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The 1.5-Order Algorithm: Dimension-Reduced Second-Order Method

Similar to the Double-Direction FOM, let dk = xk − xk−1 and gk = ∇f(xk) be two (conjugate)

descent directions, and Hessian Hk = ∇2f(xk). Then, we can let

xk+1 = xk − αg∇f(xk) + αm(xk − xk−1) = xk + d(αg, αm),

where the pair of step-sizes (αg, αm) can be chosen to

min
(αg,αd)

∇f(xk)d(αg, αm) +
1

2
d(αg, αm)THkd(αg, αm)T ,

where x1 can be computed from the SDM step.

Here, we add the Hessian information into the step-size decision problem.
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DRSOM: The Adaptive Step-sizes of the Double-Directional SOM

Then the step-sizes can be chosen from the two-dimensional Newton method: (gk)THkgk −(dk)THkgk

−(dk)THkgk (dk)THkdk

 αg

αm

 =

 ∥gk∥2

−(gk)Tdk

 .

Then, let xk+1 = xk − αg∇f(xk) + αmdk. If the Hessian ∇2f(xk) is not available, one can

approximate

Hkgk ∼ ∇(xk + gk)− gk and Hkdk ∼ −(∇f(xk − dk)−∇f(xk)) = −(gk−1 − gk);

or for some small ϵ > 0:

Hkgk ∼ 1

ϵ
(∇(xk + ϵgk)− gk) and Hkdk ∼ 1

ϵ
(∇(xk + ϵdk)− gk).

For convex quadratic minimization, the method becomes the Conjugate-Gradient (CG) or Parallel-Tangent

(PT) Method – Application in Federated-Learning.
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The 1.5-Order Algorithm: Quasi-Newton Method I

xk+1 = xk − αkSk∇f(xk),

for a symmetric matrix Sk with a step-size αk. When Sk is a nonnegative diagonal matrix, then it is the

scaled steepest descent method we described earlier. In general, when Sk is positive definite, direction

−Sk∇f(xk) is a descent direction (why?).

For convex qudratic minimization, the linear convergence rate then becomes
(

λmax(S
kQ)−λmin(S

kQ)
λmax(SkQ)+λmin(SkQ)

)2

where λmax and λmin represent the largest and smallest eigenvalues of a matrix.

Thus, Sk can be viewed as a Preconditioner–typically an approximation of the Hessian matrix inverse, and

can be learned from a regression model: let pk = xk+1 − xk = αkdk

qk := g(xk+1)− g(xk) = Q(xk+1 − xk) = Qpk, k = 0, 1, ...

We actually learn Q−1 from Q−1qk = pk, k = 0, 1, ... The process start with Hk, k = 0, 1, ...,

where the rank of Hk is k, that is, we each step lean a rank-one update: given Hk−1, qk, pk we solve

(h0 ·Hk−1 + hk(hk)T )qk = pk for vector hk. Then after n iterations, we build up Hn = Q−1.
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The 1.5-Order Algorithm: Quasi-Newton Method II

One can simply let

xk+1 = xk − αk(
n− k

n
I +

k

n
Hk)g(xk),

which is similar to the Conjugate Gradient method.

A popular method, BFGS, is given as follows (thre are multiple typos in the text): start from x0 and set

S0 = I , let

dk = −Skg(xk) = −Sk∇f(xk),

and iterate

xk+1 = xk + αkdk.

Then update

Sk+1 = Sk +

(
1 +

(qk)TSkqk

(pk)Tqk

)
pk(pk)T

(pk)Tqk
− pk(qk)TSk + Skqk(pk)T

(pk)Tqk
.
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The 1.5-Order Algorithm: The Ellipsoid Method

Ellipsoids are just sets of the form

E = {y ∈ Rm : (y − ȳ)TB−1(y − ȳ) ≤ 1}

where ȳ ∈ Rm is a given point (called the center) and B is a symmetric positive definite matrix of

dimension m. We can use the notation ell(ȳ, B) to specify the ellipsoid E defined above. Note that

vol(E) = (detB)1/2vol(S(0, 1)).

where S(0, 1) is the unit sphere in Rm.
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A Half-Ellipsoid

By a Half-Ellipsoid of E, we mean the set

1
2Ea := {y ∈ E : aTy ≤ aT ȳ}

for a given non-zero vector a ∈ Rm where ȳ is the center of E – the intersection of the ellipsoid and a

plane cutting through the center.

