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Carathéodory’s theorem

The following theorem states that a polyhedral cone can be generated by a set of basic directional vectors.

Theorem 1 Given matrix A ∈ Rm×n, let convex polyhedral cone C = {Ax : x ≥ 0}. For any

b ∈ C ,

b =

d∑
i=1

ajixji , xji ≥ 0, ∀i

for some linearly independent vectors aj1 ,...,ajd chosen from a1,...,an.

There is a construct proof of the theorem (page 26 of the text).
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Basic and Basic Feasible Solution I

Now consider the feasible set {x : Ax = b, x ≥ 0} for given data A ∈ Rm×n and b ∈ Rm. Select

m linearly independent columns, denoted by the variable index set B, from A. Solve ABxB = b for the

m-dimension vector xB , and set the remaining variables, xN , to zero. Then, we obtain a solution x such

that Ax = b, that is called a basic solution to with respect to the basis AB . If a basic solution xB ≥ 0,

then x is called a basic feasible solution, or BFS.

An equivalent statement of Carathéodory’s theorem is:

Theorem 2 If there is a feasible solution x to {x : Ax = b, x ≥ 0}, then there is a basic feasible

solution to the system (page 26 of the text), and it is an extreme or corner point of the feasible set and vice

versa.

Corollary 1 The set {x : Ax = b, x ≥ 0} is a polyhedral set.
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Hyper-Planes

The most important type of convex set is hyperplane, also called linear variety or affine set: if for any two

points are in H then their affine combination is also in H .

Hyperplanes dominate the entire theory of optimization. Let a be a nonzero n-dimensional (slope) vector,

and let b be a real (intercept) number. The set

H = {x ∈ Rn : a • x = b}

is a hyperplane in Rn. Relating to hyperplane, upper and lower closed half spaces are given by

H+ = {x : a • x ≥ b}

H− = {x : a • x ≤ b}.
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Separating and supporting hyperplane theorem

The most important theorem about the convex set is the following separating hyperplane theorem (page

510 of the text).

Theorem 3 (Separating hyperplane theorem) Let C be a closed convex set in Rm and let b be a point

exterior to C . Then there is a vector y ∈ Rm such that

b • y > sup
x∈C

x • y.

Theorem 4 (Supporting hyperplane theorem) Let C be a closed convex set and let b be a point on the

boundary of C . Then there is a vector y ∈ Rm such that

b • y = sup
x∈C

x • y.

Let C be a unit circle centered at point (1; 1). That is, C = {x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ 1}.

If b = (2; 0), y = (1;−1) is a separating hyperplane vector. If b = (0;−1), y = (0;−1) is a

separating hyperplane vector. It is worth noting that these separating hyperplanes are not unique.
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Figure 1: Illustration of the separating hyperplane theorem; an exterior point b is separated by a hyperplane

from a convex set C .
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Farkas’ Lemma

The following results are Farkas’ lemma and its variants.

Theorem 5 Let A ∈ Rm×n and b ∈ Rm. Then, the system {x : Ax = b, x ≥ 0} has a feasible

solution x if and only if that its alternative system −ATy ≥ 0 and bTy > 0 has no feasible solution y.

Geometrically, Farkas’ lemma means that if a vector b ∈ Rm does not belong to the convex cone

generated by a.1, ...,a.n, then there is a hyperplane separating b from cone(a.1, ...,a.n).

Example Let A = (1, 1) and b = −1. Then, there is y = −1 such that −AT y ≥ 0 and by > 0..
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Proof

Let {x : Ax = b, x ≥ 0} have a feasible solution, say x̄. Then, {y : ATy ≤ 0, bTy > 0} is

infeasible, since otherwise,

0 < bTy = (Ax)Ty = xT (ATy) ≤ 0

from x ≥ 0 and ATy ≤ 0.

Now let {x : Ax = b, x ≥ 0} have no feasible solution, or b ̸∈ C := {Ax : x ≥ 0}. We now prove

that its alternative system has a solution. We first prove

Lemma 1 C = {Ax : x ≥ 0} is a closed convex set.

