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Several Proofs on Conic LP

1.

Theorem 1. Let E be a finite–dimensional Euclidean space equipped with the inner
product •, and let a1, . . . , am ∈ E. Let C ⊂ E be a non–empty closed convex cone, and
let b ∈ Rm. Suppose that there exists an ŷ ∈ Rm such that −AT ŷ ≡ −∑m

i=1 ŷiai ∈
int(C∗). Then, the system:

Ax ≡ (a1 • x, . . . , am • x) = b, x ∈ C (1)

has a solution x ∈ C if and only if the system:

−AT y ∈ C∗, bT y = 1 (2)

has no solution y ∈ Rm.

Proof: We begin with some observations. First, we have 0 ∈ C, since C is a non–empty
closed cone. Next, recall that C∗ = {z ∈ E : x • z ≥ 0 for all x ∈ C}. We claim the
following:

Lemma 1. We have int(C∗) = {z ∈ E : x • z > 0 for all x ∈ C\{0}}.

Proof. Suppose that z ∈ int(C∗). Then, there exists an ε′ > 0 such that z + εu ∈ C∗

for all u ∈ E with u • u = 1 and all ε ∈ [0, ε′]. In particular, we have x • z ≥ 0 and
x • (z + ε′u) ≥ 0 for all x ∈ C. Now, if x ∈ C is such that x 6= 0 and x • z = 0,
then by taking u = −x ∈ E we have x • (z + ε′u) = −ε′(x • x) < 0, which is a
contradiction. Conversely, let z ∈ E be such that x • z > 0 for all x ∈ C\{0}. Define
ε′ = inf{x • z : x ∈ C, x • x = 1}. Since the feasible region is compact, we see that
the infimum is attained at some x∗ ∈ C\{0}, whence ε′ > 0. We now claim that
z + εu ∈ C∗ for all u ∈ E with u • u = 1 and ε ∈ [0, ε′], which would then imply that
z ∈ int(C∗) as required. Indeed, using the bi–linearity of the inner product •, for all
x ∈ C\{0}, we have:

x • (z + εu) =
√

x • x

(
x√

x • x
• (z + εu)

)

≥ √
x • x

(
ε′ + ε

x√
x • x

• u

)
(since (x • x)−1/2(x • z) ≥ ε′ for all x ∈ C\{0})

≥ (ε′ − ε) · √x • x (since x • u ≥ −
√

(x • x)(u • u) and u • u = 1)

≥ 0
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This completes the proof of the claim and hence of the lemma.

Now, we show that there does not exist (x, y) ∈ C × Rm such that x solves (1) and y
solves (2) simultaneously. Indeed, if (x, y) ∈ C ×Rm is such a pair, then by definition
of C∗, we have:

0 ≤ (−AT y
) • x = −

m∑
i=1

yi(ai • x) = −
m∑

i=1

yibi = −1

which is a contradiction. Now, suppose that system (1) has no solution. Define K =
{Ax ∈ Rm : x ∈ C}. Note that our hypothesis implies that b 6∈ K. We first show the
following:

Lemma 2. K is a non–empty closed convex set.

Proof. It is clear that 0 ∈ K, and the convexity of K follows from the convexity of C.
Now, suppose that we have a sequence bi = Axi ∈ K such that bi → b̄. We need to
show that b̄ ∈ K. Note that the sequence {bi} is bounded, which in turn implies that
{ŷT bi} is bounded for some ŷ ∈ Rm such that −AT ŷ ∈ int(C∗). We claim that the
sequence {xi} is bounded. Indeed, observe that:

−ŷT bi = −ŷTAxi = −
m∑

j=1

ŷj(aj • xi) =

(
−

m∑
j=1

ŷjaj

)
• xi = −AT ŷ • xi

Now, if xi 6= 0, then by the definition of ŷ and Lemma 1, we have:

−ŷT bi = −AT ŷ • xi =
(√

xi • xi
)
·
(
−AT ŷ • xi

√
xi • xi

)
≥ δ ·

√
xi • xi

for some δ > 0. Since the leftmost quantity is bounded and is independent of xi, it
follows that the sequence {xi} is bounded as claimed. In particular, by the Bolzano–
Weierstrass theorem, the sequence {xi} has a convergent subsequence whose limit we
shall denote by x̄. Note that x̄ ∈ C, since C is closed. It follows that b̄ = Ax̄ ∈ K, as
desired.