We are interested in finding a new ellipsoid containing 1
2Ea with the least volume.

• How small could it be?

• How easy could it be constructed?
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The New Containing Ellipsoid

The new ellipsoid E+ = ell(ȳ+, B+) can be constructed as follows. Define

τ :=
1

m+ 1
, δ :=

m2

m2 − 1
, σ := 2τ.

And let

ȳ+ := ȳ − τ

(aTBa)1/2
Ba,

B+ := δ

(
B − σ

BaaTB

aTBa

)
.

Theorem 1 Ellipsoid E+ = ell(ȳ+, B+) defined as above is the ellipsoid of least volume containing
1
2Ea. Moreover,

vol(E+)

vol(E)
≤ exp

(
− 1

2(m+ 1)

)
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Figure 1: The least volume ellipsoid containing a half ellipsoid
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The Ellipsoid Method for Minimizing a Convex Function

Consider minx f(x):

• Initialization: Set the initial ellipsoid (ball) as B0 = 1
R2 I centered at an initial solution x0 where R is

sufficiently large such it contains an optimal solution.

• For k = 0, 1, . . . do

If not terminated:

– Compute the (sub)gradient vector ∇f(xk),

– Let the cutting-plane be {x : ∇f(xk)Tx ≤ f(xk)Txk} and form the half ellipsoid; and update

xk and Bk as described earlier.
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Newton’s Method: The Second Order Method

For multi-variables, Newton’s method for minimizing f(x) is to minimize the second-order Taylor

expansion function at point xk:

xk+1 = xk − (∇2f(xk))−1∇f(xk).

We now introduce the second-order β-Lipschitz condition: for any point x and direction vector d

∥∇f(x+ d)−∇f(x)−∇2f(x)d∥ ≤ β∥d∥2,

which implies

f(x+ d)− f(x) ≤ ∇f(x)Td+
1

2
dT∇2f(x)d+

β

3
∥d∥3.

In the following, for notation simplicity, we use g(x) = ∇f(x) and ∇g(x) = ∇2f(x). Thus,

xk+1 = xk − (∇g(xk))−1∇f(xk), or ∇g(xk)(xk+1 − xk) = −g(xk).

Indeed, Newton’s method was initially developed for solving a system of nonlinear equations in the form

g(x) = 0.
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Local Convergence Theorem of Newton’s Method

Theorem 2 Let f(x) be β-Lipschitz and the smallest absolute eigenvalue of its Hessian uniformly

bounded below by λmin > 0. Then, provided that ∥x0 − x∗∥ is sufficiently small, the sequence

generated by Newton’s method converges quadratically to x∗ that is a KKT solution with g(x∗) = 0.

∥xk+1 − x∗∥ = ∥xk − x∗ −∇g(xk)−1g(xk)∥
= ∥∇g(xk)−1

(
g(xk)−∇g(xk)(xk − x∗)

)
∥

= ∥∇g(xk)−1
(
g(xk)− g(x∗)−∇g(xk)(xk − x∗)

)
∥

≤ ∥∇g(xk)−1∥∥g(xk)− g(x∗)−∇g(xk)(xk − x∗)∥
≤ ∥∇g(xk)−1∥β∥xk − x∗∥2 ≤ β

λmin
∥xk − x∗∥2.

(1)

Thus, when β
λmin

∥x0 − x∗∥ < 1, the quadratic convergence takes place:

β

λmin
∥xk+1 − x∗∥ ≤

(
β

λmin
∥xk − x∗∥

)2

.

Such a starting solution x0 is called an approximate root of g(x).
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An application case of Newton’s method

Consider the optimization problem

min −
∑

j lnxj

s.t. Ax− b = 0 ∈ Rm,

x ≥ 0.

Note this is a (strict) convex optimization problem. Suppose the feasible region has an interior and it is

bounded, then the (unique) minimizer is called the analytic center of the feasible region, and it, together

with multipliers y, s, satisfy the following optimality conditions:

xjsj = 1, j = 1, ..., n,

Ax = b,

ATy + s = 0,

(x, s) ≥ 0.

