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LP Optimality Conditions and Solution Support

(x,y, s) ∈ (Rn
+,Rm,Rn

+) :

cTx− bTy = 0

Ax = b

−ATy − s = −c

 ;

or

x. · s = 0

Ax = b

−ATy − s = −c.

Let x∗ and s∗ be optimal solutions with zero duality gap. Then

|supp(x∗)|+ |supp(s∗)| ≤ n.

There are x∗ and s∗ such that the support sizes of x∗ and s∗ are maximal, respectively.

There are x∗ and s∗ such that the support size of x∗ and s∗ are minimal, respectively.

If there is s∗ such that |supp(s∗)| ≥ n− d, then the support size for x∗ is at most d.
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LP Strict Complementarity Theorem

Theorem 1 If (LP) and (LD) are both feasible, then there exists a pair of strictly complementary solutions

x∗ ∈ Fp and (y∗, s∗) ∈ Fd such that

x∗
. · s∗ = 0 and |supp(x∗)|+ |supp(s∗)| = n.

Moreover, the supports

P ∗ = {j : x∗
j > 0} and Z∗ = {j : s∗j > 0}

are invariant for all strictly complementary solution pairs.

Given (LP) or (LD), the pair of P ∗ and Z∗ is called the strict complementarity partition.

{x : AP∗xP∗ = b, xP∗ ≥ 0, xZ∗ = 0} is called the primal optimal face, and

{y : cZ∗ −AT
Z∗y ≥ 0, cP∗ −AT

P∗y = 0} is called the dual optimal face.

minimize 2x1 + x2 + x3

subject to x1 + x2 + x3 = 1, (x1, x2, x3) ≥ 0,

where P ∗ = {2, 3} and Z∗ = {1}.
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Uniqueness Theorem for LP

Given an optimal solution x∗, how to certify the uniqueness of x∗?

Theorem 2 An LP optimal solution x∗ is unique if and only if the size of supp(x∗) is maximal among all

optimal solutions and the columns of Asupp(x∗) are linear independent.

It is easy to see both conditions are necessary, since otherwise, one can find an optimal solution with a

different support size. To see sufficiency, suppose there there is another optimal solution y∗ such that

x∗ − y∗ ̸= 0. We must have supp(y∗) ⊂ supp(x∗), since, otherwise, (0.5x∗ + 0.5y∗) remains

optimal and its support size is greater than that of x∗ which is a contradiction. Then we see

0 = Ax∗ −Ay∗ = A(x∗ − y∗) = Asupp(x∗)(x
∗ − y∗)supp(x∗)

which implies that columns of Asupp(x∗) are linearly dependent.

Corollary 1 If all optimal solutions of an LP has the same support size, then the optimal solution is unique.
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Solution Rank for SDP

C •X − bTy = 0

AX = b

−ATy − S = −C

X,S ≽ 0,

, or

XS = 0

AX = b

−AT y − S = −C

X,S ≽ 0

Let X∗ and S∗ be optimal solutions with zero duality gap. Then

rank(X∗) + rank(S∗) ≤ n.

Hint of the Proof: for any symmetric PSD matrix P ∈ Sn with rank r, there is a factorization P = V TV

where V ∈ Rr×n and columns of V are nonzero-vectors and orthogonal to each other.

There are X∗ and S∗ such that the ranks of X∗ and S∗ are maximal, respectively.

There are X∗ and S∗ such that the ranks of X∗ and S∗ are minimal, respectively.

If there is S∗ such that rank(S∗) ≥ n− d, then the maximal rank of X∗ is at most d.
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SDP Strict Complementarity?

Given a pair of SDP and (SDD) where the complementarity solution exist, is there a solution pair such that

rank(X∗) + rank(S∗) = n?

C =


0 0 0

0 0 0

0 0 0

 , A1 =


0 0 0

0 1 0

0 0 0

 , A2 =


0 −1 0

−1 0 0

0 0 2


and

b =

 0

0

 ; K = S3
+.

