More First-Order Optimization Algorithms

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Chapters 3, 8, 13
The SDM for Unconstrained Convex Lipschitz Optimization

Here we consider $f(x)$ being convex and differentiable everywhere and satisfying the (first-order) β-Lipschitz condition. Given the knowledge β, we again adopt the fixed step-size rule:

$$x^{k+1} = x^k - \frac{1}{\beta} \nabla f(x^k).$$ \hspace{1cm} (1)

\textbf{Theorem 1} For convex Lipschitz optimization the Steepest Descent Method generates a sequence of solutions such that

$$f(x^{k+1}) - f(x^*) \leq \frac{\beta}{k+2} \|x^0 - x^*\|^2 \text{ and } \min_{l=0, \ldots, k} \|\nabla f(x^l)\|^2 \leq \frac{4\beta^2}{(k + 1)(k + 2)} \|x^0 - x^*\|^2,$$

where x^* is a minimizer of the problem.

\textbf{Proof:} For simplicity, we let $\delta^k = f(x^k) - f(x^*) (\geq 0)$, $g^k = \nabla f(x^k)$, and $\Delta^k = x^k - x^*$ in the rest of proof. As we have proved for general Lipschitz optimization

$$\delta^{k+1} - \delta^k = f(x^{k+1}) - f(x^k) \leq -\frac{1}{2\beta} \|g^k\|^2,$$

that is $\delta^k - \delta^{k+1} \geq \frac{1}{2\beta} \|g^k\|^2$. \hspace{1cm} (2)
Furthermore, from the convexity,

\[-\delta^k = f(x^*) - f(x^k) \geq (g^k)^T (x^* - x^k) = -(g^k)^T \Delta^k, \quad \text{that is} \quad \delta^k \leq (g^k)^T \Delta^k. \quad (3)\]

Thus, from (2) and (3)

\[
\delta^{k+1} = \delta^{k+1} - \delta^k + \delta^k \\
\leq -\frac{1}{2\beta} \|g^k\|^2 + (g^k)^T \Delta^k \\
= -\frac{\beta}{2} \|x^{k+1} - x^k\|^2 - \beta (x^{k+1} - x^k)^T \Delta^k, \quad \text{(using (1))} \\
= -\frac{\beta}{2} (\|x^{k+1} - x^k\|^2 + 2(x^{k+1} - x^k)^T \Delta^k) \\
= -\frac{\beta}{2} (\|\Delta^{k+1} - \Delta^k\|^2 + 2(\Delta^{k+1} - \Delta^k)^T \Delta^k) \\
= \frac{\beta}{2} (\|\Delta^k\|^2 - \|\Delta^{k+1}\|^2). \quad (4)
\]

Sum up (4) from 1 to $k + 1$, we have

\[
\sum_{l=1}^{k+1} \delta^l \leq \frac{\beta}{2} (\|\Delta^0\|^2 - \|\Delta^{k+1}\|^2) \leq \frac{\beta}{2} \|\Delta^0\|^2.
\]
From the proof of the Corollary 1 of last lecture, we have $\delta^0 \leq \frac{\beta}{2} \|\Delta^0\|^2$. Thus,

$$\sum_{l=0}^{k+1} \delta^l \leq \beta \|\Delta^0\|^2,$$

(5)

and

$$\sum_{l=0}^{k+1} \delta^l = \sum_{l=0}^{k+1} (l + 1 - l) \delta^l$$

$$= \sum_{l=0}^{k+1} (l + 1) \delta^l - \sum_{l=0}^{k+1} l \delta^l$$

$$= \sum_{l=1}^{k+2} l \delta^{l-1} - \sum_{l=1}^{k+1} l \delta^l$$

$$= (k + 2) \delta^{k+1} + \sum_{l=1}^{k+1} l \delta^{l-1} - \sum_{l=1}^{k+1} l \delta^l$$

$$= (k + 2) \delta^{k+1} + \sum_{l=1}^{k+1} l \delta^{l-1} - \delta^l$$

$$\geq (k + 2) \delta^{k+1} + \sum_{l=1}^{k+1} l \frac{1}{2\beta} \|g^{l-1}\|^2,$$

where the first inequality comes from (2). Let $\|g'\| = \min_{l=0,\ldots,k} \|g^l\|$. Then we finally have

$$(k + 2) \delta^{k+1} + \frac{(k + 1)(k + 2)/2}{2\beta} \|g'\|^2 \leq \beta \|\Delta^0\|^2,$$