Since the inequality (x, s) ≥ 0 would not be active, this is a system 2n+m equations of 2n+m
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variables: (using X = Diag(x))

Xs− e = 0,

Ax− b = 0,

ATy + s = 0.

(2)

Thus, Newton’s method would be applicable...
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Newton Direction

Let (x > 0,y, s > 0) be an initial point. Then, the Newton direction would be solution of the following

linear equations: 
S 0 X

A 0 0

0 AT I




dx

dy

ds

 =


e−Xs

b−Ax

−ATy − s

 .

Note that after one Newton iteration, the error residuals of the second and third equations vanishes. Thus,

we may assume that the initial point satisfies

Ax = b, ATy + s = 0

and they remain satisfied through out the process.
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Newton Direction Simplification

Sdx +Xds = e−Xs,

Adx = 0,

ATdy + ds = 0.

(3)

Multiplying AS−1 to the top equation and noting Adx = 0, we have

AXS−1ds = AS−1(e−Xs),

which together with the third equation give

dy = −(AXS−1AT )−1AS−1(e−Xs),

ds = −ATdy, and dx = S−1(e−Xs−Xds).

The new Newton iterate would be

x+ = x+ dx, y+ = y + dy, s+ = s+ ds.
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Approximate Centers

The error residual of the first equation would be:

η(x, s) := ∥Xs− e∥. (4)

We now prove the following theorem

Theorem 3 If the starting point of the Newton procedure satisfies

η(x, s) < 2/3, then

x+ > 0, Ax+ = b, s+ = cT −ATy+ > 0

and

η(x+, s+) ≤
√
2η(x, s)2

4(1− η(x, s))
.
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Proof:

To prove the result we first see that

∥X+s+ − e∥ = ∥Dxds∥, Dx = Diag(dx).

Multiplying the both sides of the first equation of (3) by (XS)−1/2, we see

Ddx +D−1ds = r := (XS)−1/2(e−Xs),

where D = S1/2X−1/2. Let p = Ddx and q = D−1ds. Note that pTq = dT
xds = 0 and

p+ q = r. Then,

∥Dxds∥2 = ∥Pq∥2

=
n∑

j=1

(pjqj)
2

≤

 n∑
pjqj>0

pjqj

2

+

 ∑
pjqj<0

pjqj

2
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= 2

 n∑
pjqj>0

pjqj

2

≤ 2

 n∑
pjqj>0

(pj + qj)
2/4

2

≤ 2
(
∥r∥2/4

)2
.

Furthermore,

∥r∥2 ≤ ∥(XS)−1/2∥2∥e−Xs∥2 ≤ η2(x, s)

1− η(x, s)
,

which gives the desired result. We leave the proof of x+, s+ > 0 as an Exercise.
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Spherical Constrained Nonconvex Quadratic Minimization I

min
1

2
xTQx+ cTx, s.t. ∥x∥2 = (≤)1.

where Q ∈ Sn is any symmetric data matrix. If c = 0 this problem becomes finding the least eigenvalue

of Q.

The necessary and sufficient condition (can be proved using the SDP Rank Theorem) for x being a global

minimizer of the problem is

(Q+ λI)x = −c, (Q+ λI) ≽ 0, ∥x∥22 = 1,

which implies λ ≥ −λmin(Q) > 0 where λmin(Q) is the least eigenvalue of Q. If the optimal

λ∗ = −λmin(Q), then c must be orthogonal to the λmin(Q)-eigenvector, and it can be checked using

the power algorithm.

The minimal objective value:

1

2
xTQx+ cTx = −1

2
xT (Q+ λI)x− 1

2
λ∥x∥2 ≤ −λ

2
, (5)
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Sphere Constrained Nonconvex Quadratic Minimization II

WLOG, Let us assume that the least eigenvalue is 0. Then we must have λ ≥ 0. If the optimal λ∗ = 0,

then c must be a 0-eigenvector of Q, and it can be checked using the power algorithm to find it. Therefore,

we assume that the optimal λ > 0.