The maximal solution rank of either the primal or dual is one.
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Uniqueness Theorem for SDP

Given an SDP optimal and complementary solution X∗, how to certify the uniqueness of X∗?

Theorem 3 An SDP optimal and complementary solution X∗ is unique if and only if the rank of X∗ is

maximal among all optimal solutions and V ∗Ai(V
∗)T , i = 1, ...,m, are linearly independent, where

X∗ = (V ∗)TV ∗, V ∗ ∈ Rr×n, and r is the rank of X∗.

It is easy to see why the rank of X∗ being maximal is necessary.

Note that for any optimal dual slack matrix S∗, we have S∗ • (V ∗)TV ∗ = 0 which implies that

S∗(V ∗)T = 0. Consider any matrix

X = (V ∗)TUV ∗

where U ∈ Sr
+ and

bi = Ai • (V ∗)TUV ∗ = V ∗Ai(V
∗)T • U, i = 1, ...,m.

One can see that X remains an optimal SDP solutions for any such U ∈ Sr
+, since it makes X feasible

and remain complementary to any optimal dual slack matrix. If V ∗Ai(V
∗)T , i = 1, ...,m, are not
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linearly independent, then one can find

V ∗Ai(V
∗)T •W = 0, i = 1, ...,m, 0 ̸= W ∈ Sr.

Now consider

X(α) = (V ∗)T (I + α ·W )V ∗,

and then we can choose α ̸= 0 such that X(α) ≽ 0 is another optimal solution.

To see sufficiency, suppose there there is another optimal solution Y ∗ such that X∗ − Y ∗ ̸= 0. We must

have Y ∗ = (V ∗)TUV ∗ for some I ̸= U ∈ Sr
+ . Then we see

V ∗Ai(V
∗)T • (I − U) = 0, i = 1, ...,m,

contradicts that they are linear independent.

Corollary 2 If all optimal solutions of an SDP has the same rank, then the optimal solution is unique.
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Recall Sensor Localization Problem (SNL)

Given ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj , ∀ (k, j) ∈ Na,

(ij) ((kj)) connects points xi and xj (ak and xj ) with an edge whose Euclidean length is dij (d̂kj ).

Does the system have a localization or realization of all xj ’s? Is the localization unique? Is there a

certification for the solution to make it reliable or trustworthy? Is the system partially localizable with

certification?
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Matrix Representation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined and ej be the vector of all zero

except 1 at the jth position. Then

xi − xj = X(ei − ej) and ak − xj = [I X](ak;−ej)

so that

∥xi − xj∥2 = (ei − ej)
TXTX(ei − ej)

∥ak − xj∥2 = (ak;−ej)
T [I X]T [I X](ak;−ej) =

(ak;−ej)
T

 I X

XT XTX

 (ak;−ej).
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Or, equivalently,

(ei − ej)
TY (ei − ej) = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T

 I X

XT Y

 (ak;−ej) = d̂2kj , ∀ k, j ∈ Na,

Y = XTX.
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SDP Relaxation

Change

Y = XTX

to

Y ≽ XTX.

This matrix inequality is equivalent to  I X

XT Y

 ≽ 0.

This matrix has rank at least d; if it’s d, then Y = XTX , and the converse is also true.
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SDP Standard Form

Z =

 I X

XT Y

 .

Find a symmetric matrix Z ∈ R(d+n)×(d+n) such that

Z1:d,1:d = I

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d̂2kj , ∀ k, j ∈ Na,

Z ≽ 0.

If every sensor point is connected, directly or indirectly, to an anchor point, then the solution set must be

bounded.

13



CME307/MS&E311: Optimization Lecture Note #05

Sensor Localization SDP Relaxation in 2D

(1; 0;0)(1; 0;0)T • Z = 1,

(0; 1;0)(0; 1;0)T • Z = 1,

(1; 1;0)(1; 1;0)T • Z = 2,

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d̂2kj , ∀ k, j ∈ Na,

Z ≽ 0.

