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these results is to show that these problems admit convex optimization formu-
lations, efficient barrier functions and fast rounding techniques. We also present
a continuous path leading to the set of the Arrow-Debreu equilibrium, similar
to the central path developed for linear programming interior-point methods.
This path is derived from the weighted logarithmic utility and barrier func-
tions and the Brouwer fixed-point theorem. The defining equations are bilinear
and possess some primal-dual structure for the application of the Newton-based
path-following method.

First Author: Department of Management Science and Engineering, Stanford University, Stan-
ford, CA 94305. E-mail: yinyu-ye@stanford.edu. This author was supported in part by NSF
Grant DMS-0306611. The author would like to thank Curtis Eaves, Osman Güler, Kamal Jain
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1. Introduction

We consider the Arrow-Debreu competitive market equilibrium problem which
was first formulated by Leon Walras in 1874 [36]. In this problem everyone in a
population of n players has an initial endowment of a divisible good and a utility
function for consuming all goods—their own and others. Every player sells the
entire initial endowment and then uses the revenue to buy a bundle of goods
such that his or her utility function is maximized. Walras asked whether prices
could be set for everyone’s good such that this is possible. An answer was given
by Arrow and Debreu in 1954 [1] who showed that such equilibrium would exist
if the utility functions were concave. Their proof was non-constructive and did
not offer any algorithm to find such equilibrium prices.

Fisher was the first to consider an algorithm to compute equilibrium prices for
a related and different model where players are divided into two sets: producers
and consumers; see Brainard and Scarf [3,34]. Consumers have money to buy
goods and maximize their individual utility functions; producers sell their goods
for money. The price equilibrium is an assignment of prices to goods so that
when every consumer buys a maximal bundle of goods then the market clears,
meaning that all the money is spent and all the goods are sold. Fisher’s model
is a special case of Walras’ model when money is also considered a commodity
so that Arrow and Debreu’s result applies.

Eisenberg and Gale [11,16] gave a convex optimization setting to formulate
Fisher’s model with linear utility functions. They constructed a concave objective
function that is maximized at the equilibrium. Thus, finding an equilibrium
became solving a convex optimization problem, and it could be obtained by
using the ellipsoid method in polynomial time. Here, polynomial time means
that one can compute an ε approximate equilibrium in a number of arithmetic
operations bounded by polynomial in n and log 1

ε . Devanur et al. [9] recently
developed a “combinatorial” algorithm for solving Fisher’s model with linear
utility functions too. Both the ellipsoid method and the combinatorial algorithm
have running times of the order of O(n8 log(1/ε)). Neither approach, Eisenberg-
Gale or Devanur et al., applied to the more general Walras model. The ε based
complexity result seems more appropriate for analyzing these problems because
solutions may be irrational, when the economy model or utility function is more
general, even if all input data are rational.

Solving the Arrow-Debreu problem proved to be more difficult. Eaves [12]
showed that the problem with linear utility can be formulated as a linear com-
plementarity problem (e.g. Cottle et al. [6]) so that Lemke’s algorithm could
compute the equilibrium, if it existed, in a finite time. It was also proved there
that there is an equilibrium solution whose entries were rational as a solution to
an n2-dimension system of linear equations of the original rational inputs. In a
later paper [13], Eaves also proved that the problem with Cobb-Douglas utilities
could be solved in strongly polynomial time of O(n3). Other effective algorithms
to solve the problem include Primak [32], Dirkse and Ferris [10], and Rutherford
[33]; see an excellent survey by Ferris and Pang [15]. None of these are proved to
be polynomial-time algorithms. Esteban-Bravo [14] recently gave another survey
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on linear and nonlinear optimization algorithms to compute equilibria that could
be found in the computational economics literature and suggested alternative
approaches, based on interior-point methods, which might be able to compute
these equilibria in a practically efficient manner even for large-scale models; but
no theoretical complexity analysis was presented there either.

More recently, however, Jain [19] has showed that Walras’s model can be also
formulated as a convex optimization, more precisely, a convex inequality prob-
lem, so that the ellipsoid method again can be used in solving it. Remarkably,
it turned out that the very same formulation was developed by Nenakhov and
Primak [30] more than twenty years earlier. They found a clean set of posinomial
inequalities to describe the problem which are necessary and sufficient. This set
of inequalities can be logarithmically transformed into a set of convex inequali-
ties, a technique which was used in the early ’60s for geometric programming.

The goal of this paper is threefold. First, we develop a polynomial-time
interior-point algorithm to solve Fisher’s model with linear utility. The com-
plexity bound, O(n4 log 1

ε ), of this algorithm is significantly lower than that of
either the ellipsoid or the “combinatorial” algorithm mentioned above. Secondly,
we present an interior-point algorithm, which is not primal-dual, for solving the
Arrow-Debreu pure exchange market equilibrium problem with linear utility. The
algorithm has an efficient barrier function for every convex inequality where the
self-concordant coefficient is at most 2. Thus, the number of arithmetic opera-
tions of the algorithm is again bounded by O(n4 log 1

ε ), which is substantially
lower than the one obtained by the ellipsoid method. If the input data are ratio-
nal, then an exact solution can be obtained by solving the identified system of
linear equations and inequalities, such as in Eaves’ model, when ε < 2−L, where
L is the bit length of the input data. Thus, the arithmetic operation bound
becomes O(n4L), which is in line with the best complexity bound for linear
programming of the same dimension and size.

Finally, we develop a convex optimization setting for Walras’ model, and
present a continuous path leading to the set of Arrow-Debreu equilibria, similar
to the central path developed for linear programming interior-point methods
(see, e.g., Megiddo [24]). The path is derived from the weighted logarithmic
utility and barrier functions and the Brouwer fixed-point theorem. The defining
equations are bilinear and possess some primal-dual structure for the application
of Newton’s method. We also discuss some extensions of our results at the end
of the paper.

2. An Interior-Point Algorithm for Solving the Fisher Equilibrium
Problem

In Fisher’s model the players are divided into two sets: producers and consumers.
Consumer i, i ∈ C, has given money endowment wi to spend and buys goods to
maximize their individual utility functions; producer j, j ∈ P , sells its good for
money. The price equilibrium is an assignment of prices to goods so that when
every consumer buys a maximal bundle of goods then the market clears, meaning
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that all the money is spent and all the goods are sold. Eisenberg and Gale [11]
gave a convex optimization formulation, where, without losing generality, each
producer has one unit of his or her good.

maximize
∑

i∈C wi log
(∑

j∈P uijxij

)

subject to
∑

i∈C xij = 1, ∀j ∈ P
xij ≥ 0, ∀i, j.

Here, player i, i ∈ C, has a linear utility function

ui(xi·) = u(xi1, ..., xin) =
∑

j

uijxij ,

where uij ≥ 0 is the given utility coefficient of player i for producer j’s good
and xij represents the amount of good bought from producer j by consumer i.
They proved that the optimal Lagrange multipliers of this convex problem are
the market clearing prices.