That is, any convergent sequence bk ∈ C, k = 1.2.... has its limit point b̄ also in C . Let

bk = Axk, xk ≥ 0. Then by Carathéodory’s theorem, we must have bk = ABkxBk , xBk ≥ 0

where ABk is a basis of A. Therefore, xBk , together with zero values for the nonbasic variables, is

bounded for all k, so that it has sub-sequence, say indexed by l = 1, ..., where xl = xBl has a limit

point x̄ and x̄ ≥ 0. Consider this very sub-sequence bl = Axl we must also have bl → b̄. Then from

∥b̄−Ax̄∥ = ∥b̄− bl +Axl −Ax̄∥ ≤ ∥b̄− bl∥+ ∥Axl −Ax̄∥ ≤ ∥b̄− bl∥+ ∥A∥∥xl − x̄∥
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we must have b̄ = Ax̄, that is, b̄ ∈ C ; since otherwise the right-hand side of the above inequality is

strictly greater than zero which is a contradiction.

Now since C is a closed convex set, by the separating hyperplane theorem, there is y such that

y • b > sup
c∈C

y • c

or

y • b > sup
x≥0

y • (Ax) = sup
x≥0

ATy • x. (1)

From 0 ∈ C we have y • b > 0.

Furthermore, ATy ≤ 0. Since otherwise, say (ATy)1 > 0, one can have a vector x̄ ≥ 0 such that

x̄1 = α > 0, x̄2 = ... = x̄n = 0, from which

sup
x≥0

ATy • x ≥ ATy • x̄ = (ATy)1 · α

and it tends to ∞ as α → ∞. This is a contradiction because supx≥0 A
Ty • x is bounded from above

by (1).
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Farkas’ Lemma Variant

Theorem 6 Let A ∈ Rm×n and c ∈ Rn. Then, the system {y : c−ATy ≥ 0} has a solution y if

and only if that Ax = 0, x ≥ 0, and cTx < 0 has no feasible solution x.

Example Let A = (1;−1) and c = (1;−2). Then, there is x = (1; 1) ≥ 0 such that Ax = 0 and

cTx < 0.
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Alternative System Pair I

Ax = b, x ≥ 0.

−ATy ≥ 0, bTy = 1(> 0)

A vector y, with ATy ≤ 0 and bTy = 1, is called an infeasibility certificate for the system

{x : Ax = b, x ≥ 0}.
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Alternative System Pair II

Ax = 0, x ≥ 0, cTx = −1(< 0).

c−ATy ≥ 0

A vector x, with Ax = 0, x ≥ 0 and cTx = −1, is called an infeasibility certificate for the system

{y : c−ATy ≥ 0}.

12



CME307/MS&E311: Optimization Lecture Note #03

Farkas’ Lemma for General Closed Convex Cones?

Consider the pair:

{x : Ax = b, x ∈ K}

and

{y : −ATy ∈ K∗, bTy > 0}.

Or in operator form: given data vector or matrix ai, i = 1, ...,m, and b ∈ Rm, an “alternative” system

pair would be

Ax = b, x ∈ K,

and

−ATy ∈ K∗, bTy = 1(> 0)

where

Ax = (a1 • x; ...;am • x) ∈ Rm and ATy =

m∑
i

yiai.

They hold for a general closed convex cone K?
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An SDP Cone Example when “Alternative System” Failed

K = S2
+.

a1 =

 1 0

0 0

 ,a2 =

 0 1

1 0


and

b =

 0

2

 .

The Problem: C := {Ax : x ∈ K} is not closed even when K is a closed convex cone.
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When Farkas’ Lemma Holds for General Cones?

Let K be a closed and convex cone in the rest of the course.

If there is y such that −ATy ∈ intK∗, then C := {Ax : x ∈ K} is a closed convex cone.

Consequently,

Ax = b, x ∈ K,

and

−ATy ∈ K∗, bTy = 1(> 0)

are an alternative system pair.

And if there is x such that ATx = 0, x ∈ intK , then

Ax = 0, x ∈ K, c • x = −1(< 0)

and

c−ATy ∈ K∗

are an alternative system pair.
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Recall Conic LP

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ K,

(ATx = b ),

where K is a closed and pointed convex cone.