Z̄ =

 I X̄

X̄T X̄T X̄

 = (I, X̄)T (I, X̄)

is a feasible rank-2 solution for the relaxation, where X̄ = [x̄1 x̄2 ... x̄n] and x̄j is the true location of

sensor j.
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The Dual of the SDP Relaxation in 2D

min w1 + w2 + 2w3 +
∑

i<j∈Nx
wijd

2
ij +

∑
k,j∈Na

ŵkj d̂
2
kj

s.t. w1(1; 0;0)(1; 0;0)
T + w2(0; 1;0)(0; 1;0)

T + w3(1; 1;0)(1; 1;0)
T+∑

i<j∈Nx
wij(0; ei − ej)(0; ei − ej)

T +
∑

k,j∈Na
ŵkj(ak;−ej)(ak;−ej)

T ≽ 0

wij and ŵkj : tensional forces on edge ij; dual objective is the potential energy of the network.

Since the primal is feasible, the minimal value of the dual is not less than 0. Note that all 0 is an minimal

solution for the dual. Thus, there is no duality gap.
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Duality Theorem for SNL

Theorem 4 Let Z̄ be a feasible solution for SDP and Ū be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;

2. Rank(Z̄) + Rank(Ū) ≤ 2 + n;

3. Rank(Z̄) ≥ 2 and Rank(Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 3 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2 so that

the solution is unique, that is, the SDP relaxation solves the original problem exactly.
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Theoretical Analyses on Sensor Network Localization

A sensor network is 2-universally-localizable (UL) if there is a unique localization in R2 and there is no

xj ∈ Rh, j = 1, ..., n, where h > 2, such that

∥xi − xj∥2 = d2ij , ∀ i, j ∈ Nx, i < j,

∥(ak;0)− xj∥2 = d̂2kj , ∀ k, j ∈ Na.

The latter says that the problem cannot be localized in a higher dimension space where anchor points are

simply augmented to (ak;0) ∈ Rh, k = 1, ...,m.

Theorem 5 The SDP relaxation is exact for all universally-localizable networks.
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Figure 1: One sensor-Two anchors: Not Universally Localizable
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Figure 2: Two sensor-Three anchors: Universally Localizable
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Figure 3: Two sensor-Three anchors: Universally Localizable (but not Strongly)
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Figure 4: Two sensor-Three anchors: Not Universally Localizable
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Figure 5: Two sensor-Three anchors: Universally Localizable
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Universally-Localizable Problems (ULP)

Theorem 6 The following SNL problems are Universally-Localizable:

• If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg

1942).

• There is a sensor network (trilateral graph), with O(n) edge lengths specified, that is

2-universally-localizable (So 2007).

• If one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is

2-universally-localizable (So and Y 2005).
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ULPs can be localized in polynomial time

Theorem 7 (So and Y 2005) The following statements are equivalent:

1. The sensor network is 2-universally-localizable;

2. The max-rank solution of the SDP relaxation has rank 2;

3. The solution matrix has Y = XTX or Tr(Y −XTX) = 0 .

When an optimal dual (stress) slack matrix has rank n, then the problem is 2-strongly-localizable-problem

(SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is

2-strongly-localizable.
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One-Sensor Three-Anchor Example

Given three anchors ak ∈ R2, k = 1, 2, 3, who are not co-linear, and the three (exact) Euclidean

distances, dk, from a sensor to the three anchors, find the sensor position x ∈ R2 such that

∥ak − x∥2 = d2k, k = 1, 2, 3,

Denote by x̄ the true position of the sensor that is the position we like to compute.

Does the system of multivariate quadratic equations have a solution? Is the solution unique even it has?
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Convex Relaxation: SOCP

Relax “=” to “≤”): find x such that ∥ak − x∥ ≤ dk, k = 1, 2, 3.

max 0Tx

s.t. δ1 = d1

x+ s1 = a1

δ2 = d2

x+ s2 = a2

δ3 = d3

x+ s3 = a3

(δk; sk) ∈ SOCP, k = 1, 2, 3.

