Optimization Problems

• A set of decision variables, \(x \), in vector or matrix form with dimension \(n \) or \(n \times n \)

• A continuous and sometime differentiable objective function \(f(x) \)

• A feasible region where \(x \) can be in

• One can smooth them by reformulation as constrained optimization:

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad x \in X
\end{align*}
\]

\[
\begin{align*}
\max & \quad \min_{i} \{ f_{i}(x), i=1,...,n \} \\
\text{s.t.} & \quad \alpha - f_{i}(x) \leq 0, \text{ for } i=1,...,n
\end{align*}
\]
Function, Gradient Vector and Hessian Matrix

- A function \(f \) of \(x \) in \(\mathbb{R}^n \)
- The **Gradient Vector** of \(f \) at \(x \)

\[
\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]

- The **Hessian Matrix** of \(f \) at \(x \)

\[
\nabla^2 f(x) = \begin{pmatrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}
\end{pmatrix}
\]

- **Taylor’s Expansion Theorem**
Convex and Concave Functions

\[f(x) \text{ is a convex function if and only if for any given two points } x_1 \text{ and } x_2 \text{ in the function domain and for any constant } 0 \leq \alpha \leq 1 \]

\[f(\alpha x_1 + (1- \alpha) x_2) \leq \alpha f(x_1) + (1- \alpha) f(x_2) \]

Strictly convex if \(x_1 \neq x_2 \), \(f(0.5x_1 + 0.5x_2) < 0.5f(x_1) + 0.5f(x_2) \)
More on Convex Functions

$f(x)$ is a (strictly) convex function if and only if its Hessian matrix is (positive definite PD) positive semi-definite (PSD) in the domain of the function.

A symmetric matrix Q is PSD (or PD) if and only if $x^TQx \geq (or >) 0$ for all $x \neq 0$.

A 2x2 matrix is PSD (or PD) if and only if two diagonal entries and the determinant are nonnegative (or positive).

$f(x)$ is a (strictly) concave function if $-f(x)$ is a (strictly) convex function
Convex Sets

• A set is **convex** if every line segment connecting any two points in the set is contained entirely within the set
 – Ex - polyhedron
 – Ex - ball

• An **extreme point** of a convex set is any point that is not on any line segment connecting any other two distinct points of the set

• The intersection of convex sets is a convex set

• A set is closed if the limit of any convergent sequence of the set belongs to the set

• A set is compact if it is bounded and closed.
Convexity of Function and Level Set

If \(f(x) \) is a convex function, then the lower level set \(\{ x: f(x) \leq b \} \) is a convex set for any constant \(b \).

The graph of a convex function lies above its tangent line (planes). The Hessian matrix of a convex function is positive semi-definite.
Optimization Problem Classes

• **Unconstrained Optimization**
 – Convex or Nonconvex

• **Constrained Optimization**
 – Conic Linear Optimization/Programming (CLO/CLP)
 – Convex Constrained Optimization (CCO)
 • Feasible region/set is convex; objective general
 – Generally Constrained Optimization (GCO)
 – Convex Optimization (CO)
 • Minimize a convex function over a convex feasible set
 • Maximize a concave function over a convex feasible set

\[
\begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad x \in X
\end{align*}
\]
Optimization Problem Forms

Conic Linear Optimization (CLO)

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad A x - b = 0, \\
& \quad x \in K
\end{align*}
\]

- **A**: an \(m \times n \) matrix
- **c**: objective coefficient
- **K**: a closed convex cone

This is convex optimization

Generally Constrained Optimization (GCO)

\[
\begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad h_i(x) = 0, \; i=1,\ldots,m \\
& \quad c_i(x) \geq 0, \; i=1,\ldots,p
\end{align*}
\]

- Each function can be continuous, continuously differentiable (\(C^1 \)), or twice continuously differentiable (\(C^2 \))

- It is CCO if \(c_i \) are all concave, and \(h_i \) are all linear/affine functions.
- In addition, if \(f \) is convex, it is CO.
Why do we care about convex optimization?

