More First-Order Optimization Algorithms

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Chapters 3, 8, 13
The SDM for Unconstrained Convex Lipschitz Optimization

Here we consider $f(x)$ being convex and differentiable everywhere and satisfying the (first-order) β-Lipschitz condition. Given the knowledge β, we again adopt the fixed step-size rule:

$$x^{k+1} = x^k - \frac{1}{\beta} \nabla f(x^k).$$

(1)

Theorem 1 For convex Lipschitz optimization the Steepest Descent Method generates a sequence of solutions such that

$$f(x^{k+1}) - f(x^*) \leq \frac{\beta}{k+2} \|x^0 - x^*\|^2 \quad \text{and} \quad \min_{l=0,\ldots,k} \|\nabla f(x^l)\|^2 \leq \frac{4\beta^2}{(k+1)(k+2)} \|x^0 - x^*\|^2,$$

where x^* is a minimizer of the problem.

Proof: For simplicity, we let $\delta^k = f(x^k) - f(x^*) (\geq 0)$, $g^k = \nabla f(x^k)$, and $\Delta^k = x^k - x^*$ in the rest of proof. As we have proved for general Lipschitz optimization

$$\delta^{k+1} - \delta^k = f(x^{k+1}) - f(x^k) \leq -\frac{1}{2\beta} \|g^k\|^2,$$

that is

$$\delta^k - \delta^{k+1} \geq \frac{1}{2\beta} \|g^k\|^2.$$
Furthermore, from the convexity,

$$-\delta^k = f(x^*) - f(x^k) \geq (g^k)^T(x^* - x^k) = -(g^k)^T\Delta^k,$$

that is $\delta^k \leq (g^k)^T\Delta^k$. \hspace{1cm} (3)

Thus, from (2) and (3)

$$\delta^{k+1} = \delta^{k+1} - \delta^k + \delta^k$$

$$\leq -\frac{1}{2\beta} \|g^k\|^2 + (g^k)^T\Delta^k$$

$$= -\frac{\beta}{2} \|x^{k+1} - x^k\|^2 - \beta(x^{k+1} - x^k)^T\Delta^k, \quad \text{(using (1))}$$

$$= -\frac{\beta}{2} (\|x^{k+1} - x^k\|^2 + 2(x^{k+1} - x^k)^T\Delta^k)$$

$$= -\frac{\beta}{2} (\|\Delta^{k+1} - \Delta^k\|^2 + 2(\Delta^{k+1} - \Delta^k)^T\Delta^k)$$

$$= \frac{\beta}{2} (\|\Delta^k\|^2 - \|\Delta^{k+1}\|^2).$$ \hspace{1cm} (4)

Sum up (4) from 1 to $k + 1$, we have

$$\sum_{l=1}^{k+1} \delta^l \leq \frac{\beta}{2} (\|\Delta^0\|^2 - \|\Delta^{k+1}\|^2) \leq \frac{\beta}{2} \|\Delta^0\|^2.$$
From the proof of the Corollary 1 of last lecture, we have $\delta^0 \leq \frac{\beta}{2} \| \Delta^0 \|^2$. Thus,

$$\sum_{l=0}^{k+1} \delta^l \leq \beta \| \Delta^0 \|^2,$$

and

$$\sum_{l=0}^{k+1} \delta^l = \sum_{l=0}^{k+1} (l + 1 - l)\delta^l = \sum_{l=0}^{k+1} (l + 1)\delta^l - \sum_{l=0}^{k+1} l\delta^l = \sum_{l=1}^{k+2} l\delta^{l-1} - \sum_{l=1}^{k+1} l\delta^l = (k + 2)\delta^{k+1} + \sum_{l=1}^{k+1} l\delta^{l-1} - \sum_{l=1}^{k+1} l\delta^l = (k + 2)\delta^{k+1} + \sum_{l=1}^{k+1} l(\delta^{l-1} - \delta^l) \geq (k + 2)\delta^{k+1} + \sum_{l=1}^{k+1} l \frac{1}{2\beta} \| g^{l-1} \|^2,$$

where the first inequality comes from (2). Let $\| g' \| = \min_{l=0,\ldots,k} \| g^l \|$. Then we finally have

$$(k + 2)\delta^{k+1} + \frac{(k + 1)(k + 2)/2}{2\beta} \| g' \|^2 \leq \beta \| \Delta^0 \|^2,$$

which completes the proof.
The Accelerated Steepest Descent Method (ASDM)

