it is not necessary to

construct Z in this manner, i.e., with an explicit inverse of the basis matrix A.g.
To see why we bother with this, look back at (22).

Fortunately, any quadratic function—such as our f(z) = c'w + %xTQx—satisﬁes the following

relationship?* for any two points z and v in its domain:
flat+y) = cz+y)+5@@+y)"Q +y)
= o+ %:UTQ:U +yT(c+ Qx) + %yTQy (38)
= f(@)+y" V(@) + 39"V f(2)y

Let us now use (24) with z =z € S and y = Zv for some v € R"~™. We obtain
f(Z+ Zv) =c'z + 12TQz + v ZT (c + Qz) + 3(Zv)TQ(2v) (39)
The function values of interest can now be regarded as depending on v, so we let
() = (7 + 2Zv).

(This is, in effect, the restriction of f to S that we saw before.) The stationarity condition for ¢

(that is, Vo(v) = 0) gives rise to the equation

ZY'QZv = -Z%(c + Qx). (40)

In solving this equation for v, we would be finding the Newton direction for ¢. Relative to the
equality-constrained QP, a solution v of (26) gives what is called a reduced Newton direction,

Zv. The matrix ZTQZ is called the reduced Hessian matric.
5.4.2 Quadratic programs with linear inequality constraints

This discussion centers on algorithms for quadratic programming problems of the form
minimize ¢z + %xTQx

(41)
subject to Ax > b.

44This is just saying that the Taylor series expansion of a quadratic function has just three terms.
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Let us assume that A € R™*™. In making this assumption, we are not declaring which of the two
positive integers m and n is the larger. Indeed, because we are dealing with linear inequalities rather
than equations here, it is possible for m to be (considerably) larger than n without making the
system “overdetermined” as it would be if the linear inequalities were replaced by linear equations.
But we may equally well have a problem in which the number n is much larger than m. The relative
sizes of m and n may in fact dictate what sort of algorithm is more appropriate for the problem at

hand. More will be said about this issue at a later stage in these notes.

The two classes of algorithms we shall examine are called active set methods and range-space
methods. These kinds of algorithms work exclusively with feasible solutions of problems, i.e., they
are feasible point methods. As we have seen, the matter of finding a feasible solution of the
linear constraints Ax > b can be handled by setting up a suitable Phase I Problem as in linear
programming. We shall assume that this aspect of the problem has already been taken care of, i.e.,

that a feasible solution of the constraints is known.

For the sake of brevity, we denote the feasible region of (27) by

S ={z: Az > b}.

The first-order (KKT) optimality conditions for a local minimizer of the problem stated in (27) are

c+Qr—Aly=0 (42)
~b+ Az >0 (43)
y=0 (44)

(45)

yi(—b+ Az) =0

In a general sense, the strategy behind the quadratic programming algorithms we shall see is to
find a solution of this system. In the case where the objective function is convex, satisfying these

conditions will guarantee us that the z-vector is a global minimizer for (27).

Suppose we want to know if a particular feasible vector, say z, is part of a solution (Z,7) to to the
KKT system, (28)—-(31). What can we do? Recall that for any feasible vector, say z, there is a
corresponding index set

A(z)={i: —=b;+ A;.z} = 0.
If (Z,7) is to be a solution of the KKT system, then for each i ¢ A(Z):

—b;+ A;.x >0 and g; =0. (46)
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Given a feasible solution of the QP, this information can be of use in actually attempting to solve

the KKT system, and possibly the problem. Let us define
T=A(Z) and A=A, b=b,.

While we are at it, we can define § as a (presently unknown) vector whose coordinates are in
one-one correspondence with the ¢ € A(Z). Once the coordinates of this vector are found, we can
extend it to an m-vector § according to the definition
Yi = . _ (47)
0 ifié¢ AZ).
In aiming to satisfy the KKT system (28)—(31), we will be aided by the additional assumption that

the rows of A are linearly independent.
Using the above notations, we can write

c+Qz— A% = 0 (48)
—b+ Az = 0, (49)

and with the linear independence assumption in force, we can write
)= Al (c+Qx) (50)
where A, is a right inverse® of A.

Once ¢ is obtained, it can be tested for nonnegativity. First, suppose § > 0. Let § be the m-
vector defined in (33). Then the pair (z,7) satisfies the KKT conditions (28)—(31). Whether the
vector T is a local minimizer is a separate question, however. Next, suppose § # 0. Then it
would appear that there is more work to do. In effect, this condition says that when one of the
coefficients of the reduced gradient vector (relative to the binding constraints) is negative, there is

an equality-constrained descent direction.

