Second Order Optimization Algorithms I

Yinyu Ye

Stanford University and CUHKSZ (Sabbatical Leave)
Currently Visiting CUHK and HK PolyU
https://web.stanford.edu/class/msande311/handout.shtml

http://www.stanford.edu/~yyye
Chapters 8.6-7, 9.1-9.5, 10.1-4
The 1.5-Order Algorithm: Dimension-Reduced Newton’s Method

Let \(d^k = x^k - x^{k-1} \) and \(g^k = \nabla f(x^k) \) be two (conjugate) descent directions, and Hessian \(H^k = \nabla^2 f(x^k) \). Then the step-sizes can be chosen from the two-dimensional Newton method:

\[
\begin{pmatrix}
(g^k)^T H^k g^k & -(d^k)^T H^k g^k \\
-(d^k)^T H^k g^k & (d^k)^T H^k d^k
\end{pmatrix}
\begin{pmatrix}
\alpha^g \\
\alpha^m
\end{pmatrix}
=
\begin{pmatrix}
\|g^k\|^2 \\
-(g^k)^T d^k
\end{pmatrix}.
\]

Then, let

\[x^{k+1} = x^k - \alpha^g \nabla f(x^k) + \alpha^m d^k. \]

If the Hessian \(\nabla^2 f(x^k) \) is not available, one can approximate

\[H^k g^k \sim \nabla(x^k + g^k) - g^k \quad \text{and} \quad H^k d^k \sim -(\nabla f(x^k - d^k) - \nabla f(x^k)) = -(g^{k-1} - g^k). \]

For convex quadratic minimization, the method becomes the Conjugate-Gradient method or Parallel-Tangent method.
The 1.5-Order Algorithm: Quasi-Newton Method I

\[x^{k+1} = x^k - \alpha^k S^k \nabla f(x^k), \]

for a symmetric matrix \(S^k \) with a step-size \(\alpha^k \). When \(S^k \) is a nonnegative diagonal matrix, then it is the scaled steepest descent method we described earlier. In general, when \(S^k \) is positive definite, direction \(-S^k \nabla f(x^k)\) is a descent direction (why?).

For convex quadratic minimization, the linear convergence rate then becomes

\[
\left(\frac{\lambda_{max}(S^k Q) - \lambda_{min}(S^k Q)}{\lambda_{max}(S^k Q) + \lambda_{min}(S^k Q)} \right)^2
\]

where \(\lambda_{max} \) and \(\lambda_{min} \) represent the largest and smallest eigenvalues of a matrix.

Thus, \(S^k \) can be viewed as a Preconditioner—typically an approximation of the Hessian matrix inverse, and can be learned from a regression model: let \(p^k = x^{k+1} - x^k = \alpha^k d^k \)

\[q^k := g(x^{k+1}) - g(x^k) = Q(x^{k+1} - x^k) = Qp^k, \quad k = 0, 1, ... \]

We actually learn \(Q^{-1} \) from \(Q^{-1} q^k = p_k, \quad k = 0, 1, ... \) The process start with \(H^k, \quad k = 0, 1, ... \), where the rank of \(H^k \) is \(k \), that is, we each step lean a rank-one update: given \(H^{k-1}, q^k, p^k \) we solve

\[(h_0 \cdot H^{k-1} + h^k(h^k)^T)q^k = p^k\]

for vector \(h^k \). Then after \(n \) iterations, we build up \(H^n = Q^{-1} \).
The 1.5-Order Algorithm: Quasi-Newton Method II

One can simply let

\[\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^k \left(\frac{n-k}{n} \mathbf{I} + \frac{k}{n} \mathbf{H}^k \right) \mathbf{g}(\mathbf{x}^k) , \]

which is similar to the Conjugate Gradient method.