(6)

which completes the proof.
The Accelerated Steepest Descent Method (ASDM)

There is an accelerated steepest descent method (Nesterov 83) that works as follows:

\[\lambda^0 = 0, \quad \lambda^{k+1} = \frac{1 + \sqrt{1 + 4(\lambda^k)^2}}{2}, \quad \alpha^k = \frac{1 - \lambda^k}{\lambda^{k+1}}, \]

(7)

\[\tilde{x}^{k+1} = x^k - \frac{1}{\beta} \nabla f(x^k), \quad x^{k+1} = (1 - \alpha^k)\tilde{x}^{k+1} + \alpha^k \tilde{x}^k. \]

(8)

Note that \((\lambda^k)^2 = \lambda^{k+1}(\lambda^{k+1} - 1), \lambda^k > k/2\) and \(\alpha^k \leq 0\).

One can prove:

Theorem 2

\[f(\tilde{x}^{k+1}) - f(x^*) \leq \frac{2\beta}{k^2} \|x^0 - x^*\|^2, \quad \forall k \geq 1. \]
Convergence Analysis of ASDM

Again for simplification, we let $\Delta^k = \lambda^k x^k - (\lambda^k - 1) \bar{x}^k - x^*$, $g^k = \nabla f(x^k)$ and $\delta^k = f(\tilde{x}^k) - f(x^*)(\geq 0)$ in the following.

Applying Lemma 1 for $x = \tilde{x}^{k+1}$ and $y = \tilde{x}^k$, convexity of f and (8) we have

$$
\delta^{k+1} - \delta^k = f(\tilde{x}^{k+1}) - f(x^k) + f(x^k) - f(\tilde{x}^k)
\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + f(x^k) - f(\tilde{x}^k)
\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + (g^k)^T (x^k - \tilde{x}^k)
= -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 - \beta(\tilde{x}^{k+1} - x^k)^T (x^k - \tilde{x}^k).
$$

(9)

Applying Lemma 1 for $x = \tilde{x}^{k+1}$ and $y = x^*$, convexity of f and (8) we have

$$
\delta^{k+1} = f(\tilde{x}^{k+1}) - f(x^k) + f(x^k) - f(x^*)
\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + f(x^k) - f(x^*)
\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + (g^k)^T (x^k - x^*)
= -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 - \beta(\tilde{x}^{k+1} - x^k)^T (x^k - x^*).
$$

(10)
Multiplying (9) by \(\lambda^k(\lambda^k - 1) \) and (10) by \(\lambda^k \) respectively, and summing the two, we have

\[
\begin{align*}
(\lambda^k)^2 \delta^{k+1} - (\lambda^{k-1})^2 \delta^k & \leq - (\lambda^k)^2 \frac{\beta}{2} \| \tilde{x}^{k+1} - x^k \|^2 - \lambda^k \beta (\tilde{x}^{k+1} - x^k)^T \Delta^k \\
& = - \frac{\beta}{2} ((\lambda^k)^2 \| \tilde{x}^{k+1} - x^k \|^2 + 2\lambda^k (\tilde{x}^{k+1} - x^k)^T \Delta^k) \\
& = - \frac{\beta}{2} (\| \lambda^k \tilde{x}^{k+1} - (\lambda^k - 1) \tilde{x}^k - x^* \|^2 - \| \Delta^k \|^2) \\
& = \frac{\beta}{2} (\| \Delta^k \|^2 - \| \lambda^k \tilde{x}^{k+1} - (\lambda^k - 1) \tilde{x}^k - x^* \|^2).
\end{align*}
\]