Active set methods often include the notion of a working set. This term is a potential source of
confusion, not to mention rather imprecise language. When we have a point € S (such as the
feasible region of (27) defined above), there is an associated set of indices of the linear inequalities
that make up the constraints defining S. The active set corresponding to Z can be thought of as the

set A(Z) defined above. This is a set of indices (subscripts). It is not the linear manifold defined by

45This means AA, = I.
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the corresponding system of equations, nor is it the linear inequalities themselves. The working
set, denoted W, is a (possibly proper) subset of A(Z) that is actually being used to define the

search direction.

Assuming a search direction p at some feasible point z is given, the step size is partially governed
by

a=max{a>0:z+ape S}

Ao — b; .
ST T Ap <0, i ¢ W)

= min{ "
— AP

In general, there is a possibility that the maximum defined above does not actually exist. (See the
Remark concerning this point below.) Barring this situation, the calculation of the step size in the
case of a quadratic function involves looking for the smaller of two numbers: @ (above) and the
minimum of the quadratic f(x + ap) for @ > 0. Ordinarily, this is a strictly convex quadratic in
one variable that takes its minimum value at some positive number.*6 The issue then is how this

number compares to &.

46When p is the reduced Newton direction, this number is 1.
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Active Set Method for (27)

0. Initialization. Let xy € S be given. Define the matrix A and the vector b corresponding to
A(mg). Choose W = A(xg) as the working set. Let Z denote a null space matrix for A, and
let A, be a right inverse for A. Set k = 0 (the iteration counter). Let f(x) = ¢z + %xTQx,
so that Vf(x) = ¢+ Qx and V2f(z) = Q.

1. Test for optimality. If Z¥V f(x;,) = 0, then

(a) If A(xy) = 0, then xy, is a stationary point of f on S. Stop.*

(b) If A(xy) # 0, compute the Lagrange multiplier vector
= A7V f(xp).

(c) If y > 0, stop. (A local stationary point has been found.)

(d) Otherwise, drop (i.e., disregard) a single constraint index corresponding to a negative

Lagrange multiplier. Revise W, A, b, Z, and A, accordingly.

2. Find a search direction. Compute a descent direction p relative to the constraints given by

the working set.*®

3. Find the step length. Compute « so that f(xp + ap) < f(xg) and o < @ where @ is the

maximum allowable step length in the direction p consistent with retaining feasibility.

4. Update everything. Define xi11 = i + ap. If a new constraint is met, add the index of
this constraint to the working set and update W, A, b, Z, and A, accordingly. Replace k by
k + 1 and return to Step 1.

Remark. The wording in Step 3 should really allow for the case where & = oo. This would mean
that for all @ > 0, Aj.(xr + ap) > b; for all ¢ ¢ A(zy). If this is the case, the objective function is

unbounded below over the feasible region.

Example. Consider the quadratic program

minimize —x1 — 29 + %(xl — 19)?
subject to T, +x9>1
x1, x2 >0

47In the convex case, xj would be a global minimum.
48This allows for some flexibility in the method by which choice the search direction is actually computed.
The reduced Newton direction is a common choice.
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Starting from the interior point zo = (1, 1), the search direction would be p = (1,1), and we could

move in this direction indefinitely, all the while decreasing the objective function value.
Range space method for (27)

Consider a quadratic program of the form (27) in which there are far more variables than constraints,
i.e., we have m < n. Suppose @) is an easily invertible matrix. A particular example of that would
be the case where ) is positive definite and diagonal, in which case (27) would have a unique

solution provided S # (). Writing the optimality conditions (28)—(31), we see that (28) implies
z=-Q '(c—Aly). (51)

This equation permits us to substitute the right-hand side for z in the rest of the first-order

conditions. They become

—AQ N (c— ATy) > b (52)
y>0 (53)
Yy [—AQ te+ AQ ATy — b =0 (54)

In the case where @ is positive definite, the conditions (38)—(40) can be regarded as the first-order
optimality conditions of the quadratic program
minimize —(AQ lc+b)Ty + %yTAQ_lATy (55)
subject to y=>0
One salient feature of the quadratic program (41) is that it is a problem in m variables, namely
the Lagrange multipliers, y1, . .., ¥m. The Hessian matrix AQ ' AT is at least positive semidefinite,
and if the rows of A are linearly independent, then it is positive definite. If (41) has no optimal
solution, then (27) must be infeasible. If (41) is a strictly convex QP, its solution will be unique.
Then = can be unambiguously obtained from equation (37). But what if AQ~'AT is only positive
semidefinite? This would allow for (41) to have alternate optima. But this has no adverse effect

on the matter of finding x, which after all has to be unique when ) is positive definite.