There is an *accelerated* steepest descent method (Nesterov 83) that works as follows:

\[
\lambda^0 = 0, \quad \lambda^{k+1} = \frac{1 + \sqrt{1 + 4(\lambda^k)^2}}{2}, \quad \alpha^k = \frac{1 - \lambda^k}{\lambda^{k+1}}, \tag{7}
\]

\[
\tilde{x}^{k+1} = x^k - \frac{1}{\beta} \nabla f(x^k), \quad x^{k+1} = (1 - \alpha^k)\tilde{x}^{k+1} + \alpha^k\tilde{x}^k. \tag{8}
\]

Note that \((\lambda^k)^2 = \lambda^{k+1}(\lambda^{k+1} - 1), \lambda^k > k/2\) and \(\alpha^k \leq 0\).

One can prove:

Theorem 2

\[
f(\tilde{x}^{k+1}) - f(x^*) \leq \frac{2\beta}{k^2} \|x^0 - x^*\|^2, \quad \forall k \geq 1.
\]
Convergence Analysis of ASDM

Again for simplification, we let $\Delta^k = \lambda^k x^k - (\lambda^k - 1) \tilde{x}^k - x^*$, $g^k = \nabla f(x^k)$ and $\delta^k = f(\tilde{x}^k) - f(x^*) (\geq 0)$ in the following.

Applying Lemma 1 for $x = \tilde{x}^{k+1}$ and $y = \tilde{x}^k$, convexity of f and (8) we have

$$\delta^{k+1} - \delta^k = f(\tilde{x}^{k+1}) - f(x^k) + f(x^k) - f(\tilde{x}^k)$$
$$\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + f(x^k) - f(\tilde{x}^k)$$
$$\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + (g^k)^T (x^k - \tilde{x}^k)$$
$$= -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 - \beta (\tilde{x}^{k+1} - x^k)^T (x^k - \tilde{x}^k).$$ \hspace{1cm} (9)

Applying Lemma 1 for $x = \tilde{x}^{k+1}$ and $y = x^*$, convexity of f and (8) we have

$$\delta^{k+1} = f(\tilde{x}^{k+1}) - f(x^k) + f(x^k) - f(x^*)$$
$$\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + f(x^k) - f(x^*)$$
$$\leq -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 + (g^k)^T (x^k - x^*)$$
$$= -\frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 - \beta (\tilde{x}^{k+1} - x^k)^T (x^k - x^*).$$ \hspace{1cm} (10)
Multiplying (9) by $\lambda^k(\lambda^k - 1)$ and (10) by λ^k respectively, and summing the two, we have

\[
(\lambda^k)^2 \delta^{k+1} - (\lambda^{k-1})^2 \delta^k \leq - (\lambda^k)^2 \frac{\beta}{2} \|\tilde{x}^{k+1} - x^k\|^2 - \lambda^k \beta (\tilde{x}^{k+1} - x^k)^T \Delta^k
\]

\[
= - \frac{\beta}{2} ((\lambda^k)^2 \|\tilde{x}^{k+1} - x^k\|^2 + 2\lambda^k (\tilde{x}^{k+1} - x^k)^T \Delta^k)
\]

\[
= - \frac{\beta}{2} \left(\|\lambda^k \tilde{x}^{k+1} - (\lambda^k - 1)\tilde{x}^k - x^*\|^2 - \|\Delta^k\|^2 \right)
\]

\[
= \frac{\beta}{2} \left(\|\Delta^k\|^2 - \|\lambda^k \tilde{x}^{k+1} - (\lambda^k - 1)\tilde{x}^k - x^*\|^2 \right).
\]

Using (7) and (8) we can derive

\[
\lambda^k \tilde{x}^{k+1} - (\lambda^k - 1)\tilde{x}^k = \lambda^{k+1} x^{k+1} - (\lambda^{k+1} - 1)\tilde{x}^{k+1}.
\]

