Second Order Optimization Algorithms I

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye
Chapters 7, 8, 9 and 10
The 1.5-Order Algorithm: Conjugate Gradient Method I

The second-order information is used but no need to inverse it.

0) Initialization: Given initial solution \(x^0 \). Let \(g^0 = \nabla f(x^0) \), \(d^0 = -g^0 \) and \(k = 0 \).

1) Iterate Update:

\[
x^{k+1} = x^k + \alpha^k d^k,
\]
where \(\alpha^k = -\frac{(g^k)^T d^k}{(d^k)^T \nabla^2 f(x^k) d^k} \).

2) Compute Conjugate Direction: Compute \(g^{k+1} = \nabla f(x^{k+1}) \). Unless \(k = n - 1 \):

\[
d^{k+1} = -g^{k+1} + \beta^k d^k
\]
where \(\beta^k = \frac{(g^{k+1})^T \nabla^2 f(x^k) d^k}{(d^k)^T \nabla^2 f(x^k) d^k} \)

and set \(k = k + 1 \) and go to Step 1.

3) Restart: Replace \(x^0 \) by \(x^n \) and go to Step 0.

For convex quadratic minimization, this process end in no more than 1 round.
The 1.5 Order Algorithm: Conjugate Gradient Method II

The information of the Hessian is learned:

0) Initialization: Given initial solution x^0. Let $g^0 = \nabla f(x^0)$, $d^0 = -g^0$ and $k = 0$.

1) Iterate Update:

$$x^{k+1} = x^k + \alpha^k d^k$$

where one-dimensional search of α^k is applied.

2) Compute Conjugate Direction: Compute $g^{k+1} = \nabla f(x^{k+1})$. Unless $k = n - 1$:

$$d^{k+1} = -g^{k+1} + \beta^k d^k$$

where $\beta^k = \frac{\|g^{k+1}\|^2}{\|g^k\|^2}$ or $\beta^k = \frac{(g^{k+1} - g^k)^T g^{k+1}}{\|g^k\|^2}$.

and set $k = k + 1$ and go to Step 1.

3) Restart: Replace x^0 by x^n and go to Step 0.
The 1.5-Order Algorithm: Quasi-Newton Method I

\[x^{k+1} = x^k - \alpha^k S^k \nabla f(x^k), \]

for a symmetric matrix \(S^k \) with a step-size \(\alpha^k \). When \(S^k \) is a nonnegative diagonal matrix, then it is the scaled steepest descent method we described earlier. In general, when \(S^k \) is positive definite, direction \(-S^k \nabla f(x^k)\) is a descent direction (why?).

For convex quadratic minimization, the linear convergence rate then becomes

\[
\left(\frac{\lambda_{\text{max}}(S^k Q) - \lambda_{\text{min}}(S^k Q)}{\lambda_{\text{max}}(S^k Q) + \lambda_{\text{min}}(S^k Q)} \right)^2
\]

where \(\lambda_{\text{max}} \) and \(\lambda_{\text{min}} \) represent the largest and smallest eigenvalues of a matrix.

Thus, \(S^k \) can be viewed as a Preconditioner—typically an approximation of the Hessian matrix inverse, and can be learned from a regression model: let \(p^k = x^{k+1} - x^k = \alpha^k d^k \)

\[q^k := g(x^{k+1}) - g(x^k) = Q(x^{k+1} - x^k) = Qp^k, \ k = 0, 1, \ldots \]

We actually learn \(Q^{-1} \) from \(Q^{-1} q^k = p_k, \ k = 0, 1, \ldots \) The process start with \(H^k, k = 0, 1, \ldots \), where the rank of \(H^k \) is \(k \), that is, we each step lean a rank-one update: given \(H^{k-1}, q^k, p^k \) we solve \((h_0 \cdot H^{k-1} + h^k (h^k)^T)q^k = p^k\) for vector \(h^k \). Then after \(n \) iterations, we build up \(H^n = Q^{-1} \).
One can simply let
\[x^{k+1} = x^k - \alpha^k \left(\frac{n - k}{n} I + \frac{k}{n} H^k \right) g(x^k), \]
which is similar to the Conjugate Gradient method.

