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Optimization Problems

2

min
s.t.

• A set of decision variables, x, in vector or 
matrix form with dimension n or nxn

• A continuous and sometime differentiable 
objective function f(x)

• A feasible region where x

can be in

• One can smooth them by reformulation as 
constrained optimization:

max   mini{ fi(x),i=1,…,n} ->

max   α s.t. α- fi(x)  0, for i=1,…,n
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Function, Gradient Vector and Hessian Matrix

• The Gradient Vector of  f at x
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• A function  f of x in Rn

• Taylor’s Expansion Theorem

• The Hessian Matrix of  f at x
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Convex and Concave Functions

f(x) f(x)

x x

f(x) is a convex function if and only if for any given two points x1
and x2 in the function domain and for any constant 0    1

f(x1 +(1- )x2)   f(x1)+(1- )f(x2)

Strongly convex if x1≠x2, f(0.5x1 +0.5x2) < 0.5f(x1)+0.5f(x2)

x1 x2

f(x1)

f(x2)

x1+(1-)x2

 f(x1)+(1- )f(x2)





f(x1 +(1- )x2)
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More on Convex Functions
f(x) is a (stronly) convex function if and only if its 
Hessian matrix is (positive definite PD) positive 
semi-definite (PSD) in the domain of the function.

A symmetric matrix Q is PSD (or PD) if and only if 
xTQx  (or >) 0 for all x ≠0.

A 2x2 matrix is PSD (or PD) if and only if two 
diagonal entries and the determinant are 
nonnegative (or positive).

f(x) is a (strongly) concave function if -f(x) is a 
(strongly) convex function 
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Convex Sets
• A set is convex if every line segment connecting any 

two points in the set is contained entirely within the 
set
– Ex - polyhedron

– Ex - ball

• An extreme point of a convex set is any point that is 
not on any line segment connecting any other two 
distinct points of the set

• The intersection of convex sets is a convex set

• A set is closed if the limit of any convergent 
sequence of the set belongs to the set

• A set is compact if it is bounded and closed.
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Convexity of Function and Level Set

b

x

f(x)

If f(x) is a convex function, then the lower level set 
{x: f(x)  b} is a convex set for any constant b.

The graph of a convex function lies above its tangent line (planes).
The Hessian matrix of a convex function is positive semi-definite.
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Optimization Problem Classes
• Unconstrained Optimization

– Convex or Nonconvex

• Constrained Optimization

– Conic Linear Optimization/Programming (CLO/CLP)

– Convex Constrained Optimization (CCO)

• Feasible region/set is convex; objective general

– Generally Constrained Optimization (GCO)

– Convex Optimization (CO)

• Minimize a convex function over a convex feasible set

• Maximize a concave function over a convex feasible set

• Changing variable/constraint representation may result 
CO 

8

min
s.t.
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Optimization Problem Forms

min f (x) 

hi(x) = 0, i=1,…,m

ci(x) ≥ 0, i=1,…,p

s.t.

min c●x

Ax - b = 0,

X K

s.t.

Conic Linear Optimization (CLO)

A: an m x n matrix
c: objective coefficient
K: a closed convex cone

This is convex optimization

Generally Constrained 
Optimization (GCO)

Each function can be continuous,
continuously differentiable (C1), 

or twice continuously 
differentiable (C2)

It is CCO if ci are all concave, and 
hi are all linear/affine functions. 
In addition, if f is convex, it is CO.
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Why do we care about convex 
optimization?

• It guarantees that every local optimizer is a global 
optimizer 

• It guarantees that every (first-order) KKT (or stationary) 
point/solution is a global optimizer

• This is significant because all of our numerical 
optimization algorithms search/generate a KKT 
point/solution

• Sometime the problem can be “convexfied”:

min   cTx,   s.t.  ||x||2=1

min   cTx,   s.t.  ||x||2  1
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Optimization Theory: Mathematical Foundations

Separating Hyperplane 
Theorem

Supporting Hyperplane 
Theorem

Taylor’s Expansion 
Theorem

Implicit Function 
Theorem Caratheodory’s

Theorem

Alternative Linear 
System/Farkas’ Lemma

Duality and KKT 
Optimality Conditions
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Theory: Feasibility Conditions

• Feasibility Conditions or Farkas’ Lemmas are 
developed to characterize and certify feasibility or 
infeasibility of a feasible region

• Alternative Systems X and Y: X has a feasible 
solution if and only if Y has no feasible solution
• X and Y cannot both have feasible solution

• Exactly one of them has a feasible solution

• They can be viewed as special cases of Linear 
Programming primal and dual pairs
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Alternative Systems and CLO Pairs I

Ax - b = 0,

X K

System X
A: an m x n matrix

b: m-dimension vector
K: a closed convex cone

System Y

K* is the dual cone

bTy=1(>0)

ATy + s = 0,

s K*

p*=min 0Tx

Ax - b = 0,

X K

s.t.

d*=max bTy

ATy + s = 0,

s K*

s.t.
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Alternative Systems and CLO Pairs II

System X
A: an m x n matrix

c: n-dimension vector
K: a closed convex cone

System Y

K* is the dual cone

cTx=-1(<0)

Ax = 0,

X K

ATy + s - c = 0,

s K*

d*=max 0Ty

ATy + s - c = 0,

s K

s.t.

p*=min cTx

Ax = 0,

X K*

s.t.
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Feasibility Test Machine

Is system Y feasible?

