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LP Optimality Conditions and Solution Support I

\

( clx—bly = 0
 (x,y,8) € (RY,R™,RY) : Ax = b ¢,
\ —Aly —s = —c |
or
x.-s = 0
Ax = Db
~Aly—-s = —c.

Let x* and s™ be optimal solutions with zero duality gap. Then
supp(x™)| + [supp(s™)| < n.

There are X™ and s™ such that the support sizes of X and s™ are maximal, respectively.
There are X™ and s™ such that the support size of Xx™ and s™ are minimal, respectively.

If there is s™ such that |supp(s™)| > n — d, then the support size for x* is at most d.
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LP Strict Complementarity Theorem I

Theorem 1 [f (LP) and (LD) are both feasible, then there exists a pair of strictly complementary solutions
x* € F, and (y*,s*) € Fy such that

*

x* -8 =0 and |supp(x”)|+ |supp(s™)| = n.
Moreover, the supports

P*={j:2;>0} and Z*={j: s; >0}
are invariant for all strictly complementary solution pairs.

Given (LP) or (LD), the pair of P* and /™ is called the strict complementarity partition.

{x: Ap«xp+ = b, xp+ > 0, xz+ = 0} is called the primal optimal face, and

{y: cz — AL,y >0, cp- — AL,y = 0} is called the dual optimal face.
minimize 211 + 9 + T3

subjectto x1 +xo +x3 =1, (x1,22,23) > 0,

where P* = {2,3} and Z* = {1}.
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Uniqueness Theorem for LP I

Given an optimal solution xX*, how to certify the uniqueness of x*?

Theorem 2 An LP optimal solution x* is unique if and only if the size of supp(x*) is maximal among all

optimal solutions and the columns of A supp(x*) are linear independent.

It is easy to see both conditions are necessary, since otherwise, one can find an optimal solution with a
different support size. To see sufficiency, suppose there there is another optimal solution y* such that
x* — y* # 0. We must have supp(y*) C supp(x*), since, otherwise, (0.5x* + 0.5y™) remains
optimal and its support size is greater than that of x* which is a contradiction. Then we see

which implies that columns of Asupp(x*) are linearly dependent.

Corollary 1 [f all optimal solutions of an LP has the same support size, then the optimal solution is unique.
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Solution Rank for SDP '

CeX —bly = 0 XS5 =0
AX = b AX = b
ATy -8 = —C . ATy —§ = —C
X,S = o, X,8 = 0

Let X ™ and S™ be optimal solutions with zero duality gap. Then
rank( X ™) + rank(S™) < n.
Hint of the Proof: for any symmetric PSD matrix P € S™ with rank r, there is a factorization P = V'V
where V' € R"”*"™ and columns of V' are nonzero-vectors and orthogonal to each other.
There are X ™ and S such that the ranks of X * and S* are maximal, respectively.
There are X * and S™ such that the ranks of X * and S* are minimal, respectively.

If there is S™ such that rank(,S™) > n — d, then the maximal rank of X * is at most d.
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SDP Strict Complementarity? I

Given a pair of SDP and (SDD) where the complementarity solution exist, is there a solution pair such that

rank(X ™) 4 rank(S™) = n?

0 0 0 0 0 0 0 —1 0
C=100 011, 49=]010\|,4= -1 0 0
0 0 0 0 0 0 0o 0 2

and

0 3
b = , K =87
0

The maximal solution rank of either the primal or dual is one.
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Uniqueness Theorem for SDP I

Given an SDP optimal and complementary solution X *, how to certify the uniqueness of X *?

Theorem 3 An SDP optimal and complementary solution X * is unique if and only if the rank of X ™ is
maximal among all optimal solutions and V' * A; (V*)T, 1 = 1, ..., m, are linearly independent, where
X* = (VHITV*, V* € R™™, andr is the rank of X *.

It is easy to see why the rank of X * being maximal is necessary.

Note that for any optimal dual slack matrix S*, we have S* e (V*)1V* = () which implies that
S*(V*)1 = 0. Consider any matrix
X =(ws'uv*
where U € S and
by =A; ¢ (VHIUV* =V*A;(V)  eU, i =1,...,m.