Throughout this paper, we make the following assumptions:

Assumption 1 Every consumer’s initial endowment wi is positive, at least one
uij is positive for every i ∈ C, and at least one uij is positive for every j ∈ P .

This is to say that every consumer in the market has money to spend and he or
she likes at least one good; and every good is valued by at least one consumer. We
will see that, with these assumptions, each good can have a positive equilibrium
price. If a consumer has zero budget or his or her utility has zero value for
every good, then buying nothing is an optimal solution for him or her so that
he or she can be removed from the market; if a good has zero value to every
consumer, then it is a “free” good with zero price in a price equilibrium and can
be arbitrarily distributed among the consumers so that it can be removed from
the market too.

2.1. The weighted analytic center

The Eisenberg-Gale model can be rewritten as

maximize
∑

i∈C wi log ui (1)
subject to

∑
i∈C xij = 1, ∀j ∈ P

ui −
∑

j∈P uijxij = 0, ∀i ∈ C

ui, xij ≥ 0, ∀i, j.
Consider a more general problem

maximize
∑n

j=1 wj log xj (2)
subject to Ax = b,

x ≥ 0,
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where the given A is an m × n-dimensional matrix with full row rank, b is an
m-dimensional vector, and wj is the nonnegative weight on the jth variable. Any
x which satisfies the constraints is called a primal feasible solution, while any
optimal solution to the problem is called a weighted analytic center.

If the weighted analytic center problem has an optimal solution, the opti-
mality conditions are

Sx = w,
Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0,
(3)

where y and s are the Lagrange or KKT multipliers (also dual variable and
slacks of the dual linear program: min bT y subject to s = AT y ≥ 0), and S
is the diagonal matrix with slack vector s on its diagonals. Let the feasible set
of (2) be bounded and have a (relative) interior, i.e., it has a strictly feasible
point x > 0 with Ax = b (this clearly holds for problem (1)). Then, there is a
strictly feasible dual solution s > 0 with s = AT y for some y. Moreover, from
the literature of interior-point algorithms (e.g., Megiddo and Kojima et al. [24,
23] and Güler [18]) here is what we know about the problem:

– The mapping u(x, s) = Sx maps F++ := {(x, s) > 0 : Ax = b, s =
AT y} onto Rn

++ := {u > 0 ∈ Rn} diffeomorphically, or u(·, ·) is continuous,
differentiable and one-to-one, i.e., for any w ∈ Rn

++, system (3) has a unique
solution.

– The inverse mapping maps Rn
+ := {u ≥ 0 ∈ Rn} to F+ := {(x, s) ≥ 0 :

Ax = b, s = AT y} upper semi-continuously. In particular, let w := µw̄,
where vector w̄ > 0 is fixed, and consider the solution of (3) parameterized
by scalar µ > 0. Then, the path of the solution is a one-dimensional smooth
curve and it converges as µ tends to 0 from above.

When wj > 0 for all j and integral for all j, a weight-scaling interior-point
algorithm was developed by Atkinson and Vaidya [2] where the arithmetic op-
eration complexity bound is O(n3 log(max(w)

min(w) )) to compute a solution such that

‖Sx− w‖ ≤ O(min(w)),
Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.

They start with an approximate analytic center where all weights equal min(w),
and then scale them up to w iteratively. It is not clear how their algorithm can
be adapted or analyzed when some of the wj ’s are zeros, which is the case in
Fisher’s model (1).

2.2. A modified primal-dual path-following algorithm

In this subsection, we modify the standard primal-dual path-following algorithm
(e.g., Kojima et al. [22], Monteiro and Adler [27] and Mizuno et al. [26]) for
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solving problems (2) and (1) and analyze their complexity to computing an
ε-solution for any ε > 0:

‖Sx− w‖ ≤ ε,
Ax = b, x ≥ 0,

−AT y + s = 0, s ≥ 0.
(4)

Let x > 0 with Ax = b and (y, s > 0) with s = AT y be a primal-dual
interior-point pair such that

‖Sx− ŵ‖ ≤ ηµ, (5)

where µ ≥ 0 represents an error measure (similar to the complementarity gap
in classical interior-point algorithms for linear programming), η is a positive
constant less than 1, and

ŵj = max{µ, wj}. (6)

Such a point pair is called an approximate central-path point pair of the primal-
dual feasible set F++.

Now we solve a primal-dual system of linear equations for dx, dy and ds:

Sdx + Xds = ŵ+ −Xs,
Adx = 0,

−AT dy + ds = 0,
(7)

where
ŵ+

j = max{(1− η√
n

)µ,wj}. (8)

Note that dT
x ds = dT

x AT dy = 0 here. The work involved in solving the system is
to form the normal matrix ADAT , where D is a diagonal matrix whose diagonal
entries are strictly positive, and factorize it. More precisely, if we premultiply
both sides of the first equation of (7) by S−1, we have

dx + S−1Xds = S−1(ŵ+ −Xs);

premultiplying by A and noting Adx = 0 we have

AS−1Xds = AS−1(ŵ+ −Xs);

and substituting ds = AT dy we have

AS−1XAT dy = AS−1(ŵ+ −Xs),

where AS−1XAT is the normal matrix with D = S−1X.
After obtaining (dx, dy, ds) let

x+ := x + dx,
y+ := y + dy,
s+ := s + ds.

(9)
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Then, we prove that x+ and (y+, s+) are an interior-point feasible pair, and

‖(S+)x+ − ŵ+‖ ≤ ηµ+ (10)

where
µ+ = (1− η√

n
)µ,

so that the computation can repeat.
First, it is helpful to re-express dx and ds. Let

p := X−.5S.5dx,
q := X .5S−.5ds,
r := (XS)−.5(ŵ+ −Xs),

(11)

Note that
p + q = r and pT q = 0

so that p and q represent an orthogonal decomposition of r.
Secondly, from (5), (6), and (8), we have

xjsj ≥ ŵj − ηµ ≥ (1− η)µ

and

‖ŵ+ −Xs‖ = ‖ŵ+ − ŵ + ŵ −Xs‖ ≤ ‖ŵ+ − ŵ‖+ ‖ŵ −Xs‖ ≤ ηµ + ηµ = 2ηµ,

which implies that

‖r‖ ≤ ‖(XS)−.5‖‖ŵ+ −Xs‖ ≤ 2η
√

µ√
1− η

.

Moreover, it is also proved in Mizuno et al. [26] that

‖p‖2 + ‖q‖2 = ‖r‖2 and ‖Pq‖ ≤
√

2
4
‖r‖2.

Thus,

‖(S+)x+ − ŵ+‖2 = ‖(S + Ds)(x + dx)− ŵ+‖2
= ‖Sx + Sdx + Xds − ŵ+ + Dsdx‖2
= ‖Dsdx‖2
= ‖Pq‖2

≤
(√

2
4
‖r‖2

)2

≤
(√

2η2

1− η
µ

)2

≤
( √

2η2

(1− η)2
µ+

)2

.
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Thus, if we choose constant η such that
√

2η2

(1− η)2
≤ η

(for example, η = 1/4), then condition (10) holds. Moreover,

‖X−1(x+ − x)‖ = ‖X−1dx‖
= ‖(XS)−.5p‖
≤ ‖(XS)−.5‖‖p‖
≤ ‖p‖√

(1− η)µ

≤ ‖r‖√
(1− η)µ

≤ 2η

1− η
< 1,

which implies that x+ > 0. Similarly, we have s+ > 0. That is, (x+, y+, s+) is a
feasible interior-point pair.