A popular method, BFGS, is given as follows (there are multiple typos in the text): start from \(x^0 \) and set \(S^0 = I \), let
\[d^k = -S^k g(x^k) = -S^k \nabla f(x^k), \]
and iterate
\[x^{k+1} = x^k + \alpha^k d^k. \]
Then update
\[S^{k+1} = S^k + \left(1 + \frac{(q^k)^T S^k q^k}{(p^k)^T q^k} \right) \frac{p^k (p^k)^T}{(p^k)^T q^k} - \frac{p^k (q^k)^T S^k + S^k q^k (p^k)^T}{(p^k)^T q^k} . \]
Newton’s Method: A Second Order Method

For multi-variables, Newton’s method for minimizing \(f(x) \) is defined as

\[
x^{k+1} = x^k - (\nabla^2 f(x^k))^{-1} \nabla f(x^k).
\]

We now introduce the second-order \(\beta \)-Lipschitz condition: for any point \(x \) and direction vector \(d \)

\[
\|\nabla f(x + d) - \nabla f(x) - \nabla^2 f(x)d\| \leq \beta \|d\|^2,
\]

which implies

\[
f(x + d) - f(x) \leq \nabla f(x)^T d + \frac{1}{2} d^T \nabla^2 f(x)d + \frac{\beta}{3} \|d\|^3.
\]

In the following, for notation simplicity, we use \(g(x) = \nabla f(x) \) and \(\nabla g(x) = \nabla^2 f(x) \). Thus,

\[
x^{k+1} = x^k - (\nabla g(x^k))^{-1} \nabla f(x^k), \text{ or } \nabla g(x^k)(x^{k+1} - x^k) = -g(x^k).
\]

Indeed, Newton’s method was developed for solving any nonlinear system of equations in the form \(g(x) = 0 \).
Local Convergence Theorem of Newton's Method

Theorem 1 Let \(f(x) \) be \(\beta \)-Lipschitz and the smallest absolute eigenvalue of its Hessian uniformly bounded below by \(\lambda_{\text{min}} > 0 \). Then, provided that \(\|x^0 - x^*\| \) is sufficiently small, the sequence generated by Newton's method converges quadratically to \(x^* \) that is a KKT solution with \(g(x^*) = 0 \).

\[
\|x^{k+1} - x^*\| = \|x^k - x^* - \nabla g(x^k)^{-1}g(x^k)\| \\
= \|\nabla g(x^k)^{-1}(g(x^k) - \nabla g(x^k)(x^k - x^*))\| \\
= \|\nabla g(x^k)^{-1}(g(x^k) - g(x^*) - \nabla g(x^k)(x^k - x^*))\| \\
\leq \|\nabla g(x^k)^{-1}\|\|g(x^k) - g(x^*) - \nabla g(x^k)(x^k - x^*)\| \\
\leq \|\nabla g(x^k)^{-1}\|\beta\|x^k - x^*\|^2 \leq \frac{\beta}{\lambda_{\text{min}}} \|x^k - x^*\|^2.
\]

Thus, when \(\frac{\beta}{\lambda_{\text{min}}} \|x^0 - x^*\| < 1 \), the quadratic convergence takes place:

\[
\frac{\beta}{\lambda_{\text{min}}} \|x^{k+1} - x^*\| \leq \left(\frac{\beta}{\lambda_{\text{min}}} \|x^k - x^*\|\right)^2.
\]

Such a starting solution \(x^0 \) is called an approximate root of \(g(x) \).
How Close is Close: One-variable Criterion

Theorem 2 (Smale 86). Let \(g(x) \) be an analytic function. Then, if \(x \) in the domain of \(g \) satisfies

\[
\sup_{k > 1} \left| \frac{g^{(k)}(x)}{k!g'(x)} \right|^{1/(k-1)} \leq \frac{1}{8} \left| \frac{g'(x)}{g(x)} \right|.
\]

Then, \(x \) is an approximate root of \(g \).

In the following, for simplicity, let the root be in interval \([0, R]\).