“Not” under any 
circumstances 

Is system X
feasible?

Is system Y feasible?

Yes No

“Yes” under certain 
conditions of cone K and

data matrix A:
a) K is a polyhedron cone, 

or
b) Ax or ATy has an interior 

solution 
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OBJ Vector/Matrix 

RHS Vector/Matrix 

A

RHS Vector/Matrix 

OBJ Vector/matrix

AT

Max model

xj ≥K 0

xj ≤K 0

xj free

ith block constraints ≤K

ith block constraints ≥K

ith block constraints =

Min model 

jth block constraints ≥K*

jth block constraints ≤K*

jth block constraints =

yi ≥K* 0

yi ≤K* 0

yi free

General Rules to Construct the CLO Dual

The dual of the dual is the primal
16CME307/MS&E311 Model/Theory Summary



Theory: Optimality Conditions
• Optimality (KKT) Conditions are developed to 

characterize and certify possible minimizers
– Feasibility of original variables
– Optimality conditions consist of original variables and Lagrange 

multipliers
– Zero-order, First-order, Second-order, necessary, sufficient

• They may not lead directly to a very efficient 
algorithm for solving problems, but they do have a 
number of benefits:
– They give insight into what optimal solutions look like
– They provide a way to set up and solve small problems
– They provide a method to check solutions to large problems
– The Lagrange multipliers can be seen as sensitivities of the 

constraints

• A minimizers may not satisfy optimality conditions 
unless certain constraint qualifications hold.
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KKT Optimality Condition Test Machine

Is x a (local) optimizer?

“Yes” only under 
certain 

circumstances 

KKT Optimality  
Condition Test

x

Is x not a (local) optimizer?

Passed Failed

“Not” under certain 
constraint qualifications:
a) Feasible region has an 

interior, or
b) x is a regular point on the 

hypersurface of active 
constraints 

Higher 
Order Test
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0-Order Condition: Duality Theorems for CLO
d*=max

s.t.

p*=min cTx

Ax - b = 0,

X K

s.t.

Primal Problem
A: an m x n matrix

c: objective coefficient
K: a closed convex cone

Dual Problem

K* is the dual cone

0-Order Condition:  p* =d* Sufficient!

Weak 
Duality 

Theorem

Strong Duality Theorem: They must equal? 

“Yes” under certain conditions of cone K 
and data matrix A,b,c:

a) K is a polyhedron cone, or
b) either one has an interior feasible 

solution (but solution may not be 
attainable if K is not polyhedron)
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The Lagrange Function of GCO
min f (x) 

ci(x) (≤,=, ≥) 0, i=1,…,m
s.t.

Restriction on multipliers yi, 

yi (≤,”free”,≥) 0, i=1,…,m

The Largrange Function

L(x,y) = f(x) - ∑i yici(x)

The Lagrange function can be interpreted as a “penalized” 
aggregated objective function:

yi free:  can be penalized either way
yi ≥ 0  for “≥ 0” constraint:  would be penalized only when ci(x) ≤ 0
yi ≤ 0  for “≤ 0” constraint:  would be penalized only when ci(x) ≥ 0
yi = 0  :  no penalty if inequality constraint is strictly satisfied, 

which leads to complementarity.
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The Lagrangian Duality for GCO
p*=min f (x) 

ci(x) (≥,=,≤) 0, i=1,…,m
s.t.

d*=max       ɸ(y)

s.t. yi (≤,”free”, ≥) 0, i=1,…,m

Let   ɸ(y) = infx L(x,y) 

0-Order Condition: p* = d* Sufficient!

Weak 
Duality 

Theorem
P* ≥ d*

Strong 
Duality 

Theorem
They must 

equal?

Not
necessarily!

CME307/MS&E311 Model/Theory Summary
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The Farkas’ Lemma for General Constraint System

p*=min 0Tx

ci(x) (≥,=,≤) 0, i=1,…,m
s.t.

max       ɸ(y)

s.t. yi (≤,”free”, ≥) 0, i=1,…,m

Let   ɸ(y) = infx L(x,y) 

If there exists y such that ɸ(y)>0, then GCS 

is infeasible
Sufficient!