A popular method, BFGS, is given as follows (there are multiple typos in the text): start from \(\mathbf{x}^0 \) and set \(\mathbf{S}^0 = \mathbf{I} \), let

\[\mathbf{d}^k = -\mathbf{S}_k^k \mathbf{g}(\mathbf{x}^k) = -\mathbf{S}_k^k \nabla f(\mathbf{x}^k) , \]

and iterate

\[\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k . \]

Then update

\[\mathbf{S}^{k+1} = \mathbf{S}^k + \left(1 + \frac{(\mathbf{q}^k)^T \mathbf{S}_k^k \mathbf{q}^k}{(\mathbf{p}^k)^T \mathbf{S}_k^k \mathbf{q}^k} \right) \frac{\mathbf{p}^k (\mathbf{p}^k)^T}{(\mathbf{p}^k)^T \mathbf{q}^k} - \frac{\mathbf{p}^k (\mathbf{q}^k)^T \mathbf{S}_k^k + \mathbf{S}_k^k \mathbf{q}^k (\mathbf{p}^k)^T}{(\mathbf{p}^k)^T \mathbf{q}^k} . \]
The 1.5-Order Algorithm: The Ellipsoid Method

Ellipsoids are just sets of the form

\[E = \{ y \in \mathbb{R}^m : (y - \bar{y})^T B^{-1} (y - \bar{y}) \leq 1 \} \]

where \(\bar{y} \in \mathbb{R}^m \) is a given point (called the center) and \(B \) is a symmetric positive definite matrix of dimension \(m \). We can use the notation \(\text{ell}(\bar{y}, B) \) to specify the ellipsoid \(E \) defined above. Note that

\[\text{vol}(E) = (\det B)^{1/2} \text{vol}(S(0, 1)). \]

where \(S(0, 1) \) is the unit sphere in \(\mathbb{R}^m \).
By a **Half-Ellipsoid** of E, we mean the set

$$\frac{1}{2}E_a := \{y \in E : a^T y \leq a^T \bar{y}\}$$

for a given non-zero vector $a \in \mathbb{R}^m$ where \bar{y} is the center of E – the intersection of the ellipsoid and a plane cutting through the center.

We are interested in finding a new ellipsoid containing $\frac{1}{2}E_a$ with the least volume.

- How small could it be?
- How easy could it be constructed?
The New Containing Ellipsoid

The new ellipsoid \(E^+ = \text{ell}(\bar{y}^+, B^+) \) can be constructed as follows. Define

\[
\tau := \frac{1}{m + 1}, \quad \delta := \frac{m^2}{m^2 - 1}, \quad \sigma := 2\tau.
\]

And let

\[
\bar{y}^+ := \bar{y} - \frac{\tau}{(a^T B a)^{1/2}} B a,
\]

\[
B^+ := \delta \left(B - \sigma \frac{B a a^T B}{a^T B a} \right).
\]

Theorem 1 Ellipsoid \(E^+ = \text{ell}(\bar{y}^+, B^+) \) defined as above is the ellipsoid of least volume containing \(\frac{1}{2} E_a \). Moreover,

\[
\frac{\text{vol}(E^+)}{\text{vol}(E)} \leq \exp \left(-\frac{1}{2(m + 1)} \right)
\]
Figure 1: The least volume ellipsoid containing a half ellipsoid
The Ellipsoid Method for Minimizing a Convex Function

Consider \(\min_x f(x) \):

- **Initialization**: Set the initial ellipsoid (ball) as \(B^0 = \frac{1}{R^2} I \) centered at an initial solution \(x^0 \) where \(R \) is sufficiently large such it contains an optimal solution.

- For \(k = 0, 1, \ldots \) do

 If not terminated:

 - Compute the (sub)gradient vector \(\nabla f(x^k) \),

 - Let the cutting-plane be \(\{ x : \nabla f(x^k)^T x \leq f(x^k)^T x^k \} \) and form the half ellipsoid; and update \(x^k \) and \(B^k \) as described earlier.
Newton’s Method: The Second Order Method

For multi-variables, Newton’s method for minimizing $f(x)$ is to minimize the second-order Taylor expansion function at point x^k:

$$x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k).$$

We now introduce the second-order β-Lipschitz condition: for any point x and direction vector d

$$\|\nabla f(x + d) - \nabla f(x) - \nabla^2 f(x)d\| \leq \beta\|d\|^2,$$

which implies

$$f(x + d) - f(x) \leq \nabla f(x)^T d + \frac{1}{2}d^T \nabla^2 f(x)d + \frac{\beta}{3}\|d\|^3.$$

In the following, for notation simplicity, we use $g(x) = \nabla f(x)$ and $\nabla g(x) = \nabla^2 f(x)$. Thus,

$$x^{k+1} = x^k - (\nabla g(x^k))^{-1} \nabla f(x^k), \text{ or } \nabla g(x^k)(x^{k+1} - x^k) = -g(x^k).$$