We can generate an initial point pair x0 > 0 and s0 > 0 such that

‖S0x0 − µ0e‖ ≤ ηµ0

where µ0 = max(w) and e is the vector of all ones. Such a point pair corre-
sponds to an approximate analytic center of the bounded primal feasible and
dual objective-level set. In problem (1), the primal feasible set has a relative
interior and it is bounded, which implies that the dual feasible set has a relative
interior and its objective-level set is bounded. The complexity to generate such
an initial point pair is O(n3 log n) arithmetic operations which will be seen in
the next section. Since the dual feasible set is homogeneous, we can always scale
(y, s) so that µ0 = max(w).

Note that µ is decreased at a geometric rate (1 − η/
√

n) and it starts at
max(w). Also, if wj = 0 for some j, then

sjxj ≤ ε√
n

from
|sjxj − µ| ≤ ηµ

as soon as µ ≤ ε√
n(1+η)

. Thus, we have

Theorem 1 The primal-dual path-following algorithm solves the partial weight
analytic center problem (2) in O(

√
n log(n max(w)/ε)) iterations and each iter-

ation solves a system of linear equations in O(nm2 +m3) arithmetic operations.
If Karmarkar’s rank-one update technique is used, the average arithmetic oper-
ations per iteration can be reduced to O(n1.5m).
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If the predictor-corrector algorithm of Mizuno et al. [26] is used, the quadratic
convergence result of [38] (also see [28]) applies to solving problem (2). We have

Corollary 1 The primal-dual predictor-corrector algorithm solves the partial
weight analytic center problem (2) in O(

√
n(log(n max(w)C(A, b))+log log(1/ε))

iterations and each iteration solves a system of linear equations in O(nm2 +m3)
arithmetic operations. Here, C(A, b) is a positive fixed number depending on the
data A and b, and if the entries of A and b are rational numbers then C(A, b) ≤
2O(L(A,b)) where L(A, b) is the bit-length of A and b.

These results indicate that the complexity of the weighted analytic center prob-
lem is in line with linear programming of the same dimension and size.

2.3. Complexity analysis of solving the Fisher equilibrium

In solving Fisher’s problem with m = |P | producers and n = |C| consumers
formulated by Eisenberg and Gale in (1), the number of variables becomes mn+n
and the number of equalities is m + n. We can assign the initial x0 such that

x0
ij =

1
n

, ∀i, j

so that
u0

i =
1
n

∑

j∈P

uij , ∀i.

Let the dual vector y = (p;π) and set the dual variable with equality constraint
j ∈ P to

p0
j = 2nβ

and dual variable with equality constraint i ∈ C to

π0
i =

β

u0
i

.

Then, we have slack variable s0
i = π0

i and u0
i

π0
i u0

i = β, ∀i
and slack variable s0

ij and x0
ij

s0
ijx

0
ij = (p0

j − π0
i uij)/n = 2β − uijβ∑

k∈P uik
, ∀i, j

which is between β and 2β. Using at most O(log(mn)) interior-point iterations,
we will have an interior-point pair satisfying condition (5) (e.g., see [39]).

Moreover, matrix A of (1) is sparse and each of its columns has at most two
nonzeros. Thus, ADAT can be formed in at most O(mn) operations, and it can
be factorized in O((m + n)3) arithmetic operations. Thus, we have
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Theorem 2 The modified primal-dual path-following algorithm solves the Fisher
equilibrium problem (1) with m producers and n consumers in at most O(

√
mn log((m+

n)max(w)/ε)) iterations and each iteration solves a system of linear equations
in O((m + n)3) arithmetic operations.

This results a significant improvement over the O(m4n4 log((m + n)/ε)) arith-
metic operation bound of either the ellipsoid method or the combinatorial algo-
rithm mentioned earlier.

In addition to the feasibility conditions, the optimality conditions of the
Eisenberg-Gale formulation can be written as

pj ·
∑

k∈P

uikxik ≥ wiuij , ∀i, j

xijpj ·
∑

k∈P

uikxik = xijwiuij , ∀i, j.

One can see that Assumption 1 on wi and uij implies p > 0. Moreover, an
optimal solution xij and p of the Eisenberg-Gale formulation is a solution of the
system equations and inequalities:

pj = wiuij∑
k∈P

uikxik
, xij > 0, ∀(i, j) ∈ B∗

pj = wiuij∑
k∈P

uikxik
, xij = 0, ∀(i, j) ∈ Z∗

pj >
wiuij∑

k∈P
uikxik

, xij = 0, ∀(i, j) ∈ N∗
∑

i∈C xij = 1, pj > 0, ∀j

where B∗ is the set of the optimal super-basic variables xij which can be positive
at an optimal primal solution, N∗ is the set of optimal dual slacks

sij = pj − wiuij∑
k∈P uikxik

which can be positive at an optimal dual solution, and Z∗ contains the rest.
Since the optimal solution set of the Eisenberg-Gale formulation is convex,
(B∗, Z∗, N∗) is a unique partition of all variables, and an optimal solution pair
with xij > 0 for all (i, j) ∈ B∗ and sij > 0 for all (i, j) ∈ N∗ is called a (relative)
interior-point or maximal-cardinality solution pair. A rounding procedure for
interior-point algorithms was developed to identify the partition and to round
an approximate solution to an exact (relative) interior-point solution for solving
a range of convex optimization problems; see, e.g., [25,39].

Note that for any given (i, j) ∈ B∗ we have uij > 0 and if (i, k) ∈ B∗

uij

pj
=

uik

pk
;

and if (i, k) 6∈ B∗
uij

pj
≥ uik

pk
.
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For any i, let
λi =

pk

uik
, ∀(i, k) ∈ B∗.

Then, for any i, we have
∑

k∈P

uikxik =
∑

k∈P

uik

pk
pkxik

=
∑

k:(i,k)∈B∗

uik

pk
pkxik

=
∑

k:(i,k)∈B∗

1
λi

pkxik

=
1
λi

∑

k:(i,k)∈B∗
pkxik

=
1
λi

∑

k∈P

pkxik.

Therefore, if we view products pjxij as new variables yij , then the above system
becomes a system of linear equations and inequalities:

uijλi = pj , yij > 0, ∀(i, j) ∈ B∗

uijλi = pj , yij = 0, ∀(i, j) ∈ Z∗

uijλi < pj , yij = 0, ∀(i, j) ∈ N∗∑
j∈P yij = wi, ∀i∑
i∈C yij = pj , ∀j.