One can see that X remains an optimal SDP solutions for any such U € S, since it makes X feasible
and remain complementary to any optimal dual slack matrix. If V*Ai(V*)T, 1 = 1,...,m, are not
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linearly independent, then one can find
VA,V eW =0, i=1,...,m, 0£W e S".

Now consider
X(a)= V)" (I+a W)V,

and then we can choose o # 0 such that X («) >~ O is another optimal solution.

To see sufficiency, suppose there there is another optimal solution Y * such that X* — Y™ £ 0. We must
have Y* = (V*)1UV* forsome I # U € S’, . Then we see

VA,V e (I-U)=0, i=1,...m,
contradicts that they are linear independent.

Corollary 2 [f all optimal solutions of an SDP has the same rank, then the optimal solution is unique.
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Recall Sensor Localization Problem (SNL) I

Given a;, € R?, dij € N, and czkj € N,, find x; € R% such that

Ixi —x;||> = d7;, V (i,7) € Ny, @ < J,

Hak _XjH2 — CZi], V(:ZC,,]) S Naa

(27) (k7)) connects points x; and % (aj;, and x ;) with an edge whose Euclidean length is d;; (czkj).

Does the system have a localization or realization of all x;’s? Is the localization unique? Is there a
certification for the solution to make it reliable or trustworthy? Is the system partially localizable with

certification?



CME307/MS&E311: Optimization Lecture Note #05

Matrix Representation I

Let X = [X1 X9 ... Xn] be the d X n matrix that needs to be determined and €; be the vector of all zero
except 1 at the jth position. Then

x; —x; = X(e; —e;) and a; —x; = [I X|(ay; —ej)

so that

Ix; — %5117 = (e; — ;)" X" X (e; — ;)

lay —x; 1> = (ar; —e;)" [I X]'[I X](a; —e;) =

(a; —e;)"
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Or, equivalently,

(ez- — ej)TY(eZ- — ej) — d%j, \V/Z,j c Nx, 1 < j,
I X .
o \T c—e:) = d?. ]
(ag; —e;) . (ar; —e;j) =di,, Vk,j € N,

Y = XTX.

11
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SDP Relaxation '

Change

Y =X'X
to

Y - XTX.
This matrix inequality is equivalent to

I X

~ 0.
X'v

This matrix has rank at least d: if its d, then Y = X1 X, and the converse is also true.
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SDP Standard Form '

I X
Xty

Y

Find a symmetric matrix Z € R(47)x(d+n) gych that

Z1:d1:a =1

(0;e; —€;)(0;e; —e;) o Z = dfj, Vi,7€ Ny, 1<},

(ax; —e;)(ay; —e;)! o Z = cfij, VEk,j€ N,

Z > 0.
If every sensor point is connected, directly or indirectly, to an anchor point, then the solution set must be
bounded.
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Sensor Localization SDP Relaxation in 2D '

(1;0;0)(1;0,0)" @ Z =1,
(0;1;0)(0;1;0)" e Z =1,
(1;1;0)(1;1;0)" e Z = 2,
(0;e; —€;)(0;e; —e;)l o Z = dfj, V1,7 € Ny, 1< 7,
(ax; —e;)(ay; —e;)! o Z = CZij, Vk,j€ Ng,

Z = 0.

_ I X o
Z= | =u X" X)
XT XTX

is a feasible rank-2 solution for the relaxation, where X = [)‘(1 X9 ... )‘(n] and X ; is the true location of

sensor J.
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The Dual of the SDP Relaxation in 2D '

min - w; + wg + 2wz + Zz‘<jer wijd?j + Zk,jeNa l[)ijZij
st wi(1;0;0)(1;0;0)7 + w9(0;1;0)(0;1;0)" + ws3(1;1;0)(1;1;0)1 +
Dicien, Wij(05e; —e;)(0;e; —ej)" + 37, oy Wij(ar; —ej)(ax; —e;)" = 0
w;; and fu?kj: tensional forces on edge 7 7; dual objective is the potential energy of the network.

Since the primal is feasible, the minimal value of the dual is not less than 0. Note that all O is an minimal
solution for the dual. Thus, there is no duality gap.
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Duality Theorem for SNL I

Theorem 4 Let Z be a feasible solution for SDP and U be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: 7 e U=00rZU = 0;

2. Rank(Z) + Rank(U) < 2 4+ n;

3. Rank(Z) > 2 and Rank(U) < n.
An immediate result from the theorem is the following:

Corollary 3 If an optimal dual slack matrix has rank n., then every solution of the SDP has rank 2 so that
the solution is unique, that is, the SDP relaxation solves the original problem exactly.