Indeed, Newton’s method was initially developed for solving a system of nonlinear equations in the form $g(x) = 0$.
Local Convergence Theorem of Newton’s Method

Theorem 2 Let \(f(x) \) be \(\beta \)-Lipschitz and the smallest absolute eigenvalue of its Hessian uniformly bounded below by \(\lambda_{min} > 0 \). Then, provided that \(\|x^0 - x^*\| \) is sufficiently small, the sequence generated by Newton’s method converges quadratically to \(x^* \) that is a KKT solution with \(g(x^*) = 0 \).

\[
\|x^{k+1} - x^*\| = \|x^k - x^* - \nabla g(x^k)^{-1}g(x^k)\|
\]

\[
= \|\nabla g(x^k)^{-1}(g(x^k) - \nabla g(x^k)(x^k - x^*))\|
\]

\[
= \|\nabla g(x^k)^{-1}(g(x^k) - g(x^*) - \nabla g(x^k)(x^k - x^*))\|
\]

\[
\leq \|\nabla g(x^k)^{-1}\|\|g(x^k) - g(x^*) - \nabla g(x^k)(x^k - x^*)\|
\]

\[
\leq \|\nabla g(x^k)^{-1}\|\beta\|x^k - x^*\|^2 \leq \frac{\beta}{\lambda_{min}}\|x^k - x^*\|^2.
\]

Thus, when \(\frac{\beta}{\lambda_{min}}\|x^0 - x^*\| < 1 \), the quadratic convergence takes place:

\[
\frac{\beta}{\lambda_{min}}\|x^{k+1} - x^*\| \leq \left(\frac{\beta}{\lambda_{min}}\|x^k - x^*\|\right)^2.
\]

Such a starting solution \(x^0 \) is called an approximate root of \(g(x) \).
Consider the optimization problem

$$\min \quad - \sum_j \ln x_j$$

s.t. \quad Ax - b = 0 \in \mathbb{R}^m,$

$$x \geq 0.$$

Note this is a (strict) convex optimization problem. Suppose the feasible region has an interior and it is bounded, then the (unique) minimizer is called the analytic center of the feasible region, and it, together with multipliers y, s, satisfy the following optimality conditions:

$$x_j s_j = 1, \ j = 1, \ldots, n,$$

$$Ax = b,$$

$$A^T y + s = 0,$$

$$(x, s) \geq 0.$$

Since the inequality $(x, s) \geq 0$ would not be active, this is a system $2n + m$ equations of $2n + m$
variables: (using $X = \text{Diag}(x)$)

\[
Xs - e = 0, \\
Ax - b = 0, \\
A^Ty + s = 0.
\]

Thus, Newton’s method would be applicable...
Newton Direction

Let \((x > 0, y, s > 0)\) be an initial point. Then, the Newton direction would be solution of the following linear equations:

\[
\begin{pmatrix}
S & 0 & X \\
A & 0 & 0 \\
0 & A^T & I
\end{pmatrix}
\begin{pmatrix}
d_x \\
d_y \\
d_s
\end{pmatrix}
=
\begin{pmatrix}
e - Xs \\
b - Ax \\
-A^T y - s
\end{pmatrix}.
\]

Note that after one Newton iteration, the error residuals of the second and third equations vanishes. Thus, we may assume that the initial point satisfies

\[Ax = b, \quad A^T y + s = 0\]

and they remain satisfied throughout the process.
Multiplying AS^{-1} to the top equation and noting $Ad_x = 0$, we have

$$AXS^{-1}d_s = AS^{-1}(e - Xs),$$

which together with the third equation give

$$d_y = -(AXS^{-1}A^T)^{-1}AS^{-1}(e - Xs),$$
$$d_s = -A^T d_y,$$
$$d_x = S^{-1}(e - Xs - Xd_s).$$

The new Newton iterate would be

$$x^+ = x + d_x, \quad y^+ = y + d_y, \quad s^+ = s + d_s.$$
The error residual of the first equation would be:

$$\eta(x, s) := \|Xs - e\|. \tag{4}$$

We now prove the following theorem

Theorem 3 **If the starting point of the Newton procedure satisfies**

$$\eta(x, s) < \frac{2}{3}, \text{ then}$$

$$x^+ > 0, \quad Ax^+ = b, \quad s^+ = c^T - A^T y^+ > 0$$

and

$$\eta(x^+, s^+ \leq \frac{\sqrt{2} \eta(x, s)^2}{4(1 - \eta(x, s))}.$$
Proof:

To prove the result we first see that

\[\| X^+ s^+ - e \| = \| D_x d_s \|, \quad D_x = \text{Diag}(d_x). \]

Multiplying the both sides of the first equation of (3) by \((XS)^{-1/2}\), we see

\[Dd_x + D^{-1} d_s = r := (XS)^{-1/2}(e - Xs), \]

where \(D = S^{1/2} X^{-1/2} \). Let \(p = Dd_x \) and \(q = D^{-1} d_s \). Note that \(p^T q = d_x^T d_s = 0 \) and \(p + q = r \). Then,

\[
\| D_x d_s \|^2 = \| Pq \|^2 = \sum_{j=1}^{n} (p_j q_j)^2 \\
\leq \left(\sum_{p_j q_j > 0}^{n} p_j q_j \right)^2 + \left(\sum_{p_j q_j < 0}^{n} p_j q_j \right)^2
\]

17
\[
= 2 \left(\sum_{p_j q_j > 0} n p_j q_j \right)^2 \\
\leq 2 \left(\sum_{p_j q_j > 0} n \frac{(p_j + q_j)^2}{4} \right)^2 \\
\leq 2 \left(\frac{\|r\|^2}{4} \right)^2.
\]

Furthermore,
\[
\|r\|^2 \leq \|(XS)^{-1/2}\|^2 \|e - Xs\|^2 \leq \frac{\eta^2(x, s)}{1 - \eta(x, s)},
\]
which gives the desired result. We leave the proof of \(x^+, s^+ > 0\) as an Exercise.
Spherical Constrained Nonconvex Quadratic Minimization I

\[
\min \frac{1}{2} x^T Q x + c^T x, \quad \text{s.t. } \|x\|^2 = (\leq) 1.
\]

where \(Q \in S^n \) is any symmetric data matrix. If \(c = 0 \) this problem becomes finding the least eigenvalue of \(Q \).

The necessary and sufficient condition (can be proved using the SDP Rank Theorem) for \(x \) being a global minimizer of the problem is

\[
(Q + \lambda I)x = -c, \quad (Q + \lambda I) \succeq 0, \quad \|x\|^2 = 1,
\]

which implies \(\lambda \geq -\lambda_{\text{min}}(Q) > 0 \) where \(\lambda_{\text{min}}(Q) \) is the least eigenvalue of \(Q \). If the optimal \(\lambda^* = -\lambda_{\text{min}}(Q) \), then \(c \) must be orthogonal to the \(\lambda_{\text{min}}(Q) \)-eigenvector, and it can be checked using the power algorithm.

The minimal objective value:

\[
\frac{1}{2} x^T Q x + c^T x = -\frac{1}{2} x^T (Q + \lambda I)x - \frac{1}{2} \lambda \|x\|^2 \leq -\frac{\lambda}{2}, \tag{5}
\]
Sphere Constrained Nonconvex Quadratic Minimization II

WLOG, Let us assume that the least eigenvalue is 0. Then we must have $\lambda \geq 0$. If the optimal $\lambda^* = 0$, then c must be a 0-eigenvector of Q, and it can be checked using the power algorithm to find it. Therefore, we assume that the optimal $\lambda > 0$.

Furthermore, there is an upper bound on λ:

$$\lambda \leq \lambda\|x\|^2 \leq x^T(Q + \lambda I)x = -c^Tx \leq \|c\||x| = \|c\|.$$

Now let $x(\lambda) = -(Q + \lambda I)^{-1}c$, the problem becomes finding the root of $\|x(\lambda)\|^2 = 1$.

Lemma 1 The analytic function $\|x(\lambda)\|^2$ is convex monotonically decreasing with $\alpha = 12$ in Corollary 1 of Lecture-Slide Note 9.

Theorem 4 The 1-spherical constrained quadratic minimization can be computed in $O(\log \log(\|c\|/\epsilon))$ iterations where each iteration solve a symmetric (positive definite) system of linear equations of n variables.