Thus,

\[
(\lambda^k)^2 \delta^{k+1} - (\lambda^{k-1})^2 \delta^k \leq \frac{\beta}{2} (\|\Delta^k\|^2 - \|\Delta^{k+1}\|^2).
\]

(11)

Sum up (11) from 1 to k we have

\[
\delta^{k+1} \leq \frac{\beta}{2(\lambda^k)^2} \|\Delta^1\|^2 \leq \frac{2\beta}{k^2} \|\Delta^0\|^2
\]

since $\lambda^k \geq k/2$ and $\|\Delta^1\| \leq \|\Delta^0\|$.

\[7\]
First-Order Algorithms for Conic Constrained Optimization

Consider the conic nonlinear optimization problem: \(\min f(x) \quad \text{s.t.} \quad x \in K. \)

- **Nonnegative Linear Regression**: given data \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \)

 \[
 \min f(x) = \frac{1}{2} \|Ax - b\|^2 \quad \text{s.t.} \quad x \geq 0; \quad \text{where} \quad \nabla f(x) = A^T(Ax - b).
 \]

- **Semidefinite Linear Regression**: given data \(A_i \in S^n \) for \(i = 1, \ldots, m \) and \(b \in \mathbb{R}^m \)

 \[
 \min f(X) = \frac{1}{2} \|AX - b\|^2 \quad \text{s.t.} \quad X \succeq 0; \quad \text{where} \quad \nabla f(X) = A^T(AX - b).
 \]

\[
AX = \begin{pmatrix}
A_1 \cdot X \\
\vdots \\
A_m \cdot X
\end{pmatrix} \quad \text{and} \quad A^T y = \sum_{i=1} y_i A_i.
\]
I: SDM Followed by Feasible-Region-Projection

- $\hat{x}^{k+1} = x^k - \frac{1}{\beta} \nabla f(x^k)$
- $x^{k+1} = \text{Proj}_K(\hat{x}^{k+1})$

For examples:

- if $K = \{x : x \geq 0\}$, then
 $$x^{k+1} = \text{Proj}_K(\hat{x}^{k+1}) = \max\{0, \hat{x}^{k+1}\}.$$

- $K = \{X : X \succeq 0\}$, then factorize $\hat{X}^{k+1} = V^T \Lambda V$ and let
 $$X^{k+1} = \text{Proj}_K(\hat{X}^{k+1}) = V^T \max\{0, \Lambda\} V.$$

The drawback is that the eigenvalue-factorization may be costly in each iteration (using low-rank structure and/or $L^T D L$ factorization in Suggested Project I?)
II: The Gradient-Projection Method for Conic Constrained Optimization

Starting from a feasible solution $x^0 \geq 0$ and let the iterative mapping be

$$x^{k+1} = x^k + \alpha^k d^k;$$ \hspace{1cm} (12)

where

- for every j: x^k:

$$d^k_j = \begin{cases}
-\nabla f(x^k)_j & \text{if } x^k_j > 0 \text{ or } \nabla f(x^k)_j < 0, \\
0 & \text{otherwise.}
\end{cases}$$

- the stepsize can be chosen from line-search (keeping feasibility) or

$$\alpha^k = \min\left\{ \frac{1}{\beta}, \alpha_{max}^k \right\}$$

where α_{max}^k is the largest stepsize α such that $x^{k+1} = x^k + \alpha d^k \geq 0$.

Does it converge? What is the convergence speed? See more details in HW3. And the extension to SDP cone?
III: The Gradient-Projection Method for Equality Constrained Optimization

Consider the conic nonlinear optimization problem: $\min f(x) \quad \text{s.t.} \quad Ax = b$.

Starting from a feasible solution x^0 and let the iterative mapping be

$$d^k = -(I - A^T(ATA)^{-1}A) \nabla f(x^k)$$

$$x^{k+1} = x^k + \alpha^k d^k; \quad (13)$$

where the stepsize can be chosen from line-search or simply

$$\alpha^k = \frac{1}{\beta}$$

and β is the global Lipschitz constant.