(Note the network-flow structure of the system which was explored by Devanur
et al. [9].) Hence, there exists a solution where entries of y∗ij , p∗j and λ∗i must be
rational numbers and their size is bounded by the bit-length L of all input data
uij and wi. Moreover, there is a relative interior-point solution to the system
such that

y∗ij ≥ 2−L, ∀(i, j) ∈ B∗

and
2L ≥ p∗j ≥ uijλ

∗
i + 2−L, ∀(i, j) ∈ N∗.

These bounds are transformed back on the corresponding solution to the original
system

x∗ij ≥ 2−2L, ∀(i, j) ∈ B∗

s∗ij = p∗j − wiuij∑
k∈P

uikx∗
ik

≥ 2−2L, ∀(i, j) ∈ N∗. (12)

Thus, the interior-point algorithm rounding technique (e.g., [25,39]) can be ap-
plied to identify the partition and to compute an exact solution of the above
system in O(

√
mnL) interior-point algorithm iterations. We now give a com-

plete proof below.
Consider the more general problem (2) and let W = {j : wj > 0, j =

1, ..., n}. Then, the pair (x∗j , s
∗
j ) must satisfy x∗js

∗
j = wj for j ∈ W and x∗js

∗
j = 0
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for j 6∈ W in any optimal solution pair (x∗, s∗) of (2). Let (x, s) be any feasible
solution pair (x, s) which satisfies the centering condition (5) and (6) for µ ≤
min{wj : j ∈ W}. Then,

wj − ηµ ≤ xjsj ≤ wj + ηµ, ∀j ∈ W

and
(1− η)µ ≤ xjsj ≤ (1 + η)µ, ∀j 6∈ W.

For simplicity, let 1 6∈ W and x∗1 > 0 (s∗1 = 0) in a relative interior-point solution
pair (x∗, s∗) of (2), i.e., 1 ∈ B∗. Since

(x− x∗)T (s− s∗) = 0

we have

sT x∗ + xT s∗ = xT s + (x∗)T s∗ ≤
∑

j∈W

(2wj + ηµ) +
∑

j 6∈W

(1 + η)µ

or
∑

j∈W

(x∗jsj + s∗jxj) +
∑

j 6∈W

(x∗jsj + s∗jxj) ≤
∑

j∈W

(2wj + ηµ) +
∑

j 6∈W

(1 + η)µ. (13)

For every j ∈ W , we have

x∗jsj+s∗jxj ≥ 2
√

(xjsj)(x∗js
∗
j ) = 2

√
(xjsj)wj ≥ 2wj

√
1− ηµ

wj
≥ 2wj(1−ηµ

wj
) = 2wj−2ηµ,

which, together with (13) and η = 1/4, imply
∑

j 6∈W

(x∗jsj + s∗jxj) ≤
∑

j∈W

(2wj + ηµ) +
∑

j 6∈W

(1 + η)µ−
∑

j∈W

(2wj − 2ηµ)

=
∑

j∈W

(3ηµ) +
∑

j 6∈W

(1 + η)µ ≤ n(1 + η)µ.

Therefore, in particular, we have

s1x
∗
1 = s1x

∗
1 + x1s

∗
1 ≤ n(1 + η)µ,

so that
x1n(1 + η)µ ≥ x1s1x

∗
1 ≥ (1− η)µx∗1

which implies that

x1 ≥ 1− η

n(1 + η)
x∗1 and s1 ≤ n(1 + η)

µ

x∗1
.

Similarly, if s∗1 > 0 (x∗1 = 0) in the pair (x∗, s∗), i.e., 1 ∈ N∗, we have

s1 ≥ 1− η

n(1 + η)
s∗1 and x1 ≤ n(1 + η)

µ

s∗1
.
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Now we define the set
P k = {j : xk

j ≥ sk
j }

where {xk, sk} is the solution sequence generated by the interior-point algorithm
proposed earlier, and have

B∗ ⊂ P k and N∗ ∩ P k = ∅,

as soon as

µk <
1− η

n2(1 + η)2
min{(x∗j + s∗j )

2 : j ∈ B∗ ∪N∗}.

We have just shown in (12) that for solving the Fisher problem

min{(x∗j + s∗j )
2 : j ∈ B∗ ∪N∗} ≥ 2−2L.

Thus, after O(
√

mnL) interior-point algorithm iterations (we can omit log n,
since L ≥ n), the algorithm guarantees B∗ ⊂ P k and N∗ ∩ P k = ∅. Then we
formulate the system of linear equations and inequalities:

uijλi = pj , yij ≥ 0, ∀(i, j) ∈ P k

uijλi ≤ pj , yij = 0, ∀(i, j) 6∈ P k∑
j∈P yij = wi, ∀i∑
i∈C yij = pj , ∀j,

where the system is sure to have a feasible solution and any solution is a Fisher
price equilibrium. One can simply apply an interior-point linear programming
algorithm to compute an exactly feasible solution in no more than O(

√
mn(m+

n)3L) arithmetic operations. To summarize, we have

Theorem 3 The modified primal-dual path-following algorithm, coupled with
the rounding procedure, solves the Fisher equilibrium problem (1) with m pro-
ducers and n consumers exactly in at most O(

√
mn(m + n)3L) arithmetic oper-

ations, where L is the bit-length of the input data uij and wi.

This theorem indicates, for the first time, that the complexity of the Fisher
equilibrium problem is completely in line with linear programming of the same
dimension and size (mn + n variables and m + n constraints).

3. An Interior-Point Algorithm for Solving the Arrow-Debreu
Equilibrium Problem

Here, without loss of generality, let each of the n players have exactly one unit
of divisible good for trade (we will relax this assumption later), and let player i,
i = 1, ..., n, have the linear utility function

ui(xi1, ..., xin) =
∑

j

uijxij ,
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where uij is the given utility coefficient of player i for player j’s good and xij

represents the amount of good bought from player j by player i. Again, assume
that at least one uij > 0 for every i, and at least one uij > 0 for every j; that
is, every player in the market likes at least one good; and every good is valued
by at least one player. We will see that, with these assumptions, each good can
have a positive equilibrium price.

The main difference between Fisher’s and Walras’ models is that, in the lat-
ter, each player is both producer and consumer and the initial endowment of
player i is not given and will be the price assigned to his or her good. Neverthe-
less, we can still write a (parametric) convex optimization model:

maximize
∑n

i=1 wi log
(∑n

j=1 uijxij

)

subject to
∑n

i=1 xij = 1, ∀j
xij ≥ 0, ∀i, j,

or

maximize
∑n

i=1 wi log ui (14)
subject to

∑n
i=1 xij = 1, ∀j

ui −
∑n

j=1 uijxij = 0, ∀i
ui, xij ≥ 0, ∀i, j,

where we wish to select weights wi’s such that the optimal dual prices equal
these weights respectively.