16
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Theoretical Analyses on Sensor Network Localization I

A sensor network is 2-universally-localizable (UL) if there is a unique localization in R? and there is no
(PSS R" j=1,....n, where h > 2, such that

|, — ;]| = d;, Vi,j € Ny, i <,

H(ak70) _ xjHQ — Czijv Vka] € Ng.

The latter says that the problem cannot be localized in a higher dimension space where anchor points are
simply augmented to (az;0) € R, k =1, ..., m.

Theorem 5 The SDP relaxation is exact for all universally-localizable networks.
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Figure 1: One sensor-Two anchors: Not Universally Localizable
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Figure 2: Two sensor-Three anchors: Universally Localizable
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Figure 3: Two sensor-Three anchors: Universally Localizable (but not Strongly)
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Figure 4: Two sensor-Three anchors: Not Universally Localizable
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Figure 5: Two sensor-Three anchors: Universally Localizable
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Universally-Localizable Problems (ULP) I

Theorem 6 The following SNL problems are Universally-Localizable:

e If every edge length is specified, then the sensor network is 2-universally-localizable (Schoenberg
1942).

® There is a sensor network (trilateral graph), with O(n) edge lengths specified, that is
2-universally-localizable (So 2007).

e [f one sensor with its edge lengths to at least three anchors (in general positions) specified, then it is
2-universally-localizable (So and Y 2005).

23
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ULPs can be localized in polynomial time I

Theorem 7 (So and Y 2005) The following statements are equivalent:
1. The sensor network is 2-universally-localizable;
2. The max-rank solution of the SDP relaxation has rank 2;
3. The solution matrix has Y = X1 X or TH{Y — X1 X) = 0.
When an optimal dual (stress) slack matrix has rank 72, then the problem is 2-strongly-localizable-problem

(SLP). This is a sub-class of ULP.

Example: if one sensor with its edge lengths to three anchors (in general positions) are specified, then it is
2-strongly-localizable.
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One-Sensor Three-Anchor Example I

Given three anchors a;, © R2, k =1, 2.3, who are not co-linear, and the three (exact) Euclidean

distances, d}., from a sensor to the three anchors, find the sensor position x € R? such that
Hak o XH2 — d%? k= 172737

Denote by X the true position of the sensor that is the position we like to compute.

Does the system of multivariate quadratic equations have a solution? Is the solution unique even it has?

25
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Convex Relaxation: SOCP '

Relax “="to “<”): find x such that ||a; — x|| < di, k = 1,2, 3.

max 071x

S.1. 01 = d
X+ S1 — aj

09 = d>

X+ S9 — ay

03 = d3

X+ S3 — ag

(5k§sk) e SOCP, k=1,2,3.

This problem is in the standard SOCP dual form.
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Convex Relaxation: SDP '

Since a;, — x = | x|(ap;—1) ([ hereis a2 x 2 identity matrix) so that

1 X
lar — x| = (ar; —1)" [ x|"[I x](ag; —1) = (ag;=1)" [ | (aw;—1).
X X" X
The original three quadratic equations can be written as
- I x 5 .
(a]ﬂ_l)(ak?_l) ® T :dk;a \V/k,] ENCL?
X Y
Yy = x!'x.

Relax y = x!'x to Yy = x!'x, which is equivalent to matrix positive semi-definiteness:

I x
>~ 0.

Denote this matrix by /. Then the relaxed problem can be written as SDP in the standard form.
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SDP Standard Form '

max Qe/

s.t. (1;0;0)(1;0;0)1 ¢ Z =1,
(0;1;0)(0;1;0)" e Z =1,
(1;1;0)(1;1;0)" & Z = 2,

(ag; —1)(ag; —1)T ¢ Z =d2, fork = 1,2, 3,

Note than Z has rank at least 2; if it's 2, then y = x!'x, and the converse is also true. In particular,
unknown

7 = e = (I, x)1(1, %)

IS a rank-2 solution for the relaxation.