Does it converge? What is the convergence speed? See more details in HW3. And the extension to SDP cone?
IV: Affine Scaling SDM for Conic Constrained Optimization

At the \(k \)th iterate with \(\mathbf{x}^k > \mathbf{0} \), let \(D^k \) be a diagonal matrix such that

\[
D_{jj}^k = \min\{1, x_j^k\}, \quad \forall j
\]

and

\[
\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k (D^k)^2 \nabla f(\mathbf{x}^k)
\]

where step-size

\[
\alpha^k = \min\left\{ \frac{1}{\beta}, \frac{1}{2\|D^k \nabla f(\mathbf{x}^k)\|_{\infty}} \right\}.
\]

Is \(\mathbf{x}^k > \mathbf{0}, \quad \forall k \)? Does it converge? What is the convergence speed? See more details in HW3.
IV: Affine Scaling for SDP Cone?

At the kth iterate with $X^k \succ 0$. Let D^k be the symmetric matrix D^k such that

$$D^k = V^T \min\{1, \Lambda\} V,$$

where $X^k = V^T \Lambda V$.

the new SDM iterate would be

$$X^{k+1} = X^k - \alpha_k D^k \nabla f(X^k) D^k.$$

Choose step-size is chosen such that the smallest eigenvalue of X^{k+1} is at most halved from the one of X^k? Does it converge? What is the convergence speed? See more details in HW3.
V: Reduced Gradient Method – the Simplex Algorithm for LP

\[\text{LP: } \min c^T x \text{ s.t. } Ax = b, \ x \geq 0, \]

where \(A \in \mathbb{R}^{m \times n} \) has a full row rank \(m \).

Theorem 3 (The Fundamental Theorem of LP in Algebraic form) Given (LP) and (LD) where \(A \) has full row rank \(m \),

i) if there is a feasible solution, there is a basic feasible solution (Carathéodory’s theorem);

ii) if there is an optimal solution, there is an optimal basic solution.

High-Level Idea:

1. **Initialization** Start at a BSF or corner point of the feasible polyhedron.

2. **Test for Optimality.** Compute the reduced gradient vector at the corner. If no descent and feasible direction can be found, stop and claim optimality at the current corner point; otherwise, select a new corner point and go to Step 2.
LP theorems depicted in two variable space

Figure 1: The LP Simplex Method
When a Basic Feasible Solution is Optimal

Suppose the basis of a basic feasible solution is A_B and the rest is A_N. One can transform the equality constraint to

$$A_B^{-1}Ax = A_B^{-1}b,$$

so that $x_B = A_B^{-1}b - A_B^{-1}A_Nx_N$.

That is, we express x_B in terms of x_N, the non-basic variables are are active for constraints $x \geq 0$.

Then the objective function equivalently becomes

$$c^T x = c_B^T x_B + c_N^T x_N = c_B^T A_B^{-1}b - c_B^T A_B^{-1}A_Nx_N + c_N^T x_N$$

$$= c_B^T A_B^{-1}b + (c_N^T - c_B^T A_B^{-1}A_N)x_N.$$

Vector $r^T = c^T - c_B^T A_B^{-1}A$ is called the Reduced Gradient/Cost Vector where $r_B = 0$ always.

Theorem 4 If Reduced Gradient Vector $r^T = c^T - c_B^T A_B^{-1}A \geq 0$, then the BFS is optimal.

Proof: Let $y^T = c_B^T A_B^{-1}$ (called Shadow Price Vector), then y is a dual feasible solution ($r = c - A^T y \geq 0$) and $c^T x = c_B^T x_B = c_B^T A_B^{-1}b = y^T b$, that is, the duality gap is zero.
The Simplex Algorithm Procedures

0. Initialize Start a BFS with basic index set B and let N denote the complementary index set.

1. Test for Optimality: Compute the Reduced Gradient Vector r at the current BFS and let

$$r_e = \min_{j \in N} \{ r_j \}.$$\

If $r_e \geq 0$, stop – the current BFS is optimal.

2. Determine the Replacement: Increase x_e while keep all other non-basic variables at the zero value (inactive) and maintain the equality constraints:

$$x_B = A_B^{-1}b - A_B^{-1}A_e x_e \geq 0.$$\

If x_e can be increased to ∞, stop – the problem is unbounded below. Otherwise, let the basic variable x_o be the one first becoming 0.