Using (7) and (8) we can derive

\[
\lambda^k \tilde{x}^{k+1} - (\lambda^k - 1) \tilde{x}^k = \lambda^{k+1} x^{k+1} - (\lambda^{k+1} - 1) \tilde{x}^{k+1}.
\]

Thus,

\[
(\lambda^k)^2 \delta^{k+1} - (\lambda^{k-1})^2 \delta^k \leq \frac{\beta}{2} (\| \Delta^k \|^2 - \| \Delta^{k+1} \|^2).
\] (11)

Sum up (11) from 1 to \(k \) we have

\[
\delta^{k+1} \leq \frac{\beta}{2(\lambda^k)^2} \| \Delta^1 \|^2 \leq \frac{2\beta}{k^2} \| \Delta^0 \|^2
\]

since \(\lambda^k \geq k/2 \) and \(\| \Delta^1 \| \leq \| \Delta^0 \| \).
First-Order Algorithms for Conic Constrained Optimization (CCO)

Consider the conic nonlinear optimization problem: \(\min f(x) \text{ s.t. } x \in K. \)

- Nonnegative Linear Regression: given data \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \)
 \[
 \min f(x) = \frac{1}{2} \| Ax - b \|^2 \text{ s.t. } x \geq 0; \quad \text{where } \nabla f(x) = A^T (Ax - b).
 \]

- Semidefinite Linear Regression: given data \(A_i \in S^n \) for \(i = 1, \ldots, m \) and \(b \in \mathbb{R}^m \)
 \[
 \min f(X) = \frac{1}{2} \| AX - b \|^2 \text{ s.t. } X \succeq 0; \quad \text{where } \nabla f(X) = A^T (AX - b).
 \]

\[
AX = \begin{pmatrix}
A_1 \cdot X \\
\vdots \\
A_m \cdot X
\end{pmatrix}
\quad \text{and} \quad A^T y = \sum_{i=1} y_i A_i.
\]

Suppose we start from a feasible solution \(x^0 \) or \(X^0 \).
\[\hat{x}^{k+1} = x^k - \frac{1}{\beta} \nabla f(x^k) \]

\[x^{k+1} = \text{Proj}_K(\hat{x}^{k+1}): \text{Solve } \min_{x \in K} \| x - \hat{x}^{k+1} \|^2. \]

For examples:

- If \(K = \{x : x \geq 0\} \), then
 \[x^{k+1} = \text{Proj}_K(\hat{x}^{k+1}) = \max\{0, \hat{x}^{k+1}\}. \]

- If \(K = \{X : X \succeq 0\} \), then factorize \(\hat{X}^{k+1} = \sum_{j=1}^{n} \lambda_j v_j v_j^T \) and let
 \[X^{k+1} = \text{Proj}_K(\hat{X}^{k+1}) = \sum_{j: \lambda_j > 0} \lambda_j v_j v_j^T. \]

 (The drawback is that the total eigenvalue-factorization may be costly...)

Does the method converge? What is the convergence speed? See more details in HW3.
Consider the conic nonlinear optimization problem: \(\min f(x) \) s.t. \(Ax = b \). that is
\[K = \{ x : Ax = b \} . \]

The projection method becomes, starting from a feasible solution \(x^0 \) and let direction
\[
d^k = -(I - A^T(AA^T)^{-1}A) \nabla f(x^k)
\]

\[x^{k+1} = x^k + \alpha^k d^k ; \] \hspace{2cm} (12)

where the stepsizze can be chosen from line-search or again simply let
\[
\alpha^k = \frac{1}{\beta}
\]

and \(\beta \) is the (global) Lipschitz constant.

Does the method converge? What is the convergence speed? See more details in HW3.
SDM Followed by the Feasible-Region-Projection III

- $K \subset \mathbb{R}^n$ whose support size is no more than $d(< n)$: $x = \text{Proj}_K(\hat{x})$ contains the largest d absolute entries of \hat{x} and set the rest of them to zeros.