• It guarantees that every local optimizer is a global optimizer
• It guarantees that every (first-order) KKT (or stationary) point/solution is a global optimizer
• This is significant because all of our numerical optimization algorithms search/generate a KKT point/solution
• Sometime the problem can be “convexfied”:
 \[
 \begin{align*}
 \min & \quad c^T x, \quad \text{s.t.} \quad ||x||^2 = 1 \\
 \quad & \quad \uparrow \\
 \min & \quad c^T x, \quad \text{s.t.} \quad ||x||^2 \leq 1
 \end{align*}
 \]
Optimization **Theory**: Mathematical Foundations

- Taylor’s Expansion Theorem
- Implicit Function Theorem
- Separating Hyperplane Theorem
- Supporting Hyperplane Theorem
- Caratheodory’s Theorem
- Duality and KKT Optimality Conditions
- Alternative Linear System/Farkas’ Lemma

CME307/MS&E311 Optimization Lecture Notes #09
Theory: Feasibility Conditions

- Feasibility Conditions or Farkas’ Lemmas are developed to characterize and certify feasibility or infeasibility of a feasible region.
- Alternative Systems X and Y: X has a feasible solution if and only if Y has no feasible solution.
 - X and Y cannot both have feasible solution.
 - Exactly one of them has a feasible solution.
- They can be viewed as special cases of Linear Programming primal and dual pairs.
Alternative Systems and CLO Pairs I

System X

- \(Ax - b = 0, \)
- \(x \in K \)
- \(A: \text{an } m \times n \text{ matrix} \)
- \(b: \text{m-dimensional vector} \)
- \(K: \text{a closed convex cone} \)

Objective

\[p^* = \min 0^T x \]

\[\text{s.t. } Ax - b = 0, \]

\[x \in K \]

System Y

- \(b^T y = 1 (> 0) \)
- \(A^T y + s = 0, \)
- \(s \in K^* \)
- \(K^* \text{ is the dual cone} \)

Objective

\[d^* = \max b^T y \]

\[\text{s.t. } A^T y + s = 0, \]

\[s \in K^* \]
Alternative Systems and CLO Pairs II

System X
- \(\mathbf{A} \): an \(m \times n \) matrix
- \(\mathbf{c} \): \(n \)-dimension vector
- \(K \): a closed convex cone

\[
\begin{align*}
\mathbf{c}^T \mathbf{x} &= -1 (< 0) \\
\mathbf{A} \mathbf{x} &= 0, \\
\mathbf{x} &\in K
\end{align*}
\]

System Y
- \(K^* \) is the dual cone

\[
\begin{align*}
\mathbf{A}^T \mathbf{y} + \mathbf{s} - \mathbf{c} &= 0, \\
\mathbf{s} &\in K^*
\end{align*}
\]

\[
\begin{align*}
p^* &= \min_{\mathbf{x}} c^T \mathbf{x} \\
&\text{s.t. } \mathbf{A} \mathbf{x} = 0, \\
&\quad \mathbf{x} \in K^*
\end{align*}
\]

\[
\begin{align*}
d^* &= \max_{\mathbf{y}} 0^T \mathbf{y} \\
&\text{s.t. } \mathbf{A}^T \mathbf{y} + \mathbf{s} - \mathbf{c} = 0, \\
&\quad \mathbf{s} \in K
\end{align*}
\]
Feasibility Test Machine

- Is system X feasible?
 - Yes
 - If system Y is feasible, then...
 - "Not" under any circumstances
 - No
 - If system Y is feasible, then...
 - "Yes" under certain conditions of cone K and data matrix A:
 a) K is a polyhedron cone, or
 b) Ax or $A^T y$ has an interior solution
General Rules to Construct the CLO Dual

<table>
<thead>
<tr>
<th>OBJ Vector/Matrix</th>
<th>RHS Vector/Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHS Vector/Matrix</td>
<td>OBJ Vector/matrix</td>
</tr>
<tr>
<td>(A)</td>
<td>(A^T)</td>
</tr>
</tbody>
</table>