This problem is in the standard SOCP dual form.
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Convex Relaxation: SDP

Since ak − x = [I x](ak;−1) (I here is a 2× 2 identity matrix) so that

∥ak − x∥2 = (ak;−1)T [I x]T [I x](ak;−1) = (ak;−1)T

 I x

xT xTx

 (ak;−1).

The original three quadratic equations can be written as

(ak;−1)(ak;−1)T •

 I x

xT y

 = d2k, ∀ k, j ∈ Na,

y = xTx.

Relax y = xTx to y ≽ xTx, which is equivalent to matrix positive semi-definiteness: I x

xT y

 ≽ 0.

Denote this matrix by Z . Then the relaxed problem can be written as SDP in the standard form.
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SDP Standard Form

max 0 • Z
s.t. (1; 0; 0)(1; 0; 0)T • Z = 1,

(0; 1; 0)(0; 1; 0)T • Z = 1,

(1; 1; 0)(1; 1; 0)T • Z = 2,

(ak;−1)(ak;−1)T • Z = d2k, for k = 1, 2, 3,

Z ≽ 0.

Note than Z has rank at least 2; if it’s 2, then y = xTx, and the converse is also true. In particular,

unknown

Z̄ =

 I x̄

x̄T x̄T x̄

 = (I, x̄)T (I, x̄)

is a rank-2 solution for the relaxation.

If we can prove the optimal dual matrix has a rank-1 solution, then the max-rank of any primal matrix

solution would be 2 (and it is unique).
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The Dual of SDP

Assign the dual variables to

(1; 0; 0)(1; 0; 0)T • Z = 1, (w1)

(0; 1; 0)(0; 1; 0)T • Z = 1, (w2)

(1; 1; 0)(1; 1; 0)T • Z = 2, (w3)

(ak;−1)(ak;−1)T • Z = d2k, (λk) for k = 1, 2, 3.

The Dual would be

min w1 + w2 + 2w3 +
∑3

k=1 λkd
2
k

s.t.

 (
w1 + w3 w3

w3 w2 + w3

) +
∑3

k=1 λkaka
T
k −

∑3
k=1 λkak

−(
∑3

k=1 λkak)
T

∑3
k=1 λk

 ≽ 0.

Does the dual has a rank-1 slack matrix, S, with zero-objective value?
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An Optimal Dual Slack Matrix

If we choose (w·, λ·)’s such that

S̄ = (−x̄; 1)(−x̄; 1)T ,

then, S̄ ≽ 0 and S̄ • Z̄ = 0 so that S̄ is an optimal slack matrix for the dual and its rank is 1.

We only need to consider choosing λ·’s such that∑3
k=1 λkak = x̄∑3
k=1 λk = 1.

or

∑3
k=1 λk(ak − x̄) = 0∑3

k=1 λk = 1.

This system always has an unique solution as long as ak ’s are not co-linear.

Then we choose (unique) w·’s such that w1 + w3 w3

w3 w2 + w3

 = x̄1x̄
T
1 −

3∑
k=1

λkaka
T
k
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Dual Interpretation

λk ’s are nontrivial stresses/forces the edges between ak and solution x, respectively, and all stresses are

balanced or at the equilibrium state.

Even if ak is co-linear, the system ∑3
k=1 λk(ak − x̄) = 0∑3

k=1 λk = 1

may still have a solution λ·?
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Figure 6: Dual Stresses – A 3-D Toy; provided by Anstreicher
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Figure 7: Dual Stresses – A Needle Tower; provided by Anstreicher
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Rank-Reduction for SDP

In most applications, we may not be lucky and need an effort to search a rank-minimal SDP solution for

SDP:

(SDP ) min C •X
subject to Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,

where C, Ai ∈ Sn.