In order to complete the proof of Theorem 1, it remains to apply the Separating
Hyperplane Theorem. Using Lemma 2 and the fact that b 6∈ K, we conclude the
existence of an s ∈ Rm such that bT s > sup{zT s : z ∈ K}. Since 0 ∈ K, we see that
bT s = α > 0. Now, for any x ∈ C, we have:

(−AT s
) • x = −

m∑
i=1

si(ai • x) = −sTAx
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We claim that sTAx ≤ 0 for all x ∈ C. Suppose that this is not the case. Then, there
exists an x ∈ C such that 0 < sTAx ≤ sup{zT s : z ∈ K} < bT s, where the second
inequality follows from the fact that Ax ∈ K. However, since C is a cone, we have
γx ∈ C for all γ > 0. This implies that 0 < γsTAx < bT s for all γ > 0, which is
impossible. Hence, we have sTAx ≤ 0 for all x ∈ C, whence −AT s ∈ C∗. Now, set
y = s/α. Then, we have bT y = 1. Moreover, since C∗ is a cone and α > 0, we have
−AT y ∈ C∗. This completes the proof.

2.

Theorem 2. Let E be a finite–dimensional Euclidean space equipped with the inner
product •, and let a1, . . . , am ∈ E. Let C ⊂ E be a non–empty closed convex cone, and
let b ∈ Rm. Consider the Conic LP

(CLP ) minimize c • x
subject to Ax = b, x ∈ C.

and its dual
(CLD) maximize b • y

subject to ATy + s = c, s ∈ C∗.

Let primal and dual feasible regions both be non-empty and have interior, that is, there
is primal feasible x where x ∈ int(C) and dual feasible (y, s) where s ∈ int(C∗). Then,
both primal and dual have optimal solutions with zero-duality gap, that is, there are x∗

optimal for (CLP) and (y∗, s∗) optimal for (CLD) where

c • x∗ = b • y∗.

Proof: Given the conditions, we need prove that the system

(S)
b • y − c • x ≥ 0
Ax = b x ∈ C
−ATy − s = −c, s ∈ C∗

always has a solution.

From Theorem 1, the alternative system to this feasibility problem, since we are given
there is primal feasible x where x ∈ int(C) and dual feasible (y, s) where s ∈ int(C∗),
is

(AS)

b • y′ − c • x′ = 1
Ax′ − τb = 0, x′ ∈ C
−ATy′ − s′ + τc = 0, s′ ∈ C∗

τ > 0.

We now prove that the alternative system (AS) has no solution by contradiction. Let
(τ,x′y′s′) be a solution to (AS). Consider two cases
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Case 1: τ = 0. In this case, we have

(AS)
b • y′ − c • x′ = 1
Ax′ = 0, x′ ∈ C
−ATy′ − s′ = 0, s′ ∈ C∗.

Thus, either c • x′ < 0 or b • y′ > 0 or both. With out loss of generality, assume that
c • x′ < 0 and let x̄ be any feasible solution for (CLP). Then, for any α ≥ 0, x + αx′

is also a feasible solution and its objective value is

c • (x + αx′) = c • x + αc • x′.

Let α goes to ∞, c • (x + αx′) will be unbounded from below, which contradicts the
Weak Duality Theorem, since the dual (CLD) is feasible.

Case 1: τ > 0. In this case, x′/τ and (y′, s′)/τ are feasible solution for (CLP) and
(CLD), respectively. Thus, from the Weak Duality Theorem

c • x′/τ − b • y′/τ ≥ 0

or
c • x′ − b • y′ ≥ 0

which contradicts to the first equality of (AS).

Thus, (S) must have a solution, which is the desired theorem.