- **Max model**
 - \(x_j \geq_k 0 \)
 - \(x_j \leq_k 0 \)
 - \(x_j \) free
 - \(i \)th constraint \(\leq_k \)
 - \(i \)th constraint \(\geq_k \)
 - \(i \)th constraint =

- **Min model**
 - \(j \)th constraint \(\geq_{k^*} \)
 - \(j \)th constraint \(\leq_{k^*} \)
 - \(j \)th constraint =
 - \(y_i \geq_{k^*} 0 \)
 - \(y_i \leq_{k^*} 0 \)
 - \(y_i \) free

The dual of the dual is the primal
Theory: Optimality Conditions

- **Optimality (KKT) Conditions** are developed to characterize and certify possible minimizers
 - Feasibility of original variables
 - Optimality conditions consist of original variables and Lagrange multipliers
 - Zero-order, First-order, Second-order, necessary, sufficient
- They may not lead directly to a very efficient algorithm for solving problems, but they do have a number of benefits:
 - They give insight into what optimal solutions look like
 - They provide a way to set up and solve small problems
 - They provide a method to check solutions to large problems
 - The Lagrange multipliers can be seen as sensitivities of the constraints
- A minimizers may not satisfy optimality conditions unless certain *constraint qualifications* hold.
KKT Optimality Condition Test Machine

Is \(x \) a (local) optimizer?

“Yes” only under certain circumstances

Higher Order Test

Passed

KKT Optimality Condition Test

Is \(x \) not a (local) optimizer?

“Not” under certain constraint qualifications:

a) Feasible region has an interior, or
b) \(x \) is a regular point on the hypersurface of active constraints

Failed
0-Order Condition: Duality Theorems for CLO

Primal Problem
- \(p^* = \min_c \ c^T x \)
- \[A x - b = 0, \]
- \(x \in K \)

Dual Problem
- \(d^* = \max_{b^T y} \)
- \[A^T y + s - c = 0, \]
- \(s \in K^* \)

Weak Duality Theorem
- \(p^* = d^* \)

Strong Duality Theorem: They must equal?

- “Yes” under certain conditions of cone \(K \) and data matrix \(A, b, c \):
 - **a)** \(K \) is a polyhedron cone, or
 - **b)** either one has an interior feasible solution
The Lagrange Function of GCO

\[
\begin{align*}
\min & \quad f(\mathbf{x}) \\
\text{s.t.} & \quad c_i(\mathbf{x}) (\leq, =, \geq) 0, \ i=1,...,m \\
\end{align*}
\]

Restriction on multipliers \(y_i, \)

\[
\begin{align*}
y_i (\leq,"\text{free"},\geq) 0, \ i=1,...,m \\
\end{align*}
\]

The Lagrange Function \(L(\mathbf{x},\mathbf{y}) = f(\mathbf{x}) - \sum_i y_i c_i(\mathbf{x}) \)

The Lagrange function can be interpreted as a “penalized” aggregated objective function:

\(y_i \) free: can be penalized either way
\(y_i \geq 0 \) : can be penalized when \(c_i(\mathbf{x}) \leq 0 \)
\(y_i \leq 0 \) : can be penalized when \(c_i(\mathbf{x}) \geq 0 \)
\(y_i = 0 \) : no penalty if \(c_i(\mathbf{x}) \) is strictly satisfied (complementarity)
The Lagrangian Duality for GCO

\[p^* = \min f(x) \]
\[\text{s.t.} \quad c_i(x) (\geq, =, \leq) 0, \ i=1,\ldots,m \]

Let \(\phi(y) = \inf_x L(x,y) \)

\[d^* = \max \phi(y) \]
\[\text{s.t.} \quad y_i (\leq,"free", \geq) 0, \ i=1,\ldots,m \]

0-Order Condition: \(p^* = d^* \)

Weak Duality Theorem
\(p^* \geq d^* \)

Strong Duality Theorem
They must equal? **Not necessarily!**

Sufficient!
Zero-Order Optimality Test for CLO and GCO

- **Is \(x\) an optimizer?**
 - “Yes” under any circumstances
 - **Higher order test**

- **Is \(x\) not a (local) optimizer?**
 - a) “Not” for sure if \(K\) is a polyhedral cone in CLO; or
 - b) “Not” for sure when Feasible region has an interior in CCO; otherwise
 - c) Inconclusive in GCO.