Furthermore, there is an upper bound on λ:

λ ≤ λ∥x∥2 ≤ xT (Q+ λI)x = −cTx ≤ ∥c∥∥x∥ = ∥c∥.

Now let x(λ) = −(Q+ λI)−1c, the problem becomes finding the root of ∥x(λ)∥2 = 1.

Lemma 1 The analytic function ∥x(λ)∥2 is convex monotonically decreasing with α = 12 in Corollary 1

of Lecture-Slide Note 9.

Theorem 4 The 1-spherical constrained quadratic minimization can be computed in O(log log(∥c∥/ϵ))
iterations where each iteration solve a symmetric (positive definite) system of linear equations of n

variables.

What about 2-spherical constrained quadratic minimization, that is, quadratic minimization with 2

ellipsoidal constraints: Remains Open.
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Spherical Trust-Region Method for Minimizing Lipschitz f(x)

Recall the second-order β-Lipschitz condition: for any two points x and d

∥g(x+ d)− g(x)−∇g(x)d∥ ≤ β∥d∥2,

where g(x) = ∇f(x) and ∇g(x) = ∇2f(x). It implies

f(x+ d)− f(x) ≤ ∇f(x)Td+
1

2
dT∇2f(x)d+

β

3
∥d∥3.

f(x+ d)− f(x)−∇f(x)Td− 1
2d

T∇2f(x)d

=
∫ 1

0
dT (∇f(x+ td)−∇f(x))dt− 1

2d
T∇2f(x)d

=
∫ 1

0
dT

(
∇f(x+ td)−∇f(x)−∇2f(x)(td)

)
dt

≤
∫ 1

0
∥d∥∥∇f(x+ td)−∇f(x)−∇2f(x)(td)∥dt

≤
∫ 1

0
∥d∥β∥td∥2dt (by 2nd-order -Lipschitz condition)

= β∥d∥3
∫ 1

0
t2dt = β

3 ∥d∥
3.
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The second-order method, at the kth iterate, would let xk+1 = xk + dk where

dk = argmind (ck)Td+ 1
2d

TQkd+ β
3α

3

s.t. ∥d∥ ≤ α,

with ck = ∇f(xk) and Qk = ∇2f(xk). One typically fixed α to a “trusted” radius αk so that it

becomes a sphere-constrained problem (the inequality is normally active if the Hessian is non PSD):

(Qk + λkI)dk = −ck, (Qk + λkI) ≽ 0, ∥dk∥22 = (αk)2.

For fixed αk, the method is generally called trust-region method.

The Trust-Region can be ellipsoidal such as ∥Sd∥ ≤ α where S is a PD diagonal scaling matrix.
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Convergence Speed of the Spherical Trust-Region Method

Is there a trusted radius such that the method converging? A simple choice would fix αk =
√
ϵ/β. Then

from reduction (5)

f(xk+1)− f(xk) ≤ −λk

2
∥dk∥2 + β

3
(αk)3 = −λk(αk)2

2
+

β

3
(αk)3 = −λkϵ

2β2
+

ϵ3/2

3β2
.

Also

∥g(xk+1)∥ = ∥g(xk+1)− (ck +Qkdk) + (ck +Qkdk)∥
≤ ∥g(xk+1)− (ck +Qkdk)∥+ ∥(ck +Qkdk)∥
≤ β∥dk∥2 + λk∥dk∥ = β(αk)2 + λkαk = ϵ

β + λk√ϵ
β .

Thus, one can stop the algorithm as soon as λk ≤
√
ϵ so that the inequality becomes ∥g(xk+1)∥ ≤ 2ϵ

β

and the function value is decreased at least − ϵ1.5

6β2 . Furthermore, |λmin(∇g(xk))| ≤ λk =
√
ϵ.

Theorem 5 Let the objective function p∗ = inf f(x) be finite. Then in O(β2(f(x0)−p∗))
ϵ1.5 iterations of the

trust-region method, the norm of the gradient vector is less than ϵ and the Hessian is
√
ϵ-positive

semidefinite, where each iteration solves a spherical-constrained quadratic minimization discussed earlier.
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Adaptive Spherical Trust-Region Method

One can treat α as a variable in

dk = argmin(d,α) (ck)Td+ 1
2d

TQkd+ β
3α

3

s.t. ∥d∥ ≤ α.