If we can prove the optimal dual matrix has a rank-1 solution, then the max-rank of any primal matrix
solution would be 2 (and it is unique).

28
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The Dual of SDP '

Assign the dual variables to

(1;0;0)(1;0;0)" @ Z =1, (wy)

(0;1;0)(0;1;0)" ¢ Z =1, (w2)

(1;1;0)(1;1;0)" @ Z = 2, (w3)

(ar; —1)(ag; —1)T ¢ Z =dZ, (\) fork =1,2,3.

The Dual would be
min w1 + wo + 2’(1}3 + 22:1 )\kd%
w1 + W3 w3
( ) + Zizl Apagap  — Zzzl Aray
S.1. W3 W9 -+ w3 t 0.
3 3
—(Qh—1 Aray)" D k=1 Mk

Does the dual has a rank-1 slack matrix, S, with zero-objective value?
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An Optimal Dual Slack Matrix I

If we choose (w., \.)’s such that
G _ —. 1\T
S=(-x1)(-x;1)",
then, S = 0 and S @ Z = ( so that S is an optimal slack matrix for the dual and its rank is 1.

We only need to consider choosing \.’s such that
Zi:l Akap = X of Zi:l Ar(ag —x) =0
Shoi e =1 S8 =1
This system always has an unique solution as long as a;’s are not co-linear.

Then we choose (unique) w.’s such that

w1 + w w S

1 3 3 o

= Xlx{ — E )\kakag
w3 Wy + W3 e—1

30
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Dual Interpretation I

A’'s are nontrivial stresses/forces the edges between a;. and solution X, respectively, and all stresses are

balanced or at the equilibrium state.

Even if a; is co-linear, the system

may still have a solution \.?
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Figure 6: Dual Stresses — A 3-D Toy; provided by Anstreicher
32
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Figure 7: Dual Stresses — A Needle Tower; provided by Anstreicher
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Rank-Reduction for SDP '

In most applications, we may not be lucky and need an effort to search a rank-minimal SDP solution for
SDP:
(SDP) min CeX

subjectto A; e X =0b;,1=1,2,....m, X =0,
where C, A; € S§".

Or simply for the SDP feasibility problem:

Solve AZ o X = bz,’l, — 1,2, ceey 11, X E O,
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A Bound on Support/Rank I

Theorem 8 (Carathéodory’s theorem)

e [fthere is a minimizer for (LP), then there is a minimizer of (LP) whose support size 1 satisfying
r < m.

e [fthere is a minimizer for (SDP), then there is a minimizer of (SDP) whose rank 1 satisfying

T(T; D < m. Moreover, such a solution can be find in polynomial time.

How Sharp is the Rank Bound? The rank bound is sharp: consider n = 4 and the SDP problem:

(ei—ej)(ez-—ej)ToX =1, Vi< j=1,2,3,4,
X =0,

Applications: Finding the extreme eigenvalue of a symmetric matrix and the singular value of any matrix
are convex optimization!
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The Null-Space Support-Reduction for LP I

1. Start at any feasible solution x" and, without loss of generality, assume x” > 0,andlet k = 0 and

AV = A,

2. Findany A*d =0, d = 0, and let xh Tl — xF + od where « is chosen such as x*t1 > 0 and

k+1

at least one of x equals 0.

3. Eliminate the the variable(s) in x"*+1 and column(s) in AF corresponding to xf“ = 0, and let the
new narrower matrix be A**1.

4. Set k = k + 1 and return to step 2.

This process is called rounding, or purification, procedure in linear programming.
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l. The Null-Space Rank-Reduction: A Constructive Proof I

Let X ™ be an optimal solution. Then, if the rank of X *, r, satisfies the inequality, we need do nothing.
Thus, we assume 7(r + 1) /2 > m, and let

VIV = X*, Ve R
Then consider
Minimize VCV71 eU

U = 0.

Note that VCV ', VA,V 'sand U are r x r symmetric matrices and, in particular,

VOV eI =Ce V'V =CeX*=2"

37
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Moreover, for any feasible solution of (1) one can construct a feasible matrix solution for (??) using
X({U)=V'UV and CeX(U)=VCV!elU. 2)

Thus, the minimal value of (1) is also 2™, and U = [ is a minimizer of (1).