Or simply for the SDP feasibility problem:

Solve Ai •X = bi, i = 1, 2, ...,m, X ≽ 0,
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A Bound on Support/Rank

Theorem 8 (Carathéodory’s theorem)

• If there is a minimizer for (LP), then there is a minimizer of (LP) whose support size r satisfying

r ≤ m.

• If there is a minimizer for (SDP), then there is a minimizer of (SDP) whose rank r satisfying
r(r+1)

2 ≤ m. Moreover, such a solution can be find in polynomial time.

How Sharp is the Rank Bound? The rank bound is sharp: consider n = 4 and the SDP problem:

(ei − ej)(ei − ej)
T •X = 1, ∀i < j = 1, 2, 3, 4,

X ≽ 0,

Applications: Finding the extreme eigenvalue of a symmetric matrix and the singular value of any matrix

are convex optimization!
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The Null-Space Support-Reduction for LP

1. Start at any feasible solution x0 and, without loss of generality, assume x0 > 0, and let k = 0 and

A0 = A.

2. Find any Akd = 0, d ̸= 0, and let xk+1 = xk + αd where α is chosen such as xk+1 ≥ 0 and

at least one of xk+1 equals 0.

3. Eliminate the the variable(s) in xk+1 and column(s) in Ak corresponding to xk+1
j = 0, and let the

new narrower matrix be Ak+1.

4. Set k = k + 1 and return to step 2.

This process is called rounding, or purification, procedure in linear programming.
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I. The Null-Space Rank-Reduction: A Constructive Proof

Let X∗ be an optimal solution. Then, if the rank of X∗, r, satisfies the inequality, we need do nothing.

Thus, we assume r(r + 1)/2 > m, and let

V TV = X∗, V ∈ Rr×n.

Then consider

Minimize V CV T • U

Subject to V AiV
T • U = bi, i = 1, ...,m

U ≽ 0.

(1)

Note that V CV T , V AiV
T s and U are r × r symmetric matrices and, in particular,

V CV T • I = C • V TV = C •X∗ = z∗.
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Moreover, for any feasible solution of (1) one can construct a feasible matrix solution for (??) using

X(U) = V TUV and C •X(U) = V CV T • U. (2)

Thus, the minimal value of (1) is also z∗, and U = I is a minimizer of (1).

Now we show that any feasible solution U to (1) is a minimizer for (1); thereby X(U) of (2) is a minimizer

for the original SDP. Consider the dual of (1)

z∗ := Maximize bTy =
∑m

i=1 biyi

Subject to V CV T ≽
∑m

i=1 yiV AiV
T .

(3)

Let y∗ be a dual maximizer. Since U = I is an interior optimizer for the primal, the strong duality

condition holds, i.e.,

I • (V CV T −
m∑
i=1

y∗i V AiV
T ) = 0
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so that we have

V CV T −
m∑
i=1

y∗i V AiV
T = 0.

Then, any feasible solution of (1) satisfies the strong duality condition so that it must be also optimal.

Consider the system of homogeneous linear equations

V AiV
T •W = 0, i = 1, ...,m

where W is a r × r symmetric matrices (does not need to be definite). This system has r(r + 1)/2 real

number variables and m equations. Thus, as long as r(r + 1)/2 > m, we must be able to find a

symmetric matrix W ̸= 0 to satisfy all m equations. Without loss of generality, let W be either indefinite

or negative semidefinite (if it is positive semidefinite, we take −W as W ), that is, W has at least one

negative eigenvalue, and consider

U(α) = I + αW.

Choosing α∗ = 1/|λ̄| where λ̄ is the least eigenvalue of W , we have

U(α∗) ≽ 0
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and it has at least one 0 eigenvalue or rank(U(α∗)) < r, and

V AiV
T • U(α∗) = V AiV

T • (I + α∗W ) = V AiV
T • I = bi, i = 1, ...,m.