Weak 
Duality 

Theorem
P* ≥ d*

Not
necessarily!
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General Rules to Construct the Dual

min f(x)

ci(x) (≥,=,≤) 0, i=1,…,m  (ODC)

Multiplier Sign Conditions (MSC)

yi (≥,”free”,≤) 0, i=1,…,m

Lagrange Derivative Conditions (LDC)

∂L(x,y)/∂xj = 0, for all j=1,…,n.

Complementarity Slackness Condition (CSC)

yi ci(x) = 0, for each inequality constraint i.

Primal

Constraints in

the Dual

If no x in the 

equation, set it as an 

equality constraint in 

the dual; otherwise, 

express x in terms of 

y and replace x in the 

Lagrange function, 

which becomes the 
Dual objective.
Warning: this may be 
difficult to do in general!Not needed for construct Dual 
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Zero-Order Optimality Test for CLO and GCO

Is x an optimizer?

“Yes” under any 
circumstances 

0-order Optimality 
Test: 0-duality gap?

x

Is x not a (local) optimizer?

Passed Failed

a) “Not” for sure if K is a 
polyhedral cone in CLO; or
b) “Not” for sure when
Feasible region has an 
interior in CCO; otherwise
c) Inconclusive in GCO. 

Higher 
order test

Zero-order condition is sufficient
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1 and 2-order Conditions:  Unconstrained

• Problem:
– Minimize f(x), where x is a vector that could have any values, 

positive or negative

• First Order Necessary Condition (min or max):
– f(x) = 0 (∂f/∂xi = 0 for all i) is the first order necessary condition 

for optimization

• Second Order Necessary Condition:
– 2f(x) is positive semidefinite (PSD) 

• [ dT2f(x)d ≥ 0 for all d ]

• Second Order Sufficient Condition

(Given FONC satisfied)
– 2f(x) is positive definite (PD) 

• [dT2f(x)d > 0 for all d ≠ 0 ]

∂f/∂xi = 0

xi

f

∂2f/∂xi
2 > 0

25CME307/MS&E311 Model/Theory Summary
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The First-Order Necessary Conditions for GCO

Original Decision-Var Constraints (ODC)

ci(x) (≥,=,≤) 0, i=1,…,m

Multiplier Sign Condition (MSC)

yi (≥,”free”,≤) 0, i=1,…,m

Lagrange Derivative Condition (LDC)

∂L(x,y)/∂xj = 0, for all j=1,…,n.

Complementary Slackness Condition (CSC)

yi ci(x) = 0, for each inequality constraint i.

Short cut in dealing 
ODC: xi≥0
LDC:  ∂L(x,y)/∂xj ≥0
CSC: xi∂L(x,y)/∂xj = 0

For maximization,

just flip the sign 

of multipliers, and 

every condition

remains the 

same.

CME307/MS&E311 Model/Theory Summary



Example: KKT Conditions

-f(x)

g(x)

The curve (surface) of 

the objective function is 

tangential to the 

constraint curve 

(surface) at the optimal 

point.  
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• The conditions only used the first derivatives of the functions 
involved in the problem, so it is usually called First-Order 
Necessary conditions (FONC), also named as the KKT conditions.

• Every optimizer must satisfy these conditions (under mild 
technical assumptions, such as all functions are linear, slate 
condition, regularity condition, etc.)

• For general optimization, these necessary conditions may not be 
sufficient; but for convex optimization, they are also sufficient, 
and the optimal solution is unique if the objective function is 
stronly convex.

• These conditions are important both theoretically and 
computationally

• Complementarity Slackness: nonbinding constraint receives zero 
penalty (multiplier and slack could be both zeros).

• Applications include: the Fisher equilibrium, SVM, etc.

28

Remarks of First-Order Necessary Conditions
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Optimality Test for GCO

Is x a (local) optimizer?

“Yes” if it is a  
(locally) convex 

problem

1-order KKT 
Optimality Test

x

Is x not a (local) optimizer?

Passed Failed

“Not” when x is a regular 
point on the hypersurface 
of active constraints or 
other constraint 
qualification conditions

2-order 
test

CME307/MS&E311 Model/Theory Summary
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Minimum and KKT Solutions

1st order KKT Local Opt Global Opt

KKT vs Local Opt

KKT vs Local Opt

with CQ 

KKT vs Global Opt

for CO with CQ 

Local vs Global Opt

CME307/MS&E311 Model/Theory Summary
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2-Order KKT Condition for GCO

This can be done by checking positive semi-definiteness 
(or definiteness) of the projected Hessian of the Lagrange 

function 
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Applications: Optimality Condition & Duality

• Data Science, Machine Learning, Game/Market 
Equilibrium Theories
• LR, SVM, WBC, SNL, MDP, etc.

• Fisher market, Arrow-Debreu market

• Duality and optimality lead to equilibrium conditions

• Pricing and learning
• OLP: online LP by learning prices

• WBC: distributed computation

• SDP: Duality explains localizability

• Distributionally robust optimization/learning 
– A model to deal with inaccurate sample-distributions in 

stochastic optimization and prediction 

• etc…
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