Now we show that any feasible solution U to (1) is a minimizer for (1); thereby X (U') of (2) is a minimizer
for the original SDP. Consider the dual of (1)

z*:= Maximize bly=>" by

Subjectto  VCVT =37y, VA VL.

Let y* be a dual maximizer. Since U = [ is an interior optimizer for the primal, the strong duality

condition holds, i.e.,

Te(VCVT =) yiVAVT) =0

1=1
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so that we have

m
vevt =y yivA VT =o.
i=1
Then, any feasible solution of (1) satisfies the strong duality condition so that it must be also optimal.

Consider the system of homogeneous linear equations
VAV eW =0,i=1,...m

where 11/ is a X 1 symmetric matrices (does not need to be definite). This system has 7 (7 + 1) /2 real
number variables and 1 equations. Thus, as long as (7 + 1) /2 > m, we must be able to find a
symmetric matrix 11 % 0 to satisfy all 7 equations. Without loss of generality, let 11 be either indefinite
or negative semidefinite (if it is positive semidefinite, we take — 1" as 1), that is, |1/ has at least one

negative eigenvalue, and consider

Ula) =1+ aW.

Choosing @* = 1/|)\| where )\ is the least eigenvalue of 1/, we have

U(a™) =0
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and it has at least one 0 eigenvalue or rank(U (o)) < r, and
VAV e U(a*) =VAV e (I+a*W)=VAV eI =b;,i=1,...,m.
That is, U (o) is a feasible and so it is an optimal solution for (1). Then,
X(U(a*) =V"'U(a*)V
is @ new minimizer for (1), and rank( X (U (a))) < 7.

This process can be repeated till the system of homogeneous linear equations has only all zero solution,
which is necessarily given by (7 + 1) /2 < m. The total number of such reduction steps is bounded by

n — 1 and each step uses no more than O(m2n) arithmetic operations and finds the least eigenvalue of
W, which is a polynomial time.
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Il. The Principle-Component or Eigenvalue Reduction I

Let X be an SDP solution with rank r and

T
X = E )\z‘Vz'V?
1=1

where
A > >0 >N\,

Then, let

d
X = E )\@'V@'V?
1=1

41
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lll. Continuous Randomized Reduction '

Let X be an SDP solution with rank 7 and
X=vvt
where V € R™*" is any factorization matrix of X

Then, let random matrix

1 1

d
R = Zfi‘fiT, & € N(O, gl); or &; € Binary(0, g[)
i=1

that is, each entry either 1 or —1 in the latter case. Then assign
X =VRV".
Note that (V'&;)(VE;)" € N(0,+X) and

EX]=VERVT=vVvT =X.
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Approximate Low-Rank SDP Theorem I

For simplicity, consider the SDP feasibility problem
AlOX:bZ z:l,,m, XEO
where A1, ..., A,, are positive semidefinite matrices and scalars (b1, ...,b,,) > 0.

T+ T2 + 23 =1,

X1 T2
~ 0.

Xy X3

We try to find an approximate X >~ 0 of rank at most d:
ﬁ(m,n,d)-bi§Ai0)A(§oz(m,n,d)-bi Vi=1,...,m.

Here, « > 1 and [ € (0, 1] are called the distortion factors. Clearly, the closer are both to 1, the better.
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The Main Theorem '

Theorem 9 Letr = max{rank(A;)} and X = V'V be a feasible solution. Then, for any d > 1, the
randomly generated

1

d

(1 N 121In(4mr)

for1 < d < 12In(4mr)

d
a(m,n,d) = < o
12
1+ \/ HEZ mr) ford > 121n(4mr)
and
( 1
@m)e/ for1 < d < 41In(2m)
Y 7d —
e L1 \/41“(27”) ford > 41n(2m)
max -~ or n(2m
\ e(2m)2/d’ d

44



CME307/MS&E311: Optimization Lecture Note #05

Some Remarks and Open Questions I

e There is always a low-rank, or sparse, approximate SDP solution with respect to a bounded relative

residual distortion. As the allowable rank increases, the distortion bounds become smaller and smaller.
e The lower distortion factor is independent of n and the rank of A;s.
e The factors can be improved if we only consider one—sided inequalities.
e This result contains as special cases several well-known results in the literature.
e Can the distortion upp bound be improved such that it’s independent of rank of A;?
e |s there deterministic rank-reduction procedure? Choose the largest d eigenvalue component of X ?
e General symmetric A;?

e In practical applications, we see much smaller distortion, why?
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IV. {—1, 1} Randomized Reduction I

Let X be an SDP solution with rank 7 and
X =vv?l.