For given w’s, the necessary and sufficient optimality conditions of the model
are:

uiπi = wi, ∀i
xij(pj − uijπi) = 0, ∀i, j

pj − uijπi ≥ 0, ∀i, j∑n
i=1 xij = 1, ∀j

ui −
∑n

j=1 uijxij = 0, ∀i
ui, πi, xij ≥ 0, ∀i, j,

where p is the n-dimensional optimal dual price vector of the first n equality
constraints and π is the n-dimensional optimal dual price vector of the second
n equality constraints in (14). We call the first set of equations the weighted
centering condition, the second set of equations the complementarity condition,
the third set of inequalities the dual feasibility condition, and the fourth and
fifth set the primal feasibility conditions.

Later, we will prove that there is indeed a w ≥ 0 such that pi = wi in these
conditions, that is, there are (u, x) and (p, π) such that

uiπi = pi, ∀i
xij(pj − uijπi) = 0, ∀i, j

pj − uijπi ≥ 0, ∀i, j∑n
i=1 xij = 1, ∀j

ui −
∑n

j=1 uijxij = 0, ∀i
ui, πi, xij ≥ 0, ∀i, j.

(15)
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3.1. A self-dual weighted analytic center

Consider a more general problem

maximize
∑l

j=1 wj log xj (16)
subject to Ax = b,

x ≥ 0,

where given A is an m× n matrix with full row rank,

b =
(

e
0

)
∈ Rm,

and e is the l(≤ m)-dimension vector of all ones.
We prove the following theorem:

Theorem 4 Assume that the feasible set of (16) is bounded and it has a nonempty
relative interior, and that the dual feasibility AT y ≥ 0 implies y1, ..., yl ≥ 0.
Then, there exist w1, ..., wl ≥ 0 such that the entries of an optimal dual vector,
corresponding to the first l equality constraints of (16), equal w1, ..., wl, respec-
tively. When wj’s satisfy this property, we call a solution of (16) a self-dual
weighted analytic center of the feasible set.

Proof. For any given w1, ..., wl ≥ 0, and, without loss of generality satisfying
eT w =

∑l
j=1 wj = 1, the optimality conditions of (16) are

sjxj = wj , j = 1, ..., l
sjxj = 0, j = l + 1, ..., n

s−AT y = 0,
Ax = b,

x, s ≥ 0.

(17)

These conditions are necessary and sufficient since the feasible set of (16) is
bounded and has a nonempty relative interior. Summing up the top n equalities,
we have

n∑

j=1

sjxj =
l∑

j=1

wj = 1.

But from the remaining conditions

1 =
n∑

j=1

sjxj = xT s = xT (Ay) = (Ax)T y = bT y =
l∑

i=1

yi.

Let x0 > 0 such that Ax0 = b. Then, for any slack solution s = AT y ≥ 0 of
the dual objective level set

{y : AT y ≥ 0, bT y = 1}
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we have
sT x0 = bT y = 1

which implies that s is bounded, and so is y since A has full row rank. That is,
the dual objective level set {y : AT y ≥ 0, bT y = 1} is bounded.

From the assumption, yj ≥ 0 for j = 1, ..., l as long as AT y ≥ 0. Thus,
y(w) := (y1, ..., yl) is a map, called the Fisher map, from w = (w1, ..., wl) in
the simplex S = {wj ≥ 0 :

∑l
j=1 wj = 1} to itself. In general, this mapping

may not be one-to-one. But we show that it is upper semi-continuous on S. Our
proof is a simplified version of Güler [18]) for proving a more general problem.
Let wk ∈ S, wk → w∗ ∈ S, and (xk, yk, sk) be any convergent solution sequence
of (17) with w = wk, k = 1, 2, .... We show that the limit point (y∞, s∞) of
the sequence (yk, sk), which is bounded in the dual objective level set, is a dual
solution of (17) with w = w∗.

Let (x∗, y∗, s∗) be a solution of (17) with w = w∗. Let w∗j > 0 for j =
1, ..., l′(≤ l) and the rest of them equal zeros. Then, we have x∗js

∗
j = w∗j > 0 for

j = 1, ..., l′ and at least one of x∗j and s∗j equals 0 for j = l′ + 1, ..., n. Similarly,
both x∞j s∞j = w∗j for j = 1, ..., l′; and at least one of x∞j and s∞j equals 0 for
j = l′ + 1, ..., n, since, otherwise, xk

j sk
j = wk

j 6→ 0. Suppose that there is one
j̄ ∈ {1, ..., n} such that

(x∗̄j − x∞̄j )(s∗̄j − s∞̄j ) 6= 0.

Note that

(x∗ − x∞)T (s∗ − s∞) =
n∑

j=1

(x∗j − x∞j )(s∗j − s∞j ) = 0.

Then, we must have at least one j̄ ∈ {1, ..., n} such that

(x∗̄j − x∞̄j )(s∗̄j − s∞̄j ) > 0.

Without loss of generality assume x∗̄
j

> x∞̄
j
≥ 0. Then, if j̄ ≤ l′, we must have

s∗̄
j
≥ s∞̄

j
> 0 and w∗̄

j
= x∗̄

j
s∗̄

j
> x∞̄

j
s∞̄

j
= w∗̄

j
, which is a contradiction; if j̄ > l′,

we must have s∗̄
j
≥ s∞̄

j
≥ 0 which, from x∗̄

j
s∗̄

j
= 0, implies that 0 = s∗̄

j
= s∞̄

j
,

which is also a contradiction. Therefore, we must have (x∗j − x∞j )(s∗j − s∞j ) = 0
for all j, which implies that

x∗j = x∞j and s∗j = s∞j , ∀j = 1, ..., l′,

and
either x∗j = x∞j = 0 or s∗j = s∞j = 0, ∀j = l′ + 1, ..., n.

Thus, (x∗, y∞, s∞) satisfy all conditions of (17) with w = w∗, so that (y∞, s∞)
is a dual solution of (17) with w = w∗.

Since the mapping y(w) is upper semi-continuous on W , the result follows
from the Kakutani fixed-point theorem (see, e.g., [34,35,37]).
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Todd has suggested a simpler proof of the upper semicontinuity by consider-
ing the graph of the map: (x, y, s, w) which satisfies

sjxj = wj , j = 1, ..., l
sjxj = 0, j = l + 1, ..., n

s−AT y = 0,
Ax = b,

eT w = 1,
x, s, w ≥ 0.

This is a closed set, so the correspondence is closed. Moreover, the correspon-
dence is bounded from the proof shown above. Thus, the result follows from [35].
However, using the proof of Theorem 4, we can develop a stronger corollary for
the Fisher equilibrium formulated in (1).

Corollary 2 The Fisher price equilibrium is unique under Assumption 1, that
is, the Fisher map is one-to-one on the relative interior of the simplex.

Proof. From wi > 0 for all i and the proof of Theorem 4, u∗i > 0 is unique for
all i in any optimal solution of (1). From the constraint structure of (1), at least
one x∗ij > 0 or at least one pair (i, j) ∈ B∗ (see Section 2.3) for every j, so that
p∗j = wiuij

u∗
i

. Thus, p∗j is also unique for every j.

This corollary implies that the Fisher map with linear utilities is a one-to-one
map on the relative interior of the simplex, and the proof of Theorem 4 further
implies that it is also continuous.