This type of approach to solving (27) is called a range space method. 1t is also called a dualiza-
tion technique. Perhaps the earliest occurrence of this approach in the literature is to be found
in Hildreth [1954].
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5.4.3 Two numerical examples®’

Example 1. The following is a strictly convex quadratic program with a compact feasible region

containing the vector xg = (0,0).

minimize  —2zq — 6z + 5(22% — dzy20 + 423)
subject to —xr1 — X9 > =2
r1T — 2x9 > -2
T > 0
To > 0

In this discussion, we include the nonnegativity constraints with the other linear inequalities. In

all, then, we have m = 4 linear inequality constraints for which the data are

1 -1 —9
1 -2 9 9 9 2

A= 9 o =] o C_[61’ @ [2 4]
0 1 0

The objective function f(z) = c'a + %xTQx has the gradient Vf(z) = ¢+ Qz. Just for the
record, we note that the unconstrained minimum of f is —Q~'c = (5,4) which does not satisfy
the constraints of the problem, hence we use an algorithm to find the solution of the constrained

optimization problem.

At the starting point o = (0,0), the third and fourth constraints are active, so we have A(xo) =

{3,4} = W. Then we have

- 10 = 0 - 10
Since A is a nonsingular matrix, its null space is {0}, so for the null space matrix we take
0 0
Z- [ 0.0 ] |
At this point, we have ZTV f(xg) = 0, and A(xg) # 0, so we compute
- 10 -2 -2
— T _ _

49Because of the need to distinguish iteration counters from ordinary subscripts referring to individual
variables, we resort here to using boldface notation for iterates and their counters.
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Since this is not a nonnegative vector, we are going to drop one of the constraints from the working
set, namely constraint 4. (This will allow z9 to become positive.) Accordingly, we revise some

definitions as follows:
W={3}, A=|1 0], b=]0], Z:H}, Ar:[él.

What all this says it that we are presently enforcing the constraint 1 = 0. In this simple situation,
there can’t be much mystery about what the search direction will be, but we compute it anyway.

The reduced Newton direction vector is
p:-4azTer*zTmem>:[:32].

The idea now is to move from xg to xg + ap for some a > 0. The value @ = 1 corresponds to the
global minimizer of f restricted to the line z; = 0. It is easy to check that this point is infeasible.

We need a smaller . We find it by enforcing the feasibility condition A(0+ ap) > b:

-1 -1 -2
1 -2 0 > —2
1 0| @G/2al”] o
0 1 0

which turns out to imply that o < 2/3. Thus, the step length at the current iterate is 2/3. We
define the next iterate to be &1 = xo + (2/3)p = (0,1)T. For this iterate, we have A(z1) = {2,3},

and the other corresponding data are
B - [1 -2 _ [ -2 “Joo . . 02
At the beginning of the next iteration, we have ZTV f(x1) = 0 and A(x1) # (), so we define the

=13 ][] 4]

Since this vector is not nonnegative, we decide to drop constraint 3 from the working set. Geomet-

Lagrange multiplier vector

rically, this means we are going to enforce constraint 2 but allow 1 to become positive. Updating,

we get,
W= 2}, A:“%},b:{ﬂ},Z:l?L &:[3]

Again we compute a reduced Newton search direction vector. It is given by the formula

p=-2(Z"Q2Z) 2V f(x1) = [ 5?2 ] :
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To compute search length, we look at the system

1 -1 —2
1 -2 ba —2
1 0| 1+(B/2a|=] 0
0 1 0

The maximum value of « for which this holds is 2/15. From this we conclude that the step size is

a =min{1,2/15} = 2/15. Using this, we define a new iterate 2 = x1 + (2/15) - p = (2/3,4/3).
Relative to the new iterate x2 we have A(x2) = {1, 2}. We then have
B N . ~ [ -2 oo o oa[-2 1
At this point we have ZTV f(x2) = 0 and A(z2) # 0. Thus, we need to compute
o 2 11 —10/3 26/9
SRR it i B |

We drop the constraint corresponding to the negative component in ¢, namely 2. Thus we get a

new data set

W = {1}, A:[—1 —1}, b

Il
L—
|
[\V]
[
N
Il
L — |
|
— =
—_—
b
£
|
| —— |
|
O =
| S

The corresponding reduced Newton direction is

p=—-2(ZYQ2) 1 2TV f(x2) = l _Zig ] .

We see that x2 + ap is feasible for 0 < o < 10. But since 10 is greater than 1, the latter is our step
length. Thus, we obtain the new iterate xg = x2 +1-p = (4/5,6/5).

