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Several Proofs on Conic LP

Theorem 1. Let E be a finite—dimensional Fuclidean space equipped with the inner
product e, and let ay,...,a,, € E. Let C' C E be a non—empty closed convex cone, and
let b € R™. Suppose that there exists an § € R™ such that —A'y = =" Gia; €
int(C*). Then, the system:

Ar=(ay0x,...,a,02)=b, z€C (1)
has a solution x € C if and only if the system:
~Alyecr, vy=1 (2)
has no solution y € R™.

Proof: We begin with some observations. First, we have 0 € (', since C' is a non—empty
closed cone. Next, recall that C* = {z € E:z ez >0 for all z € C'}. We claim the
following:

Lemma 1. We have int(C*) ={z € E:x 02 >0 for allz € C\{0}}.

Proof. Suppose that z € int(C*). Then, there exists an ¢ > 0 such that z + eu € C*
for all w € E with ueu = 1 and all € € [0,€]. In particular, we have z e z > 0 and
re(z+¢cu) >0 foral z € C. Now, if z € C is such that x # 0 and z e z = 0,
then by taking u = —x € E we have z @ (z + €'u) = —€/(r @ x) < 0, which is a
contradiction. Conversely, let z € E be such that x e z > 0 for all x € C\{0}. Define
¢ =inf{rez:x € C, zex = 1}. Since the feasible region is compact, we see that
the infimum is attained at some z* € C\{0}, whence ¢ > 0. We now claim that
z4+eu € C* for all u € E with ueu =1 and € € [0, €], which would then imply that
z € int(C*) as required. Indeed, using the bi-linearity of the inner product e, for all

x € C\{0}, we have:

x.(z+eu):\/m(

\/me . (z+6u)>

o u) (since (z o 2)"Y%(z @ 2) > ¢ for all z € C\{0})

> xoq:(e’—i—e
rex

> (€ —¢€)-Vrex (since zou > —y/(rezx)(ueu) and ueu =1)

>0
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This completes the proof of the claim and hence of the lemma. m

Now, we show that there does not exist (z,y) € C' x R™ such that z solves (1) and y
solves (2) simultaneously. Indeed, if (z,y) € C' x R™ is such a pair, then by definition
of C*, we have:

m m

0< (—A"y) ox:—Zyi(aiox) = —Zyibi: -1

=1 i=1

which is a contradiction. Now, suppose that system (1) has no solution. Define K =
{Az € R™ : x € C'}. Note that our hypothesis implies that b ¢ K. We first show the
following:

Lemma 2. K is a non—empty closed convex set.

Proof. Tt is clear that 0 € K, and the convexity of K follows from the convexity of C.
Now, suppose that we have a sequence b' = Az’ € K such that b — b. We need to
show that b € K. Note that the sequence {0’} is bounded, which in turn implies that
{97b'} is bounded for some § € R™ such that —AT§ € int(C*). We claim that the
sequence {z'} is bounded. Indeed, observe that:

—'0 = —gT Az’ = — Z gi(aj e z') = <— Z g)ja]) o' = —ATjes
j=1 j=1
Now, if 2* # 0, then by the definition of § and Lemma 1, we have:

T — —ATjeai — (Vaiesi .(_ATA z' )>5.,/¢ i
7 Jyex (xox) yo—\/m > e

for some 6 > 0. Since the leftmost quantity is bounded and is independent of ¢, it
follows that the sequence {z'} is bounded as claimed. In particular, by the Bolzano—
Weierstrass theorem, the sequence {x'} has a convergent subsequence whose limit we
shall denote by Z. Note that Z € C, since C is closed. It follows that b = A% € K, as
desired. O

In order to complete the proof of Theorem 1, it remains to apply the Separating
Hyperplane Theorem. Using Lemma 2 and the fact that b ¢ K, we conclude the
existence of an s € R™ such that b7s > sup{z’s: 2z € K}. Since 0 € K, we see that
b's = a > 0. Now, for any « € C, we have:

(—ATS) oy = — Z si(a;ex) = —s' Ax
i—1



3o0f4

We claim that s”. Az < 0 for all x € C. Suppose that this is not the case. Then, there
exists an x € C such that 0 < s Az < sup{2”s : 2z € K} < b’'s, where the second
inequality follows from the fact that Ax € K. However, since C is a cone, we have
vx € C for all v > 0. This implies that 0 < ys? Az < bT's for all ¥ > 0, which is
impossible. Hence, we have s’ Az < 0 for all x € C, whence —ATs € C*. Now, set
y = s/a. Then, we have b7y = 1. Moreover, since C* is a cone and a > 0, we have
— ATy € C*. This completes the proof.

Theorem 2. Let E be a finite—dimensional Fuclidean space equipped with the inner
product @, and let ay,...,a,, € E. Let C C E be a non—empty closed convex cone, and
let b € R™. Consider the Conic LP

(CLP) minimize cex
subject to Ax =b, x € C.

and its dual
(CLD) mazximize bey

subject to ATy +s=c, s e C*.

Let primal and dual feasible regions both be non-empty and have interior, that is, there
is primal feasible x where x € int(C) and dual feasible (y,s) where s € int(C*). Then,
both primal and dual have optimal solutions with zero-duality gap, that is, there are x*
optimal for (CLP) and (y*,s*) optimal for (CLD) where

cex"=bey".

Proof: Given the conditions, we need prove that the system

bey—cex>0
() Ax=b xecC
ATy —s=—c, s C*

always has a solution.

From Theorem 1, the alternative system to this feasibility problem, since we are given
there is primal feasible x where x € int(C') and dual feasible (y,s) where s € int(C*),

is
bey —cex' =1

Ax' — b =0, x eC
(AS) _ATy/ —S,—i-TC — 0’ S/ c C*
T > 0.

e now prove that the alternative system as no solution by contradiction. Le
W that the alternative system (AS) h lution by contradiction. Let
(1,x"y’s’) be a solution to (AS). Consider two cases
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Case 1: 7 = 0. In this case, we have

bey —cex' =1
(AS) Ax' =0, x' eC
~Aly' —s' =0, s eC"

Thus, either cex’ < 0 or bey’ > 0 or both. With out loss of generality, assume that
cex' < 0 and let X be any feasible solution for (CLP). Then, for any a > 0, x + ax’
is also a feasible solution and its objective value is

ce(x+ax')=cex+acex’.

Let a0 goes to 0o, ¢ ® (x + ax’) will be unbounded from below, which contradicts the
Weak Duality Theorem, since the dual (CLD) is feasible.
Case 1: 7 > 0. In this case, x’/7 and (y’,s’)/7 are feasible solution for (CLP) and
(CLD), respectively. Thus, from the Weak Duality Theorem

cex'/T—bey'/T>0
or

cex' —bey >0

which contradicts to the first equality of (AS).

Thus, (S) must have a solution, which is the desired theorem.