Theorem 4 establishes an alternative to Arrow-Debreu’s general proof of equi-
libria restricted to the case of linear utility. There may be an academic advantage
of the constructed proof, however. First this proof can be seen as an extension
of the Eisenberg-Gale proof. Second, this proof reduces the Walras model (in
the Arrow-Debreu setting) to the Fisher model. This justifies an approximation
algorithm of Jain et al. [20] to compute an approximate equilibrium. Their ap-
proximation algorithm reduces the Walras setting to the Fisher map, and it can
be simply stated as

1. Start with arbitrary wi’s.
2. Compute the pi(w)’s.
3. Replace the wi’s with pi(w)’s plus a “residual”, and repeat the loop until the

pi’s computed are almost equal to the wi’s used in the loop. (It is proved
that the “residual” keeps going down linearly in the process.)

They have proved that this simple and elegant algorithm converges in a time
bounded by 1

ε ; see [20]. Note that, in general, this “budget (welfare) adjustment”
scheme does not work. Consider an example of two consumers where w1 = 2,
w2 = 1, u11 = u22 = 1 and u12 = u21 = 2. The Fisher prices of the problem are
p1 = 1 and p2 = 2 so that the adjusted budgets will be w1 = 1 and w2 = 2—a
complete reverse of the initial budget allocation. This implies that simply using
p(w) to replace w cycles and does not terminate. We also remark that adjusting
weights on utilities to try to get to equilibrium has a long history, going back
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to Negishi [29], and was exploited in algorithms by Ginsburgh and Waelbroeck
[17] in the 1970s.

Overall, the conditions for a self-dual weighted analytic center of the feasible
set of (16) can be written as

sjxj = yj , j = 1, ..., l
sjxj = 0, j = l + 1, ..., n

s−AT y = 0,
Ax = b,

x, s ≥ 0.

Using these conditions but excluding the second one, we still have

0 ≤
n∑

j=l+1

sjxj = sT x−
l∑

j=1

sjxj = sT x−
l∑

j=1

yj = bT y −
l∑

j=1

yj = 0,

that is, sjxj = 0 for all j ≥ l+1. Thus, the second or complementarity condition
is implied by the remaining conditions. This fact was first proved in [30] for the
Arrow-Debreu equilibrium problem, which is a special case of problem (16).
Thus, we have

Corollary 3 Assume that the feasible set of (16) is bounded and it has a nonempty
interior, and the dual feasibility AT y ≥ 0 implies y1, ..., yl ≥ 0. Then, a self-dual
weighted analytic center of the feasible set of (16) satisfies the following necessary
and sufficient conditions:

sjxj = yj , j = 1, ..., l
s−AT y = 0,

Ax = b,
x, s ≥ 0.

(18)

Note that the system is homogeneous in (y, s) so that we may add a normalizing
constraint

bT y =
l∑

j=1

yj = 1

to the conditions.

3.2. A convex minimization formulation

Nenakhov and Primak [30] (and Jain [19]) have shown that pi > 0 for all i
under our assumption on uij in problem (15). Again, Corollary 3 shows that the
complementarity condition (the second set of equations in (15)) is implied by
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the remaining conditions. To see this more precisely, multiplying by xij on both
sides of the third equation of (15) and summing them over all (i, j) we have

0 ≤
∑

i,j

xij(pj − uijπi) (since xij ≥ 0 and (pj − uijπi) ≥ 0)

=
∑

i,j

xijpj −
∑

i,j

xijuijπi

=
∑

j

pj −
∑

i

uiπi (since
∑

i

xij = 1 and
∑

j

xijuij = ui)

=
∑

j

pj −
∑

i

pi (since uiπi = pi)

= 0.

Thus, xij(pj − uijπi) = 0 for all (i, j).
By deleting the complementarity condition and substituting ui and πi from

the equalities of (15), the Arrow-Debreu equilibrium is a point (x, p) that satisfies
∑

k uikxik ≥ uij
pi

pj
, ∀i, j∑

i xij = 1, ∀j
pi > 0, ∀i

xij ≥ 0, ∀i, j.
(19)

Then, the problem of finding such (x, p) can be formulated as the following
Phase I optimization problem:

minimize θ (20)
subject to

∑
i xij = 1 + θ ∀j∑

k uikxik ≥ uij
pi

pj
∀i, j : uij 6= 0

xij ≥ 0, pi > 0 ∀i, j.
Here θ can be viewed as an inflated amount of each player’s good, i.e., initially
every player pretends to have 1 + θ units of good. Then θ is gradually moved
down to 0. One can easily see that the problem is strictly feasible with a suitably
large θ. Furthermore,

Lemma 1 For any feasible solution of Problem (20), we must have θ ≥ 0.

Proof. For all i, j, we have

xijpj

∑

k

uikxik ≥ piuijxij .

Summing these inequalities over j, we have

∑

j

xijpj




(∑

k

uikxik

)
≥ pi


∑

j

uijxij


 .
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Thus, ∑

j

xijpj ≥ pi.

Summing these inequalities over i, we have
∑

i

∑

j

xijpj ≥
∑

i

pi,

or
(1 + θ)

∑

j

pj ≥
∑

i

pi

which implies θ ≥ 0.

According to Arrow and Debreu [1], we must also have

Lemma 2 The minimal value of Problem (20) is θ = 0.

3.3. The logarithmic transformation and efficient barrier functions

Let yj = log pj , ∀j. Then problem (20) becomes

minimize θ (21)
subject to

∑
i xij − θ = 1 ∀j∑

k uikxik ≥ uije
yi−yj ∀i, j : uij 6= 0

xij ≥ 0 ∀i, j.
Note that the new problem is a convex optimization problem since eyi−yj is a
convex function in y. This type of transformation has been used in geometric
programming.

The question arises: is there an efficient barrier function for the inequality
∑

k

uikxik ≥ uije
yi−yj , uij 6= 0?

The answer is “yes”, and the barrier function is

− log

(∑

k

uikxik

)
− log

(
log

(∑

k

uikxik

)
− log uij − yi + yj

)

with self-concordant parameter 2; see Proposition 5.3.3 of Nesterov and Ne-
mirovskii [31]. One may also construct the dual, the Legendre transformation,
of the barrier function.

Let ūij = log uij and, for simplicity, uij > 0 for all i, j in the following. Then,
we can formulate the problem as a barrier optimization problem:

minimize θ − µ
∑

i,j (log xij + log (
∑

k uikxik) + log (log (
∑

k uikxik)− ūij − yi + yj))
subject to

∑
i xij − θ = 1 ∀j, (22)
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where the barrier parameter µ > 0. Similar to what we did in the Eisenberg-Gale
model (1), rewrite the problem as

minimize θ − µ
∑

i,j (log xij + log ui + log (log ui − ūij − yi + yj))
subject to

∑
i xij − θ = 1 ∀j,

ui −
∑

j uijxij = 0 ∀i.
There are n2 +2n+1 variables in this formulation. The Hessian matrix H of the
barrier objective function has a block diagonal structure: the diagonal block with
respect to xij is a n2×n2 positive diagonal matrix and the other diagonal block
with respect to the remaining variables is a (2n + 1)× (2n + 1) positive definite
matrix. Thus, the numerical construction and factorization of H needs O(n3)
arithmetic operations. Then the computation and factorization of AT H−1A is
also bounded by O(n3) arithmetic operations, since the constraint matrix A
is sparse and each of its columns has at most two nonzeros. Therefore, one
can develop an interior-point path-following or potential reduction algorithm
to compute an ε-optimal solution, i.e., θ < ε. Since the total self-concordant
coefficient of the barrier function is O(n2), and each iteration uses at most O(n3)
arithmetic operations, we have

Theorem 5 There is an interior-point algorithm to generate a solution to prob-
lem (20) with θ < ε in O(n log 1

ε ) iterations and each iteration uses O(n3) arith-
metic operations.