At 3 we have A(x3) = {1}. With
e a4 o[

we find that the reduced gradient is zero and the corresponding § = 14/5 > 0. This tells us that xg
is a local minimizer. Since the objective function is strictly convex on R2, x3 is the unique global

minimizer for this little quadratic program.

It can be checked that g = (4/5,6/5) and y = (14/5,0,0,0) satisfy the KKT conditions for this

problem.
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Remark. Something to notice about this problem is that although the iterates all lie on edges of
the feasible region, the unique optimal solution is not at one of its extreme points. This illustrates

a difference between linear and quadratic programming.

Example 2. This example has the same constraints as Example 1, but its objective function is
strictly concave instead of convex. In such a case, we expect to find the local minimizers at extreme

points of the feasible region.

minimize —2x; — 6x9 — %(2{5% — 4x179 + 423)
subject to —x1 — Ty > —2
r1 — 2x9 > -2
T > 0
To > 0

Notice that if the constraints are ignored, this objective function has a global maximizer at (=5, —4)
and has no local minimizers. Let us see what the Active Set Method will do with this problem

when we start it at o = (0,0).

Before we apply the algorithm, let us note that xg is not a local minimum. Indeed, the necessary
condition®® V f(xg)™ > 0 for all v € F does not hold there. In fact, at xg, every feasible direction

is a descent direction.

This time, the problem data are

-1 -1 )
1 -2 2 ) —2 9

A=11 o =] o] ¢ l-(j]’ Q [2—4]
0 1 0

At the starting point g = (0,0), the third and fourth constraints are active, so we have A(xg) =
{3,4} = W. Then we have

fas) o fs) oit)

Because the matrix A is nonsingular, its null space is {0}, so for the null space matrix we take

S

50See the theorem given on page 2 of Handout No. 17.
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At this point, we have ZTV f(xg) = 0, and A(xg) # 0, so we compute

o [11][3]-[ 2]

Continuing as in Example 1, we drop constraint 4 from the working set. The new definitions of

interest are
W = {3}, A:[l o], E:[o}, Z:H], AT:“].

As before, we seek a feasible descent direction. Computing the reduced Newton direction is not
appropriate in this case as it does not yield a feasible direction of descent. Instead, we use the

direction given by projecting —V f(xg) onto the null space of A. This yields®!

p= -0 - AR A9 G = | |

The step size computation leads to a = 1/6 and hence we arrive at the point 1 = (0,1). The

corresponding data are

o, a=[t2]oa=[ 2] 2[00 aa] 2]

Here, too, we have ZTV f(x1) = 0 and A(x1) # 0, so we define the Lagrange multiplier vector

=18 1|0 )=| 5]

This vector is not nonnegative. We drop the constraint corresponding to the negative component

of y. This allows us to make z; positive. The new working set is YW = {2}, and we now have

A=[1 -2, b=][-2] Z:ﬁ], AT:“].

Taking the search direction to be the negative of the projected gradient, we get p = (4/5, 1/5).
The next task is to find the step length. This turns out to be 1/6, and the new point reached is
Tro = (2/3, 4/3).

At o we have A(x2) =W = {1, 2} and

e _ [ =2 loo S a2 1

51For a discussion of this projection process, see Nash and Sofer, page 59.
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Performing the optimality test, we find that we need to compute the Lagrange multipliers. We get

_ = 34/9
— AT —
Since this vector is positive, we stop. We have found a local stationary point.
Is x5 a local minimum? Let’s check it with the second-order optimality criterion. In this case we
need to verify two conditions:
1. Vf(z2)Tv >0 for allv € F;
2. vTQu >0 forallv e FN{Vf(x2)}".
The set F is the cone of feasible directions at xo. It is given as the solution set of the homogeneous

linear inequality system

—U1 — V9 Z 0 (56)
v — 2v9 >0 (57)
It follows (by Farkas’s theorem) from the nonnegativity of the vector gy that the first condition

of the second-order optimality criterion holds. What about the second? Note that (42) and (43)
imply vy < 0. The vectors v € {Vf(x2)}" all satisfy the equation

vy + 15v9 = 0. (58)

But together (42) and (44) imply ve > 0. Consequently v; = v = 0, and therefore the other

second-order optimality condition holds. In short, we have found a local minimizer.

The following figure pertains to these two examples. As we have seen, the solution found in Example
11is (4/5,6/5) which lies on the boundary of the feasible region, but not at an extreme point. The

local minimizer found in Example 2 is at the extreme point (2/3,4/3).
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x2

I

(0,0) .

Figure 5.3
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