3. Update basis: update B with x_o being replaced by x_e, and return to Step 1.
A Toy Example

minimize \(-x_1 - 2x_2\)
subject to \(x_1 + x_3 = 1\)
\(x_2 + x_4 = 1\)
\(x_1 + x_2 + x_5 = 1.5\).

\[
A = \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
\end{pmatrix}, \quad b = \begin{pmatrix}
1 \\
1 \\
1.5 \\
\end{pmatrix}, \quad c^T = (-1 - 2 0 0 0).
\]

Consider initial BFS with basic variables \(B = \{3, 4, 5\}\) and \(N = \{1, 2\}\).

Iteration 1:

1. \(A_B = I, A_B^{-1} = I, y^T = (0\ 0\ 0)\) and \(r_N = (-1 - 2)\) – it’s NOT optimal. Let \(e = 2\).
2. Increase x_2 while

$$x_B = A_B^{-1} b - A_B^{-1} A_x x_2 = \begin{pmatrix} 1 \\ 1 \\ 1.5 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} x_2.$$

We see x_4 becomes 0 first.

3. The new basic variables are $B = \{3, 2, 5\}$ and $N = \{1, 4\}$.

Iteration 2:

1.

$$A_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad A_B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix},$$

$$y^T = (0 \quad -2 \quad 0) \text{ and } r_N = (-1 \quad 2) \text{ – it’s NOT optimal. Let } e = 1.$$
2. Increase x_1 while

$$x_B = A_B^{-1}b - A_B^{-1}A_1x_1 = \begin{pmatrix} 1 \\ 1 \\ 0.5 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}x_1.$$

We see x_5 becomes 0 first.

3. The new basic variables are $B = \{3, 2, 1\}$ and $N = \{4, 5\}$.

Iteration 3:

1.

$$A_B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad A_B^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix},$$

$$y^T = (0 -1 -1) \text{ and } r_N = (1 1) - \text{it's Optimal.}$$

Is the Simplex Method always convergent to a minimizer? Which condition of the Global Convergence Theorem failed?
Value-Iteration for MDP: Fixed-Point Mapping

Let \(y \in \mathbb{R}^m \) represent the cost-to-go values of the \(m \) states, \(i \)th entry for \(i \)th state, of a given policy. The MDP problem entails choosing the optimal value vector \(y^* \) which is a fixed-point of:

\[
y_i^* = \min_{j \in A_i} \{ c_j + \gamma p_j^T y^* \}, \forall i,
\]

The Value-Iteration (VI) Method is, starting from any \(y^0 \), the iterative mapping:

\[
y_i^{k+1} = A(y^k)_j = \min_{j \in A_i} \{ c_j + \gamma p_j^T y^k \}, \forall i.
\]

If the initial \(y^0 \) is strictly feasible for state \(i \), that is, \(y_i^0 < c_j + \gamma p_j^T y^0, \forall j \in A_i \), then \(y_i^k \) would be increasing in the VI iteration for all \(i \) and \(k \).

On the other hand, if any of the inequalities is violated, then we have to decrease \(y_i^1 \) at least to

\[
\min_{j \in A_i} \{ c_j + \gamma p_j^T y^0 \}
\].
Convergence of Value-Iteration for MDP

Theorem 5 Let the VI algorithm mapping be $A(v)_i = \min_{j \in A} \{c_j + \gamma p_j^T v, \forall i\}$. Then, for any two value vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^m$ and every state i:

$$|A(u)_i - A(v)_i| \leq \gamma \|u - v\|_\infty,$$

which implies $\|A(u)_i - A(v)_i\|_\infty \leq \gamma \|u - v\|_\infty$

Let j_u and j_v be the two arg min actions for value vectors u and v, respectively. Assume that $A(u)_i - A(v)_i \geq 0$ where the other case can be proved similarly.

$$0 \leq A(u)_i - A(v)_i = (c_{j_u} + \gamma p_{j_u}^T u) - (c_{j_v} + \gamma p_{j_v}^T v) \leq (c_{j_v} + \gamma p_{j_v}^T u) - (c_{j_v} + \gamma p_{j_v}^T v) = \gamma p_{j_v}^T (u - v) \leq \gamma \|u - v\|_\infty.$$

where the first inequality is from that j_u is the arg min action for value vector u, and the last inequality follows from the fact that the elements in p_{j_v} are non-negative and sum-up to 1.

Many research issues in suggested Project III.