Linear Programming (LP): c,ai,x ∈ Rn and K = Rn
+

Second-Order Cone Programming (SOCP): c,ai,x ∈ Rn and K = SOC = {x : x1 ≥ ∥x−1∥2}.

Semidefinite Programming (SDP): c,ai,x ∈ Sn and K = Sn
+

p-Order Cone Programming (POCP): c,ai,x ∈ Rn and K = POC = {x : x1 ≥ ∥x−1∥p}.

Here, x−1 is the vector (x2; ...;xn) ∈ Rn−1.

Cone K can be also a product of different cones, that is, x = (x1;x2; ...) where x1 ∈ K1, x2 ∈ K2,...

and so on with linear constraints:

A1x1 +A2x2 + ... = b.
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LP, SOCP, and SDP Examples Again

(LP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

(x1;x2;x3) ≥ 0.

(SOCP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1,

x1 −
√
x2
2 + x2

3 ≥ 0.

(SDP ) minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1, x1 x2

x2 x3

 ≽ 0.
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(SDP) can be rewriten as

minimize

 2 .5

.5 1

 ·

 x1 x2

x2 x3


subject to

 1 .5

.5 1

 ·

 x1 x2

x2 x3

 = 1, x1 x2

x2 x3

 ≽ 0,

that is

c =

 2 .5

.5 1

 and a1 =

 1 .5

.5 1

 .
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Dual of Conic LP

The dual problem to

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ K.

is

(CLD) maximize bTy

subject to
∑m

i yiai + s = c, s ∈ K∗,

where y ∈ Rm, s is called the dual slack vector/matrix, and K∗ is the dual cone of K . The former is

called the primal problem, and the latter is called dual problem.

Theorem 7 The dual of the dual is the primal.

The alternative system of a conic feasible set can be viewed as its dual with a positive objective value.
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LP, SOCP, and SDP Examples

min (2; 1; 1)Tx

s. t. eTx = 1,

x ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

s ≥ 0.

min (2; 1; 1)Tx

s.t. eTx = 1,

x1 − ∥x−1∥ ≥ 0.

max y

s.t. e · y + s = (2; 1; 1),

s1 − ∥s−1∥ ≥ 0.
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min

 2 .5

.5 1

 ·

 x1 x2

x2 x3


s.t.

 1 .5

.5 1

 ·

 x1 x2

x2 x3

 = 1,

x =

 x1 x2

x2 x3

 ≽ 0,

max y

s.t.

 1 .5

.5 1

 y + s =

 2 .5

.5 1

 ,

s =

 s1 s2

s2 s3

 ≽ 0.
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Recall Transportation Problem

min
∑m

i=1

∑n
j=1 cijxij

s.t.
∑n

j=1 xij = si, ∀i = 1, ...,m∑m
i=1 xij = dj , ∀j = 1, ..., n

xij ≥ 0, ∀i, j.
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Transportation Dual: Economic Interpretation

max
∑m

i=1 siui +
∑n

j=1 djvj

s.t. ui + vj ≤ cij , ∀i, j.
ui: supply site unit price

vi: demand site unit price

ui + vj ≤ cij : competitiveness
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Max-Flow and Min-Cut

Given a directed graph with nodes 1, ...,m and edges A, where node 1 is called source and node m is

called the sink, and each edge (i, j) has a flow rate capacity kij . The Max-Flow problem is to find the

largest possible flow rate from source to sink.