- $K \subset \mathbb{R}_+^n$ and its support size is no more than $d(< n)$: $x = \text{Proj}_K(\hat{x})$ contains the largest no more than d positive entries of \hat{x} and set the rest of them to zeros.

- $K \subset \mathbb{S}^n$ whose rank is no more than $d(< n)$: factorize
 $$\hat{X} = \sum_{j=1}^n \lambda_j v_j v_j^T$$
 with $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$ then $\text{Proj}_K(\hat{X}) = \sum_{j=1}^d \lambda_j v_j v_j^T$.

- $K \subset \mathbb{S}_+^n$ whose rank is no more than $d(< n)$: factorize
 $$\hat{X} = \sum_{j=1}^n \lambda_j v_j v_j^T$$
 with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ then $\text{Proj}_K(\hat{X}) = \sum_{j=1}^d \max\{0, \lambda_j\} v_j v_j^T$.

Does the method converge? What is the convergence speed? What if $f(\cdot)$ is not a convex function?
Multiplicative-Update I: “Mirror” SDM for CCO

At the kth iterate with $\mathbf{x}^k > 0$:

$$
\mathbf{x}^{k+1} = \mathbf{x}^k \cdot \exp(-\frac{1}{\beta} \nabla f(\mathbf{x}^k))
$$

Note that \mathbf{x}^{k+1} remains positive in the updating process.

The classical Projected SDM update can be viewed as

$$
\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \geq 0} \nabla f(\mathbf{x}^k)^T \mathbf{x} + \frac{\beta}{2} \|\mathbf{x} - \mathbf{x}^k\|^2.
$$

One can choose any strongly convex function $h(\cdot)$ and define

$$
\mathcal{D}_h(\mathbf{x}, \mathbf{y}) = h(\mathbf{x}) - h(\mathbf{y}) - \nabla h(\mathbf{y})^T (\mathbf{x} - \mathbf{y})
$$

and define the update as

$$
\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \geq 0} \nabla f(\mathbf{x}^k)^T \mathbf{x} + \beta \mathcal{D}_h(\mathbf{x}, \mathbf{x}^k).
$$

The update above is the result of choosing (negative) entropy function $h(\mathbf{x}) = \sum_j x_j \log(x_j)$.

12
At the kth iterate with $x^k > 0$, let D^k be a diagonal matrix such that

$$D^k_{jj} = x^k_j, \ \forall j$$

and

$$x^{k+1} = \arg\min_{x \geq 0} \nabla f(x^k)^T x + \frac{\beta}{2} \| (D^k)^{-1} (x - x^k) \|^2,$$

or

$$x^{k+1} = x^k - \alpha_k (D^k)^2 \nabla f(x^k) = x^k \cdot (e - \alpha_k \nabla f(x^k) \cdot x^k)$$

where variable step-sizes can be

$$\alpha^k = \min\left\{ \frac{1}{\beta \max(x^k)^2}, \frac{1}{2 \| x^k \cdot \nabla f(x^k) \|_\infty} \right\}.$$

Is $x^k > 0, \ \forall k$? Does it converge? What is the convergence speed? See more details in HW3.

Geometric Interpretation: inscribed ball vs inscribed ellipsoid.
At the kth iterate with $X^k \succ 0$, the new SDM iterate would be

$$X^{k+1} = X^k - \alpha_k X^k \nabla f(X^k) X^k = X^k (I - \alpha_k \nabla f(X^k) X^k).$$

Choose step-size is chosen such that the smallest eigenvalue of X^{k+1} is at most a fraction from the one of X^k?

Does it converge? What is the convergence speed? See more details in HW3.
Reduced Gradient Method – the Simplex Algorithm for LP

\[\text{LP: } \min c^T x \quad \text{s.t. } Ax = b, \; x \geq 0, \]

where \(A \in \mathbb{R}^{m \times n} \) has a full row rank \(m \).

Theorem 3 (The Fundamental Theorem of LP in Algebraic form) Given (LP) and (LD) where \(A \) has full row rank \(m \),

i) if there is a feasible solution, there is a basic feasible solution (Carathéodory’s theorem);

ii) if there is an optimal solution, there is an optimal basic solution.