Then, the optimality conditions of this sub-problem would be

(Qk + λI)dk = −ck, (Qk + λI) ≽ 0, ∥d∥22 = α2,

and α = λ
β . Thus, let d(λ) = −(Qk + λI)−1ck, the problem becomes finding the root λ of

∥d(λ)∥2 − λ2

β2
= 0,

where λ ≥ −λmin(Q
k) > 0 (assume that the current Hessian is not PSD yet), as in the Hybrid of

Bisection and Newton method discussed earlier in log log(1/ϵ) arithmetic operations.

In practice, even β is unknown, one can forward/backward choose λ such as the objective function is

reduced by a sufficient quantity, and there is no need to find the exact root.
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Relation to Quadratic Regularization/Proximal-Point Method

One can also interpret the Spherical Trust-Region method as the Quadratic Regularization Method

dk(λ) = argmind (ck)Td+ 1
2d

TQkd+ λ
2 ∥d∥

2

where parameter λ makes (Qk + λI) ≽ 0. Then consider the one-variable function

ϕ(λ) := f(xk + dk(λ))

and do one-variable minimization of ϕ(λ) over λ. Then let λk be a minimizer and

xk+1 = xk + dk(λk).

Thus, based on the earlier analysis, we must have at least

f(xk+1)− f(xk) ≤ − ϵ1.5

6β2

for some (local) Lipschitz constant β of the objective function.

Note that the algorithm needs to estimate only the minimum eigenvalue, λmin(Q
k), of the Hessian. One

heuristic is to let λk decreases geometrically and do few possible line-search steps.
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Dimension-Reduced Second-Order Method with Trust Region: two-dimension

Let Hk = ∇2f(xk), dk = xk − xk−1 and gk = ∇f(xk), and

Qk =

 (gk)THkgk −(dk)THkgk

−(dk)THkgk (dk)THkdk

 ∈ S2, ck =

 −∥gk∥2

(gk)Tdk

 ∈ R2.

Then, similar to the full-dimensional Spherical Trust-Region, one can construct a 2-dimensional

trust-region quadratic model:

αk(λk) = argminα∈R2 (ck)Tα+ 1
2α

TQkα+ λk

2 ∥α∥2

where parameter λk makes Qk + λkI ≽ 0. Finally let xk+1 = xk − αk
1g

k + αk
2d

k. Note that the

third term of the objective can be replaced by λk

2 ∥ − α1g
k + α2d

k∥2 which becomes a 2-dimensional

ellipsoidal trust-region. In this case, we need λk to make Qk + λk
(
[−gk dk]T [−gk dk]

)
≽ 0.

Again, if the Hessian ∇2f(xk) is not available, one can approximate

Hkgk ∼ ∇(xk + gk)− gk and Hkdk ∼ ∇(xk + dk)− gk ∼ −(gk−1 − gk);

or more accurate difference approximation between two gradients.
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Would Convexity Help?

Before we answer this question, let’s summarize a generic form one iteration of the Second Order Method

for solving ∇f(x) = g(x) = 0:

(∇g(xk) + µI)(x− xk) = −γg(xk), or

g(xk) +∇g(xk)(x− xk) + µ(x− xk) = (1− γ)g(xk).

Many interpretations: when

• γ = 1, µ = 0: pure Newton;

• γ and µ are sufficiently large: SDM;

• γ = 1 and µ decreases to 0: Homotopy or path-following method.
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A Path-Following Algorithm for Unconstrained Optimization I

For any µ > 0 consider the (unique) optimal solution x(µ) for problem

x(µ) = argmin f(x) +
µ

2
∥x∥2,

and they form a path down to x(0) and satisfy gradient equations with parameter µ:

g(x) + µx = 0, with µ = µk > 0. (6)

Let the approximation path error at xk with µ = µk be

∥g(xk) + µkxk∥ ≤ 1

2β
µk.

Then, we like to compute a new iterate xk+1, using Newton’s method with xk as an initial solution, such

that

∥g(xk+1) + µk+1xk+1∥ ≤ 1

2β
µk+1, where 0 ≤ µk+1 < µk.