Then, let random vector
ue N0,I) and % = Sign(Vu)

where

Sign(z) 1 ifz>0
ign(x) =
—1 otherwise.

Note that Vu € N (0, X). It was proved by Sheppard (1900):

2 _
E[fz.fj] = ;arcsin(Xij), Z,] = 1,2,...,77,.
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Max-Cut Problem '

This is the Max-Cut problem on an undirected graph G = (V, IV') with non-negative weights w; ; for each

edge in £ (and w;; = 0 if (i, j) ¢ FE)), which is the problem of partitioning the nodes of 1/ into two sets

Sand V' \ S so that
w(S) = Z Wi 4
i€S,5EV\S

is maximized. A problem of this type arises from many network planning, circuit design, and scheduling
applications.
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2
1 \
3
6
4
S
Figure 8: lllustration of the Max-Cut Problem
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Max-Cut Formulation with Binary Quadratic Minimization I

1
w* := Maximize w(x) := 1 g wi; (1 — x;25)
]

(MC)

Subjectto  (z;)*=1,j=1,...,n.
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The Coin-Toss Method: Approximation Quality I

Let each node be selected to one side, or ; be 1, independently with probability .5.

Or simply let random vector
uec N(0,I) and x = Sign(u).

We have

Elw(x)] = E[i wa( — ;%) wa Elx;z;])

1 weights of alledges _ 1
= — Zwij = 9 Z §UJ .
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Semidefinite Relaxation for (MC) I

Let X = xx! € Sﬁ. Then the problem can be rewritten as
PP = Maximize ! Zw (1 — X55)
4 LY ]
0]
Subjectto X;; =1, 21=1,...,n,

X =0, rank(X) = 1.

By removing the rank-one constraint, it leads to the SDP relaxation problem.

Let X be an optimal solution for (SDP). Then, generate a random vector u € N (0, X):

x = Sign(u), E[-f%i‘j] = arcsin(X;j)

Theorem 10 (Goemans and Williamson)
Elw(x)] > .8782°PF > 878w*.
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V. Objective-Guided Reduction I

Construct a suitable objective for the SDP solution set

Minimize @ Re X

Subjectto A; ¢ X =0b;,1=1,...,m,
CeX <a-z¥,
X >0,

where z* is the minimal objective value of the SDP relaxation, and « is a tolerance factor.

The selection of matrix /i is problem dependent. Examples include the 1.1 norm function, the tensegrity
graph approach, etc.
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Tensegrity (Tensional-Integrity) Objective for SNL: a Chain Graph I

Anchor-free SNL: let €; be the unit vector (one for the ith entry and zeros for the else)

(ei_ej)(ei_ej)T‘X — dgjav(27])€E72<]7

X = 0.

For certain graphs, to select a subset edges to maximize and/or a subset of edges to minimize is
guaranteed to finding the lowest rank SDP solution — Tensegrity Method.

To Maxim ze
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The Chain Graph Example I

Consider:
max eses e X
st. eel e X =1,
(e1 —ez)(e1 —ex) @ X =1,
(e2 —e3)(ez —e3)’ o X =1,
X >=0¢eS83,

where its maximal solution X* = (1; 2: 3)%(1; 2; 3). The dual is

min Y1 + Y2 + Y3

st y1e1ef +ya(er —ex)(er —ex)’ +ys(ex —e3)(ex —e3)’ — S = ezes,

S>=0¢eS3,

The dual has a rank-two solution with (17 = 3, 2 = 3, y3 = 3).
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Applications I

GD with ADMM initialization

¢ 0 (1]
08880 Q00008 @ :.

Q 0000 COOCOee  e0eee
. o000 e 0

Figure 9: Dimension Reduction — Unfolding Scroll of Happiness
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Figure 10: Molecular Conformation — 1F39(1534 atoms) with 85% of distances below 6rA and 10% noise
on upper and lower bounds
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