That is, U(α∗) is a feasible and so it is an optimal solution for (1). Then,

X(U(α∗)) = V TU(α∗)V

is a new minimizer for (1), and rank(X(U(α∗))) < r.

This process can be repeated till the system of homogeneous linear equations has only all zero solution,

which is necessarily given by r(r + 1)/2 ≤ m. The total number of such reduction steps is bounded by

n− 1 and each step uses no more than O(m2n) arithmetic operations and finds the least eigenvalue of

W , which is a polynomial time.

40



CME307/MS&E311: Optimization Lecture Note #05

II. The Principle-Component or Eigenvalue Reduction

Let X̄ be an SDP solution with rank r and

X̄ =
r∑

i=1

λiviv
T
i

where

λ1 ≥ λ2 ≥ . . . ≥ λn.

Then, let

X̂ =

d∑
i=1

λiviv
T
i
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III. Continuous Randomized Reduction

Let X̄ be an SDP solution with rank r and

X̄ = V V T

where V ∈ Rn×r is any factorization matrix of X̄

Then, let random matrix

R =

d∑
i=1

ξiξ
T
i , ξi ∈ N(0,

1

d
I); or ξi ∈ Binary(0,

1

d
I)

that is, each entry either 1 or −1 in the latter case. Then assign

X̂ = V RV T .

Note that (V ξi)(V ξi)
T ∈ N(0, 1

dX̄) and

E[X̂] = V E[R]V T = V V T = X̄.
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Approximate Low-Rank SDP Theorem

For simplicity, consider the SDP feasibility problem

Ai •X = bi i = 1, . . . ,m, X ≽ 0

where A1, . . . , Am are positive semidefinite matrices and scalars (b1, . . . , bm) ≥ 0.

x1 + x2 + x3 = 1, x1 x2

x2 x3

 ≽ 0.

We try to find an approximate X̂ ≽ 0 of rank at most d:

β(m,n, d) · bi ≤ Ai • X̂ ≤ α(m,n, d) · bi ∀ i = 1, . . . ,m.

Here, α ≥ 1 and β ∈ (0, 1] are called the distortion factors. Clearly, the closer are both to 1, the better.
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The Main Theorem

Theorem 9 Let r = max{rank(Ai)} and X̄ = V V T be a feasible solution. Then, for any d ≥ 1, the

randomly generated

X̂ = V [
d∑

i=1

ξiξ
T
i ]V

T , ξi ∈ N(0,
1

d
I)

α(m,n, d) =


1 +

12 ln(4mr)

d
for 1 ≤ d ≤ 12 ln(4mr)

1 +

√
12 ln(4mr)

d
for d > 12 ln(4mr)

and

β(m,n, d) =


1

e(2m)2/d
for 1 ≤ d ≤ 4 ln(2m)

max

{
1

e(2m)2/d
, 1−

√
4 ln(2m)

d

}
for d > 4 ln(2m)
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Some Remarks and Open Questions

• There is always a low-rank, or sparse, approximate SDP solution with respect to a bounded relative

residual distortion. As the allowable rank increases, the distortion bounds become smaller and smaller.

• The lower distortion factor is independent of n and the rank of Ais.

• The factors can be improved if we only consider one–sided inequalities.

• This result contains as special cases several well-known results in the literature.

• Can the distortion upp bound be improved such that it’s independent of rank of Ai?

• Is there deterministic rank-reduction procedure? Choose the largest d eigenvalue component of X?

• General symmetric Ai?

• In practical applications, we see much smaller distortion, why?
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IV. {−1, 1} Randomized Reduction

Let X be an SDP solution with rank r and

X = V V T .

Then, let random vector

u ∈ N(0, I) and x̂ = Sign(V u)

where

Sign(x) =

 1 if x ≥ 0

−1 otherwise.