What about 2-spherical constrained quadratic minimization, that is, quadratic minimization with 2 ellipsoidal constraints: Remains Open.
Spherical Trust-Region Method for Minimizing Lipschitz \(f(x) \)

Recall the second-order \(\beta \)-Lipschitz condition: for any two points \(x \) and \(d \)

\[
\|g(x + d) - g(x) - \nabla g(x)d\| \leq \beta \|d\|^2,
\]

where \(g(x) = \nabla f(x) \) and \(\nabla g(x) = \nabla^2 f(x) \). It implies

\[
f(x + d) - f(x) \leq \nabla f(x)^T d + \frac{1}{2} d^T \nabla^2 f(x)d + \frac{\beta}{3} \|d\|^3.
\]

\[
f(x + d) - f(x) - \nabla f(x)^T d - \frac{1}{2} d^T \nabla^2 f(x)d
\]
\[
= \int_0^1 d^T (\nabla f(x + td) - \nabla f(x))dt - \frac{1}{2} d^T \nabla^2 f(x)d
\]
\[
= \int_0^1 d^T (\nabla f(x + td) - \nabla f(x) - \nabla^2 f(x)(td)) dt
\]
\[
\leq \int_0^1 \|d\| \|\nabla f(x + td) - \nabla f(x) - \nabla^2 f(x)(td)\| dt
\]
\[
\leq \int_0^1 \|d\| \beta \|td\|^2 dt \quad \text{(by 2nd-order -Lipschitz condition)}
\]
\[
= \beta \|d\|^3 \int_0^1 t^2 dt = \frac{\beta}{3} \|d\|^3.
\]
The second-order method, at the kth iterate, would let $x^{k+1} = x^k + d^k$ where

$$
d^k = \arg \min_d \quad (c^k)^T d + \frac{1}{2} d^T Q^k d + \frac{\beta}{3} \alpha^3$$

s.t. $\|d\| \leq \alpha,$

with $c^k = \nabla f(x^k)$ and $Q^k = \nabla^2 f(x^k).$ One typically fixed α to a “trusted” radius α^k so that it becomes a sphere-constrained problem (the inequality is normally active if the Hessian is non PSD):

$$(Q^k + \lambda^k I)d^k = -c^k, \quad (Q^k + \lambda^k I) \succeq 0, \quad \|d^k\|_2^2 = (\alpha^k)^2.$$

For fixed α^k, the method is generally called trust-region method.

The Trust-Region can be ellipsoidal such as $\|Sd\| \leq \alpha$ where S is a PD diagonal scaling matrix.
Is there a trusted radius such that the method converging? A simple choice would fix $\alpha^k = \sqrt{\epsilon}/\beta$. Then from reduction (5)

$$f(x^{k+1}) - f(x^k) \leq -\frac{\lambda^k}{2} \|d^k\|^2 + \frac{\beta}{3}(\alpha^k)^3 = -\frac{\lambda^k(\alpha^k)^2}{2} + \frac{\beta}{3}(\alpha^k)^3 = -\frac{\lambda^k\epsilon}{2\beta^2} + \frac{\epsilon^{3/2}}{3\beta^2}.$$

Also

$$\|g(x^{k+1})\| = \|g(x^{k+1}) - (c^k + Q^k d^k) + (c^k + Q^k d^k)\|$$

$$\leq \|g(x^{k+1}) - (c^k + Q^k d^k)\| + \|(c^k + Q^k d^k)\|$$

$$\leq \beta \|d^k\|^2 + \lambda^k \|d^k\| = \beta(\alpha^k)^2 + \lambda^k \alpha^k = \frac{\epsilon}{\beta} + \frac{\lambda^k \sqrt{\epsilon}}{\beta}.$$

Thus, one can stop the algorithm as soon as $\lambda^k \leq \sqrt{\epsilon}$ so that the inequality becomes $\|g(x^{k+1})\| \leq \frac{2\epsilon}{\beta}$ and the function value is decreased at least $-\frac{\epsilon^{1.5}}{6\beta^2}$. Furthermore, $|\lambda_{min}(\nabla g(x^k))| \leq \lambda^k = \sqrt{\epsilon}$.

Theorem 5 Let the objective function $p^* = \inf f(x)$ be finite. Then in $\frac{O(\beta^2(f(x^0) - p^*))}{\epsilon^{1.5}}$ iterations of the trust-region method, the norm of the gradient vector is less than ϵ and the Hessian is $\sqrt{\epsilon}$-positive semidefinite, where each iteration solves a spherical-constrained quadratic minimization discussed earlier.
Adaptive Spherical Trust-Region Method

One can treat α as a variable in

$$d^k = \arg\min_{(d, \alpha)} (c^k)^T d + \frac{1}{2} d^T Q^k d + \frac{\beta}{3} \alpha^3$$

s.t. $\|d\| \leq \alpha$.