Let xij be the flow rate from node i to node j. Then the problem can be formulated as

maximize xm1

subject to
∑

j:(j,1)∈A xj1 −
∑

j:(1,j)∈A x1j + xm1 = 0,∑
j:(j,i)∈A xji −

∑
j:(i,j)∈A xij = 0, ∀i = 2, ...,m− 1,∑

j:(j,m)∈A xjm −
∑

j:(m,j)∈A xmj − xm1 = 0,

0 ≤ xij ≤ kij , ∀(i, j) ∈ A.
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The dual of the Max-Flow problem

minimize
∑

(i,j)∈A kijzij

subject to −yi + yj + zij ≥ 0, ∀(i, j) ∈ A,

y1 − ym = 1,

zij ≥ 0, ∀(i, j) ∈ A.

yi: node potential value. At an optimal solution has property y1 = 1, ym = 0 and for all other i:

yi =

 1 if i ∈ S

0 if i ̸∈ S

This problem is called the Min-Cut problem.
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The Dual of the MDP/Reinforcement Learning LP

Recall the cost-to-go value of the reinforcement learning LP problem:

maximizey
∑m

i=1 yi

subject to y1 − γpT
j y ≤ cj , j ∈ A1

...

yi − γpT
j y ≤ cj , j ∈ Ai

...

ym − γpT
j y ≤ cj , j ∈ Am.

minimizex
∑

j∈A1
cjxj+ ... +

∑
j∈Am

cjxj

subject to
∑

j∈A1
(e1 − γpj)xj+ ... +

∑
j∈Am

(em − γpj)xj = e,

... xj ... ≥ 0, ∀j,
where ei is the unit vector with 1 at the ith position and 0 everywhere else.
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Interpretation of the Dual of the MDP/RL-LP

Variable xj , j ∈ Ai, is the state-action frequency or called flux, or the expected present value of the

number of times that an individual is in state i and takes state-action j.

Thus, solving the problem entails choosing a state-action frequencies/fluxes that minimizes the expected

present value of total costs for the infinite horizon, where the RHS is (1; 1; 1; 1; 1; 1):

x: (01) (02) (11) (12) (21) (22) (31) (32) (41) (51) b

c: 0 0 0 0 0 0 0 0 1 0

(0) 1 1 0 0 0 0 0 0 0 0 1

(1) −γ 0 1 1 0 0 0 0 0 0 1

(2) 0 −γ/2 −γ 0 1 1 0 0 0 0 1

(3) 0 −γ/4 0 −γ/2 −γ 0 1 1 0 0 1

(4) 0 −γ/8 0 −γ/4 0 −γ/2 −γ 0 1 0 1

(5) 0 −γ/8 0 −γ/4 0 −γ/2 0 −γ −γ 1− γ 1

where state 5 is the absorbing state that has a infinite loops to itself.
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The optimal dual solution is

x∗
01 = 1, x∗

11 = 1 + γ, x∗
21 = 1 + γ + γ2, x∗

32 = 1 + γ + γ2 + γ3, x∗
41 = 1,

x∗
51 = 1+2γ+γ2+γ3+γ4

1−γ .
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Two-Person Zero-Sum Game

Let P be the payoff matrix of a two-person, ”column” and ”row”, zero-sum game.

P =

 +3 −1 −4

−3 +1 +4


Players usually use randomized strategies in such a game. A randomized strategy is a vector of

probabilities, each associated with a particular decision.
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Nash Equilibrium

In a Nash Equilibrium, if your (column) strategy is a pure strategy (one where you always play a single

action), the expected payout for the (dominating) action that you are playing should be greater than or

equal to the expected payout for any other action. If you are playing a randomized strategy, the expected

payout for each action included in your strategy should be the same (if one were lower, you won’t want to

ever choose that action) and these payouts should be greater than or equal to the actions that aren’t part

of your strategy.
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LP formulation of Nash Equilibrium

”Column” strategy:

max v

s.t. ve ≤ Px

eTx = 1

x ≥ 0.

”Row” strategy:

min u

s.t. ue ≥ PTy

eTy = 1

y ≥ 0.

They are dual to each other.
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Recall Wassestein Barycenter Problem

Find distribution of xi, i = 1, 2, 3, 4 to minimize

min WDl(x) +WDm(x) +WDr(x)

s.t. x1 + x2 + x3 + x4 = 9, xi ≥ 0, i = 1, 2, 3, 4.

The objective is a nonlinear function, but its gradient vector ∇WDl(x), ∇WDm(x) and ∇WDl(x)

are dual optimal solutions the three transportation problems, which can be solved in parallel or distributed

fashion.
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