Note that this worst-case complexity bound is significantly lower than that using
the ellipsoid method by Nenakhov and Primak [30] and Jain [19].

3.4. Alternative optimization setting

An alternative Phase I problem is

minimize θ (23)
subject to

∑
i xij = 1 ∀j

θ ·∑k uikxik ≥ uij
pi

pj
∀i, j : uij 6= 0

xij ≥ 0, pi > 0 ∀i, j.
Initially, θ > 1, which is an inflated factor for the utility value. The problem is
to drive θ to 1.

Let yj = log pj , ∀j and κ = log θ. Then problem (20) becomes

minimize κ (24)
subject to

∑
i xij = 1 ∀j∑

k uikxik ≥ uije
yi−yj−κ ∀i, j : uij 6= 0

xij ≥ 0, ∀i, j.
Again, the new problem is a convex optimization problem since eyi−yj−κ is a
convex function in y and κ, and the minimal value of the problem is 0.



22 Yinyu Ye

3.5. Rounding to an exact solution

Eaves [12] showed that the Arrow-Debreu problem with linear utility can be
formulated as a linear complementarity problem. Again, an optimal solution
yij := pjxij and price vector p is the solution of the homogeneous system of
linear equations and inequalities:

uijλi = pj , yij > 0, ∀(i, j) ∈ B∗

uijλi = pj , yij = 0, ∀(i, j) ∈ Z∗

uijλi < pj , yij = 0, ∀(i, j) ∈ N∗∑
j∈P yij = pi, ∀i∑
i∈C yij = pj , ∀j,

where B∗, Z∗ and N∗ are identical to those defined in the Fisher model. We
may normalize p such that p1 = 1. Then, the system has a rational solution
and the size of its each entry is bounded by the bit-length L of all input data
uij . Thus, the same rounding technique can be applied to separate B∗(∈ P k)
from N∗(∩P k = ∅) for a variable partition P k generated from the interior-point
algorithm, and to compute an exact solution of the system linear equations and
inequalities:

uijλi = pj , yij ≥ 0, ∀(i, j) ∈ P k

uijλi ≤ pj , yij = 0, ∀(i, j) 6∈ P k∑
j∈P yij = pi, ∀i∑
i∈C yij = pj , ∀j,

p1 = 1 .

in O(n4L) arithmetic operations. This implies that

Corollary 4 There is an interior-point algorithm to compute an exact solution
of problem (20) with n producers and n consumers in at most O(n4L) arithmetic
operations, where L is the bit-length of the input data uij.

Again, our result is a significant improvement over the ellipsoid method discussed
by Jain [19].

4. A Path to an Arrow-Debreu equilibrium

Now, we move our attention to whether there is a direct interior-point algorithm
to solve the Arrow-Debreu equilibrium problem, similar to the primal-dual path-
following algorithm for linear programming and the Fisher equilibrium. Such an
algorithm may have economical and practical applications.

Consider the convex optimization problem for a fixed scalar 0 ≤ µ ≤ 1 and
a nonnegative weight vector w with

∑
i wi = n2:

maximize µ
∑

i,j log xij +
∑

i wi(1− µ) log
(∑

j uijxij

)
(25)

subject to
∑

i xij = 1, ∀j
xij ≥ 0, ∀i, j.
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4.1. Economic interpretations

The objective of (25), when µ = 0, is the same objective function which Eisenberg
and Gale used for Fisher’s model. We now present economic interpretations for
µ > 0. When µ = 1, then the objective function becomes the logarithmic barrier
function and the unique maximizer of (25) is the analytic center of the feasible
set, namely, xij = 1

n for all i, j. This is probably an ideal socialist solution if all
players are homogeneous.

In our setting, the combined objective function represents a balance between
socialism and individualism. Here wi(1 − µ) is the weight for the log-utility
value of player i. If again, wi represents the amount of money player i possesses,∑

i wi = n2 represents the total wealth of the players, and µ represents player i’s
tax-rate to be collected for social welfare. The leftover amount, wi(1−µ), would
be the weight used in Eisenberg-Gale to make the market clear. Here, the total
collected tax amount is n2µ and the tax-rate µ is uniformly applied among the
players. Mike Todd also pointed out that the objective function here is really
the convex combination of the two different utility functions, one is un-weighted
and the other is weighted, representing two different idealisms.

4.2. The fixed-point theorem

Unlike Fisher’s problem, we really don’t know how much money w each player
possesses in Walras’ model—it depends on the prices p, since they have to sell
their goods at these prices for revenues. But the prices are the optimal dual
variables or Lagrange multipliers of the n equality constraints in (25). Then,
the natural question becomes, is there a vector w such that the optimal dual
prices of (25) equal the wi’s, respectively. We give an affirmative answer in the
following theorem.

Theorem 6 For any scalar 0 < µ ≤ 1, there exists a weight vector w ≥ nµ and∑
i wi = n2 such that the optimal dual price vector of (25) equals w.

Proof. When µ = 1, i.e., the tax-rate equals 1, the (unique) prices would be

wi = pi = n and xij =
1
n
∀i, j.

Consider 0 < µ < 1. Denote the compact simplex by

S(µ) = {y ∈ Rn :
∑

i

yi = n2, yi ≥ nµ, ∀i} ⊂ Rn
++.

Since µ > 0, the objective function of (25) is strictly convex for any w ≥ 0, and
from convex optimization theory the optimal solution x and its Lagrange (dual)
solution p are unique and strictly positive and they satisfy the necessary and
sufficient conditions:

µ
xij

+ wi(1−µ)uij∑
k

uikxik
= pj , ∀i, j∑

i xij = 1, ∀j
xij > 0, ∀i, j.

(26)
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where pj is the optimal dual price or Lagrange multiplier for equality constraint
j. The first set of constraints is for the dual feasibility condition, and the last
two sets are for the primal feasibility condition.

Summing up the dual feasibility equations, each multiplied by xij , over i and
noting

∑
i xij = 1, we have

pj = nµ +
∑

i

wi(1− µ)uijxij∑
k uikxik

≥ nµ, ∀j.

Summing the above equations over j, we have
∑

j

pj = n2µ +
∑

j

∑

i

wi(1− µ)uijxij∑
k uikxik

= n2µ+
∑

i

wi(1− µ)∑
k uikxik

∑

j

uijxij = n2µ+
∑

i

wi(1−µ) = n2µ+n2(1−µ) = n2.