Then, the optimality conditions of this sub-problem would be

$$(Q^k + \lambda I)d^k = -c^k, \quad (Q^k + \lambda I) \succeq 0, \quad \|d\|_2^2 = \alpha^2,$$

and $\alpha = \frac{\lambda}{\beta}$. Thus, let $d(\lambda) = -(Q^k + \lambda I)^{-1} c^k$, the problem becomes finding the root λ of

$$\|d(\lambda)\|^2 - \frac{\lambda^2}{\beta^2} = 0,$$

where $\lambda \geq -\lambda_{\min}(Q^k) > 0$ (assume that the current Hessian is not PSD yet), as in the Hybrid of Bisection and Newton method discussed earlier in $\log \log(1/\epsilon)$ arithmetic operations.

In practice, even β is unknown, one can forward/backward choose λ such as the objective function is reduced by a sufficient quantity, and there is no need to find the exact root.
One can also interpret the Spherical Trust-Region method as the Quadratic Regularization Method

\[d_k^k(\lambda) = \arg \min_{\mathbf{d}} \quad (\mathbf{c}_k^k)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T Q_k^k \mathbf{d} + \frac{\lambda}{2} \| \mathbf{d} \|^2 \]

where parameter \(\lambda \) makes \((Q_k^k + \lambda I) \succeq 0\). Then consider the one-variable function

\[\phi(\lambda) := f(x_k^k + d_k^k(\lambda)) \]

and do one-variable minimization of \(\phi(\lambda) \) over \(\lambda \). Then let \(\lambda_k^k \) be a minimizer and

\[x_k^{k+1} = x_k^k + d_k^k(\lambda_k^k) \]

Thus, based on the earlier analysis, we must have at least

\[f(x_k^{k+1}) - f(x_k^k) \leq -\frac{\epsilon^{1.5}}{6\beta^2} \]

for some (local) Lipschitz constant \(\beta \) of the objective function.

Note that the algorithm needs to estimate only the minimum eigenvalue, \(\lambda_{\text{min}}(Q_k^k) \), of the Hessian. One heuristic is to let \(\lambda_k^k \) decreases geometrically and do few possible line-search steps.
Let \(H^k = \nabla^2 f(x^k) \), \(d^k = x^k - x^{k-1} \) and \(g^k = \nabla f(x^k) \), and

\[
Q^k = \begin{pmatrix}
(g^k)^T H^k g^k & -(d^k)^T H^k g^k \\
-(d^k)^T H^k d^k & (d^k)^T H^k d^k
\end{pmatrix} \in S^2, \ c^k = \begin{pmatrix}
-\|g^k\|^2 \\
(g^k)^T d^k
\end{pmatrix} \in R^2.
\]

Then, similar to the full-dimensional Spherical Trust-Region, one can construct a 2-dimensional trust-region quadratic model:

\[
\alpha^k(\lambda^k) = \arg \min_{\alpha \in R^2} (c^k)^T \alpha + \frac{1}{2} \alpha^T Q^k \alpha + \frac{\lambda^k}{2} \|\alpha\|^2
\]

where parameter \(\lambda^k \) makes \(Q^k + \lambda^k I \succeq 0 \). Finally let \(x^{k+1} = x^k - \alpha_1^k g^k + \alpha_2^k d^k \). Note that the third term of the objective can be replaced by \(\frac{\lambda^k}{2} \| -\alpha_1^k g^k + \alpha_2^k d^k \|^2 \) which becomes a 2-dimensional ellipsoidal trust-region. In this case, we need \(\lambda^k \) to make \(Q^k + \lambda^k \left([-g^k \ d^k]^T [-g^k \ d^k] \right) \succeq 0 \).

Again, if the Hessian \(\nabla^2 f(x^k) \) is not available, one can approximate

\[
H^k g^k \sim \nabla (x^k + g^k) - g^k \quad \text{and} \quad H^k d^k \sim \nabla (x^k + d^k) - g^k \sim -(g^{k-1} - g^k);
\]

or more accurate difference approximation between two gradients.