Zero-order condition is sufficient
1 and 2-order Conditions: Unconstrained

• Problem:
 - Minimize $f(x)$, where x is a vector that could have any values, positive or negative

• First Order Necessary Condition (min or max):
 - $\nabla f(x) = 0$ ($\partial f/\partial x_i = 0$ for all i) is the first order necessary condition for optimization

• Second Order Necessary Condition:
 - $\nabla^2 f(x)$ is positive semidefinite (PSD)
 - $[d^T \nabla^2 f(x) d \geq 0$ for all d]

• Second Order Sufficient Condition (Given FONC satisfied)
 - $\nabla^2 f(x)$ is positive definite (PD)
 - $[d^T \nabla^2 f(x) d > 0$ for all $d \neq 0$]
1-Order KKT Condition for GCO

Recall the Lagrange Function

\[L(x, y) = f(x) - \sum_i c_i(x) y_i \]

\[\nabla_x L(x, y) = 0, \text{ that is,} \]
\[\frac{\partial L(x, y)}{\partial x_j} = 0, \text{ for all } j=1, \ldots, n, \text{ and} \]
\[c_i(x)y_i = 0, \text{ for all } i=1, \ldots, m \]
\[c_i(x) (\leq, =, \geq) 0, y_i (\leq,"free", \geq) 0, i=1, \ldots, m \]
Example: KKT Conditions

The curve (surface) of the objective function is tangential to the constraint curve (surface) at the optimal point.
Optimality Test for CCO

Is x a (local) optimizer?

- "Yes" if f is also (locally) convex

2-order test

Passed

1-order KKT Optimality Test

Failed

Is x not a (local) optimizer?

"Not" for sure when the feasible region has an interior or it is a polyhedral.
Optimality Test for GCO

Is \(x \) a (local) optimizer?

- "Yes" if it is a (locally) convex problem

1-order KKT Optimality Test

Passed

Failed

2-order test

Is \(x \) not a (local) optimizer?

- "Not" when \(x \) is a regular point on the hypersurface of active constraints
2-Order KKT Condition for GCO

Tangent Plane:
\[T = \{ \mathbf{z}: \nabla c_i(\mathbf{x})\mathbf{z} = 0, \text{ for all } i, \text{ such that } c_i(\mathbf{x})=0 \} \]

Necessary Condition:
\[\mathbf{z}^T \nabla_x^2 L(\mathbf{x}, \mathbf{y}) \mathbf{z} \geq 0, \text{ for all } \mathbf{z} \text{ in } T \]

Sufficient Condition:
\[\mathbf{z}^T \nabla_x^2 L(\mathbf{x}, \mathbf{y}) \mathbf{z} > 0, \text{ for all non-zero } \mathbf{z} \text{ in } T \]

This can be done by checking positive semi-definiteness (or definiteness) of the projected Hessian of the Lagrange function.
Applications: Optimality Conditions

• The market equilibrium theory
 • Fisher market, Arrow-Debreu market
 • Duality and optimality lead to equilibrium conditions

• Inverse learning such as sensor localization
 • SOCP: KKT conditions explain observations
 • SDP: Duality explains localizability

• Distributionally robust optimization/learning
 – A model to deal with inaccurate sample-distributions in stochastic optimization and prediction

• Non-convex regularization in sparse-optimization
 • L_p norm regulation function for unconstrained or constrained minimization
 • KKT conditions establish a desired thresh-holding properties at any KKT solution (first or second order)