That is, p ∈ S(µ). For given uij ’s and fixed µ > 0, we may think p ∈ S(µ) being
a mapping of w ∈ S(µ), that is, p(w) is a mapping from the simplex to itself,
and it is one-to-one, continuous and differentiable (see again, e.g., [18,24,23] and
the proof of Theorem 4). From Brouwer’s fixed-point theorem (see, e.g., [34,35,
37]), there exists w ∈ S(µ) such that

p(w) = w,

which completes the proof.

Note that summing up the dual feasibility equations, each multiplied by xij ,
in (26) over j when w = p, we have

∑

j

pjxij = nµ +
∑

j

wi(1− µ)uijxij∑
j uijxij

= nµ + wi(1− µ) = nµ + pi(1− µ).

That is, the individual payment spent by player i equals his net income (after
tax) plus nµ which can be viewed as a tax amount refunded back to each player
uniformly.

4.3. A path-following algorithm?

Let p = w = p(w) in the optimality conditions of (25). Moreover, let yi =∑
j uijxij and qi = pi(1−µ)∑

j
uijxij

. Then we have

xij(pj − uijqi) = µ, ∀i, j
yiqi − pi(1− µ) = 0, ∀i∑

i xij = 1, ∀j
yi −

∑
j uijxij = 0, ∀i∑

i pi = n2,
yi, qi ≥ 0, ∀i

xij , (pj − uijqi) ≥ 0, ∀i, j.

(27)
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Since both the primal and dual solutions are bounded interior points for
any given 0 < µ ≤ 1, they can be written as (xij(µ), yi(µ), qi(µ), pi(µ)). Sim-
ilar to the central path theory of linear programming (e.g., [24,18]), we have,
for µ ∈ (0, 1], (xij(µ), yi(µ), qi(µ), pi(µ)) form continuous and bounded paths
(
∑

i pi(µ) =
∑

i pi(1) = n2 for all µ). Moreover, when µ → 0+, any limit point
converges to an Arrow-Debreu equilibrium solution. System (27) has linear and
bilinear equations, which are similar to the central path equations for linear
programming and primal-dual path-following Newton-based methods might be
applicable. This is a subject of further research.

5. Final Remarks

Consider a more general Arrow-Debreu exchange market problem where the
market has n players and m goods. Player i, i = 1, ..., n, has an initial bundle
of goods 0 ≤ vi = (vi1; vi2; ...; vim) ∈ Rm and has a linear utility function with
coefficients (ui1; ui2; ...; uim) ≥ 0 ∈ Rm. The problem is how to price each good
so that the market clears. We assume that vi 6= 0 for every i, that is, every
player brings some goods to the exchange market; and, again, at least one uij

is positive for every i, and at least one uij is positive for every j; that is, every
player in the market likes at least one good; and every good is valued by at least
one player.

Note that, given the price vector p = (p1; p2; ...; pm) > 0, the individual
utility maximization problem is

max
∑

j

uijxij

s.t.
∑

j

pjxij ≤ pT vi

xij ≥ 0.

The optimality conditions of this individual utility maximization problem,
besides xij being feasible, are

uij ≤
∑

k uikxik

pT vi
pj , ∀j.

It can be verified that if p and x satisfy the constraints

n∑

i=1

xij =
n∑

i=1

vij , ∀j,

∑

k

uikxik ≥ uij · pT vi

pj
, ∀i, j

xij ≥ 0, pj > 0, ∀i, j,
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then p is an equilibrium price vector. Indeed, rewriting the second set of inequal-
ities as

pj ·
∑

k

uikxik ≥ uij · pT vi, ∀i, j

and multiplying by xij on both sides, we have

pjxij ·
∑

k

uikxik ≥ uijxij · pT vi, ∀i, j.

Now summing these inequalities over j, we have
∑

j

pjxij ·
∑

k

uikxik ≥ pT vi ·
∑

j

uijxij , ∀i

or ∑

j

pjxij ≥ pT vi, ∀i.

Now summing them over i, we have

∑

j

pj

(
n∑

i=1

xij

)
≥

∑

j

pj

(
n∑

i=1

vij

)
.

But
∑n

i=1 xij =
∑n

i=1 vij for all j, so that the above must hold as equalities,
and so ∑

j

pjxij = pT vi, ∀i.

That is, x is feasible, thereby optimal, for each of the individual utility maxi-
mization problems.

To find x and p, similar to our earlier discussion, we form a minimization
problem:

min θ

s.t.
n∑

i=1

xij =
n∑

i=1

vij + θ, ∀j,

∑

k

uikxik ≥ uij · pT vi

pj
, ∀i, j,

xij ≥ 0, pj > 0, ∀i, j.
The problem is feasible and has a relative interior, and its minimal value is 0.
For example, one can assign

xij = vij +
θ

n
and pj = 1, ∀i, j

which satisfy the equalities. Then, if we choose θ sufficiently large, all inequalities
are strictly satisfied.
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By introducing new variables yj = log pj , j = 1, ...,m, the problem can be
written

min θ

s.t.
n∑

i=1

xij =
n∑

i=1

vij + θ, ∀j,

log

(∑

k

uikxik

)
≥ log uij + log

(∑

k

vikeyk

)
− yj , ∀i, j, uij > 0,

xij ≥ 0, ∀i, j.

Since log(
∑

k uikxik) is concave in x and log (
∑

k vikeyk) is convex in y, the
inequalities are convex constraints. The rest of constraints are linear and so
is the objective function. Therefore, the generalized Arrow-Debreu exchange
market problem is also a convex minimization problem.

An efficient barrier exists for solving this general problem by inserting a
variable, for each i,

ui ≥ log




m∑

j=1

vije
yj




or

1 ≥
m∑

j=1

vije
yj−ui .

This is a standard (exponential) constraint in geometric programming, and it
is known that the inequality admits an efficient barrier; see Section 6.3.1 of
Nesterov and Nemirovskii [31]. Therefore, the constraint system of the problem
becomes

∑n
i=1 xij =

∑n
i=1 vij + θ, ∀j,

log (
∑

k uikxik) ≥ log uij + ui − yj , ∀i, j, uij > 0,

1 ≥ ∑m
j=1 vije

yj−ui , ∀i,
xij ≥ 0, ∀i, j,

and these inequalities all admit efficient barriers.
We also feel that the general self-dual weighted analytic center discussed in

this paper seems to have more applications in matrix games and other fixed-point
problems. We expect more problems can be transformed to convex optimization
problems where efficient interior-point algorithms may apply.

Other questions remain, such as how to handle general concave utility func-
tions and/or production. Some answers have been given by Codenotti, Deng,
Huang, Jain, Pemmaraju, Varadarajan, Vazirani, and Ye [4,5,7,21]. Are there
direct primal-dual interior-point algorithms for finding an Arrow-Debreu equi-
librium for these exchange economies? The path developed in this paper may
give an answer.
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