High-Level Idea:

1. **Initialization** Start at a BSF or corner point of the feasible polyhedron.

2. **Test for Optimality.** Compute the reduced gradient vector at the corner. If no descent and feasible direction can be found, stop and claim optimality at the current corner point; otherwise, select a new corner point and go to Step 2.
LP theorems depicted in two variable space

Figure 1: The LP Simplex Method
When a Basic Feasible Solution is Optimal

Suppose the basis of a basic feasible solution is A_B and the rest is A_N. One can transform the equality constraint to

$$A_B^{-1}A x = A_B^{-1}b,$$

so that $x_B = A_B^{-1}b - A_B^{-1}A_Nx_N$.

That is, we express x_B in terms of x_N, the non-basic variables are are active for constraints $x \geq 0$.

Then the objective function equivalently becomes

$$c^T x = c_B^T x_B + c_N^T x_N = c_B^T A_B^{-1}b - c_B^T A_B^{-1}A_Nx_N + c_N^T x_N$$

$$= c_B^T A_B^{-1}b + (c_N - c_B^T A_B^{-1}A_N)x_N.$$

Vector $r^T = c^T - c_B^T A_B^{-1}A$ is called the Reduced Gradient/Cost Vector where $r_B = 0$ always.

Theorem 4 If Reduced Gradient Vector $r^T = c^T - c_B^T A_B^{-1}A \geq 0$, then the BFS is optimal.

Proof: Let $y^T = c_B^T A_B^{-1}$ (called Shadow Price Vector), then y is a dual feasible solution $(r = c - A^Ty \geq 0)$ and $c^T x = c_B^T x_B = c_B^T A_B^{-1}b = y^T b$, that is, the duality gap is zero.
The Simplex Algorithm Procedures

0. **Initialize** Start a BFS with basic index set B and let N denote the complementary index set.

1. **Test for Optimality**: Compute the Reduced Gradient Vector r at the current BFS and let

 $$ r_e = \min_{j \in N} \{ r_j \}. $$

 If $r_e \geq 0$, stop – the current BFS is optimal.

2. **Determine the Replacement**: Increase x_e while keep all other non-basic variables at the zero value (inactive) and maintain the equality constraints:

 $$ x_B = A_B^{-1} b - A_B^{-1} A_e x_e (\geq 0). $$

 If x_e can be increased to ∞, stop – the problem is unbounded below. Otherwise, let the basic variable x_o be the one first becoming 0.

3. **Update basis**: update B with x_o being replaced by x_e, and return to Step 1.
A Toy Example

\[
\begin{align*}
\text{minimize} & \quad -x_1 - 2x_2 \\
\text{subject to} & \quad x_1 + x_3 = 1 \\
& \quad x_2 + x_4 = 1 \\
& \quad x_1 + x_2 + x_5 = 1.5.
\end{align*}
\]

\[
A = \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{pmatrix}, \quad b = \begin{pmatrix}
1 \\
1 \\
1.5
\end{pmatrix}, \quad c^T = (-1 \quad -2 \quad 0 \quad 0 \quad 0).
\]

Consider initial BFS with basic variables \(B = \{3, 4, 5\} \) and \(N = \{1, 2\} \).

Iteration 1:

1. \(A_B = I, \ A_B^{-1} = I, \ y^T = (0 \ 0 \ 0) \) and \(r_N = (-1 \quad -2) \) – it’s NOT optimal. Let \(e = 2 \).
2. Increase \(x_2 \) while

\[
x_B = A_B^{-1} b - A_B^{-1} A_2 x_2 = \begin{pmatrix} 1 \\ 1 \\ 1.5 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} x_2.
\]

We see \(x_4 \) becomes 0 first.