Note that V u ∈ N(0, X). It was proved by Sheppard (1900):

E[x̂ix̂j ] =
2

π
arcsin(X̄ij), i, j = 1, 2, . . . , n.
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Max-Cut Problem

This is the Max-Cut problem on an undirected graph G = (V,E) with non-negative weights wij for each

edge in E (and wij = 0 if (i, j) ̸∈ E), which is the problem of partitioning the nodes of V into two sets

S and V \ S so that

w(S) :=
∑

i∈S, j∈V \S

wij

is maximized. A problem of this type arises from many network planning, circuit design, and scheduling

applications.
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Figure 8: Illustration of the Max-Cut Problem
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Max-Cut Formulation with Binary Quadratic Minimization

w∗ := Maximize w(x) :=
1

4

∑
i,j

wij(1− xixj)

(MC)

Subject to (xj)
2 = 1, j = 1, . . . , n.

49



CME307/MS&E311: Optimization Lecture Note #05

The Coin-Toss Method: Approximation Quality

Let each node be selected to one side, or x̂j be 1, independently with probability .5.

Or simply let random vector

u ∈ N(0, I) and x̂ = Sign(u).

We have

E[w(x̂)] = E[
1

4

∑
i,j

wij(1− xixj)] =
1

4

∑
i,j

wij(1− E[xixj ])

=
1

4

∑
i,j

wij =
weights of all edges

2
≥ 1

2
w∗.
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Semidefinite Relaxation for (MC)

Let X = xxT ∈ Sn
+. Then the problem can be rewritten as

zSDP := Maximize
1

4

∑
i,j

wij(1−Xij)

Subject to Xii = 1, i = 1, . . . , n,

X ≽ 0, rank(X) = 1.

By removing the rank-one constraint, it leads to the SDP relaxation problem.

Let X̄ be an optimal solution for (SDP). Then, generate a random vector u ∈ N(0, X̄):

x̂ = Sign(u), E[x̂ix̂j ] = arcsin(X̄ij)

Theorem 10 (Goemans and Williamson)

E[w(x̂)] ≥ .878zSDP ≥ .878w∗.
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V. Objective-Guided Reduction

Construct a suitable objective for the SDP solution set

Minimize R •X
Subject to Ai •X = bi, i = 1, . . . ,m,

C •X ≤ α · z∗,
X ≽ 0,

where z∗ is the minimal objective value of the SDP relaxation, and α is a tolerance factor.

The selection of matrix R is problem dependent. Examples include the L1 norm function, the tensegrity

graph approach, etc.
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Tensegrity (Tensional-Integrity) Objective for SNL: a Chain Graph

Anchor-free SNL: let ei be the unit vector (one for the ith entry and zeros for the else)

(ei − ej)(ei − ej)
T •X = d2ij , ∀ (i, j) ∈ E, i < j,

X ≽ 0.

For certain graphs, to select a subset edges to maximize and/or a subset of edges to minimize is

guaranteed to finding the lowest rank SDP solution – Tensegrity Method.

To Maximize
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The Chain Graph Example

Consider:

max e3e3 •X
s.t. e1e

T
1 •X = 1,

(e1 − e2)(e1 − e2)
T •X = 1,

(e2 − e3)(e2 − e3)
T •X = 1,

X ≽ 0 ∈ S3,

where its maximal solution X∗ = (1; 2; 3)T (1; 2; 3). The dual is

min y1 + y2 + y3

s.t. y1e1e
T
1 + y2(e1 − e2)(e1 − e2)

T + y3(e2 − e3)(e2 − e3)
T − S = e3e3,

S ≽ 0 ∈ S3,

The dual has a rank-two solution with (y1 = 3, y2 = 3, y3 = 3).
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Applications

Figure 9: Dimension Reduction – Unfolding Scroll of Happiness

55



CME307/MS&E311: Optimization Lecture Note #05

Figure 10: Molecular Conformation – 1F39(1534 atoms) with 85% of distances below 6rA and 10% noise

on upper and lower bounds
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