If µk can be decreased at a geometric rate, independent of ϵ, and each update uses one Newton step,

then this would lead to a linearly convergent algorithm.
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Concordant Lipschitz Functions

We analyze the path-following algorithm when f is convex and meet a Concordant Lipschitz condition: for

any point x and a β ≥ 1

∥∇f(x+ d)−∇f(x)−∇2f(x)d∥ ≤ βdT∇2f(x)d, whenever ∥d∥ ≤ O(1) < 1 (7)

and x+ d in the function domain. Such condition can be verified using Taylor Expansion Series;

basically, the third derivative of the function is bounded by its second derivative.

• All quadratic functions are concordant Lipschitz with β = 0.

• Convex function ex is concordant Lipschitz with β = O(1) but it is not regular Lipschitz.

• Convex function − log(x) is neither regular Lipschitz nor concordant Lipschitz.

• Function f(x) := ϕ(Ax− b) is concordant Lipschitz if ϕ(·) is regular Lipschitz and strictly convex.
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A Path-Following Algorithm for Unconstrained Optimization II

When µk is replaced by µk+1, say (1− η)µk for some η ∈ (0, 1], we aim to find a solution x such that

g(x) + (1− η)µkx = 0,

we start from xk and apply the Newton iteration:

g(xk) +∇g(xk)d+ (1− η)µk(xk + d) = 0, or

∇g(xk)d+ (1− η)µkd = −g(xk)− (1− η)µkxk.
(8)

From the second expression, we have

∥∇g(xk)d+ (1− η)µkd∥ = ∥ − g(xk)− (1− η)µkxk∥
= ∥ − g(xk)− µkxk + ηµkxk∥
≤ ∥ − g(xk)− µkxk∥+ ηµk∥xk∥
≤ 1

2βµ
k + ηµk∥xk∥.

(9)
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On the other hand

∥∇g(xk)d+ (1− η)µkd∥2 = ∥∇g(xk)d∥2 + 2(1− η)µkdT∇g(xk)d+ ((1− η)µk)2∥d∥2.

From convexity, dT∇g(xk)d ≥ 0, together with (9) we have

((1− η)µk)2∥d∥2 ≤ ( 1
2β + η∥xk∥)2(µk)2 and

2(1− η)µkdT ∥∇g(xk)d ≤ ( 1
2β + η∥xk∥)2(µk)2.

The first inequality implies

∥d∥2 ≤ (
1

2β(1− η)
+

η

1− η
∥xk∥)2.

Let the new iterate be x+ = xk + d. The second inequality implies

∥g(x+) + (1− η)µkx+∥
= ∥g(x+)− (g(xk) +∇g(xk)d) + (g(xk) +∇g(xk)d) + (1− η)µk(xk + d)∥
= ∥g(x+)− g(xk) +∇g(xk)d∥
≤ βdT∇g(xk)d ≤ β

2(1−η) (
1
2β + η∥xk∥)2µk.
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We now just need to choose η ∈ (0, 1) such that

( 1
2β(1−η) +

η
1−η∥x

k∥)2 ≤ 1 and
βµk

2(1−η) (
1
2β + η∥xk∥)2 ≤ 1

2β (1− η)µk = 1
2βµ

k+1.

For example, given β ≥ 1,

η =
1

2β(1 + ∥xk∥)
would suffice.

This would give a linear convergence since ∥xk∥ is typically bounded following the path to the optimality,

while the convergence in non-convex case is only arithmetic.

Convexity, together with some types of second-order methods, make convex optimization solvers into

practical technologies.
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A Path-Following Algorithm for Unconstrained Optimization III

More question related to the path-following algorithm:

• For convex case, since x(µ) is the unique minimizer of

min f(x) +
µ

2
∥x∥2,

what is the limit of x(µ) as µ → 0+?

• More practical strategy to decrease µ?

• Apply first-order or 1.5-order algorithms for solving each step of the path-following, since it is to

minimize a strictly convex quadratic function?

• What happen when f is bounded from below but not convex, and just meet the standard Lipschitz

condition? The key is analyzing x(µ), which may form multiple paths. Then can we still follow the

path?
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