3. The new basic variables are \(B = \{3, 2, 5\} \) and \(N = \{1, 4\} \).

Iteration 2:

1. \(A_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \), \(A_B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \),

\(y^T = (0 \ -2 \ 0) \) and \(r_N = (-1 \ 2) \) – it’s NOT optimal. Let \(e = 1 \).
2. Increase x_1 while

$$x_B = A_B^{-1}b - A_B^{-1}A_1x_1 = \begin{pmatrix} 1 \\ 1 \\ 0.5 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}x_1.$$

We see x_5 becomes 0 first.

3. The new basic variables are $B = \{3, 2, 1\}$ and $N = \{4, 5\}$.

Iteration 3:

1.

$$A_B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad A_B^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix},$$

$$y^T = (0 \ -1 \ -1) \text{ and } r_N = (1 \ 1) - \text{ it's Optimal}.$$

Is the Simplex Method always convergent to a minimizer? Which condition of the Global Convergence Theorem failed?
The Frank-Wolf Algorithm

P: \[\min f(x) \quad \text{s.t.} \quad Ax = b, \ x \geq 0, \]

where \(A \in \mathbb{R}^{m \times n} \) has a full row rank \(m \).

Start with a feasible solution \(x^0 \), and at the \(k \)th iterate do:

- Solve the LP problem
 \[\min \nabla f(x^k)^T x \quad \text{s.t.} \quad Ax = b, \ x \geq 0 \]
 and let \(\tilde{x}^{k+1} \) be an optimal solution.

- Choose a step-size \(0 < \alpha^k \leq 1 \) and let
 \[x^{k+1} = x^k + \alpha^k (\tilde{x}^{k+1} - x^k). \]

This is also called sequential linear programming (SLP) method.
Let \(y \in \mathbb{R}^m \) represent the cost-to-go values of the \(m \) states, \(i \)th entry for \(i \)th state, of a given policy. The MDP problem entails choosing the optimal value vector \(y^* \) which is a fixed-point of:

\[
y_i^* = \min_{j \in A_i} \{ c_j + \gamma p_j^T y^* \}, \quad \forall i,
\]

The Value-Iteration (VI) Method is, starting from any \(y^0 \), the iterative mapping:

\[
y_i^{k+1} = A(y^k)_j = \min_{j \in A_i} \{ c_j + \gamma p_j^T y^k \}, \quad \forall i.
\]

If the initial \(y^0 \) is strictly feasible for state \(i \), that is, \(y_i^0 < c_j + \gamma p_j^T y^0 \), \(\forall j \in A_i \), then \(y_i^k \) would be increasing in the VI iteration for all \(i \) and \(k \).

On the other hand, if any of the inequalities is violated, then we have to decrease \(y_i^{1} \) at least to

\[
\min_{j \in A_i} \{ c_j + \gamma p_j^T y^0 \}
\].
Theorem 5 Let the VI algorithm mapping be \(A(v)_i = \min_{j \in A_i} \{c_j + \gamma p_j^T v, \forall i\} \). Then, for any two value vectors \(u \in \mathbb{R}^m \) and \(v \in \mathbb{R}^m \) and every state \(i \):

\[
|A(u)_i - A(v)_i| \leq \gamma \|u - v\|_{\infty}, \text{ which implies } \|A(u)_i - A(v)_i\|_{\infty} \leq \gamma \|u - v\|_{\infty}
\]

Let \(j_u \) and \(j_v \) be the two \(\text{arg min} \) actions for value vectors \(u \) and \(v \), respectively. Assume that \(A(u)_i - A(v)_i \geq 0 \) where the other case can be proved similarly.

\[
0 \leq A(u)_i - A(v)_i = (c_{j_u} + \gamma p_{j_u}^T u) - (c_{j_v} + \gamma p_{j_v}^T v) \\
\leq (c_{j_v} + \gamma p_{j_v}^T u) - (c_{j_v} + \gamma p_{j_v}^T v) \\
= \gamma p_{j_v}^T (u - v) \leq \gamma \|u - v\|_{\infty}.
\]

where the first inequality is from that \(j_u \) is the \(\text{arg min} \) action for value vector \(u \), and the last inequality follows from the fact that the elements in \(p_{j_v} \) are non-negative and sum-up to 1.

Many research issues in suggested Project III.