Corollary 1 (Y. 92). Let \(g(x) \) be an analytic function in \(\mathbb{R}^{++} \) and let \(g \) be convex and monotonically decreasing. Furthermore, for \(x \in \mathbb{R}^{++} \) and \(k > 1 \) let

\[
\left| \frac{g^{(k)}(x)}{k!g'(x)} \right|^{1/(k-1)} \leq \frac{\alpha}{8} \cdot \frac{1}{x}
\]

for some constant \(\alpha > 0 \). Then, if the root \(\tilde{x} \in [\hat{x}, (1 + 1/\alpha)\hat{x}] \subset \mathbb{R}^{++}, \hat{x} \) is an approximate root of \(g \).
Hybrid of Bisection and Newton I

Note that the interval becomes wider and wider at geometric rate when \(\hat{x} \) is increased.

Thus, we may symbolically construct a sequence of points:

\[
\hat{x}_0 = \epsilon, \; \hat{x}_1 = (1 + 1/\alpha)\hat{x}_0, \ldots, \; \text{and} \; \hat{x}_j = (1 + 1/\alpha)\hat{x}_{j-1}, \ldots
\]

until \(\hat{x}_j = \hat{x}_J \geq R \). Obviously the total number of points, \(J \), of these points is bounded by \(O(\log(\frac{R}{\epsilon})) \). Moreover, define a sequence of intervals

\[
I_j = [\hat{x}_{j-1}, \hat{x}_j] = [\hat{x}_{j-1}, (1 + 1/\alpha)\hat{x}_{j-1}].
\]

Then, if the root \(\bar{x} \) of \(g \) is in any one of these intervals, say in \(I_j \), then the front point \(\hat{x}_{j-1} \) of the interval is an approximate root of \(g \) so that starting from it Newton’s method generates an \(x \) with \(|x - \bar{x}| \leq \epsilon \) in \(O(\log \log(1/\epsilon)) \) iterations.
Now the question is how to identify the interval that contains \bar{x}?

This time, we bisect the number of intervals, that is, evaluate function value at point \hat{x}_{j_m} where $j_m = \lceil J/2 \rceil$. Thus, each bisection reduces the total number of the intervals by a half. Since the total number of intervals is $O(\log (R/\epsilon))$, in at most $O(\log \log (R/\epsilon))$ bisection steps we shall locate the interval that contains \bar{x}.

Then the total number iterations, including both bisection and Newton methods, is $O(\log \log (R/\epsilon))$ iterations.

Here we take advantage of the global convergence property of Bisection and local quadratic convergence property of Newton, and we would see more of these features later...
Spherical Constrained Nonconvex Quadratic Minimization I

\[
\min \frac{1}{2} x^T Q x + c^T x, \quad \text{s.t.} \quad \|x\|^2 = (\leq)1.
\]

where \(Q \in S^n\) is any symmetric data matrix. If \(c = 0\) this problem becomes finding the least eigenvalue of \(Q\).

The necessary and sufficient condition (can be proved using the SDP Rank Theorem) for \(x\) being a global minimizer of the problem is

\[
(Q + \lambda I)x = -c, \quad (Q + \lambda I) \succeq 0, \quad \|x\|^2_2 = 1,
\]

which implies \(\lambda \geq -\lambda_{\text{min}}(Q) > 0\) where \(\lambda_{\text{min}}(Q)\) is the least eigenvalue of \(Q\). If the optimal \(\lambda^* = -\lambda_{\text{min}}(Q)\), then \(c\) must be orthogonal to the \(\lambda_{\text{min}}(Q)\)-eigenvector, and it can be checked using the power algorithm.

The minimal objective value:

\[
\frac{1}{2} x^T Q x + c^T x = -\frac{1}{2} x^T (Q + \lambda I) x - \frac{1}{2} \lambda \|x\|^2 \leq -\frac{\lambda}{2}, \quad (2)
\]
Sphere Constrained Nonconvex Quadratic Minimization II

WLOG, Let us assume that the least eigenvalue is 0. Then we must have $\lambda \geq 0$. If the optimal $\lambda^* = 0$, then c must be a 0-eigenvector of Q, and it can be checked using the power algorithm to find it. Therefore, we assume that the optimal $\lambda > 0$.

Furthermore, there is an upper bound on λ:

$$
\lambda \leq \lambda \|x\|^2 \leq x^T(Q + \lambda I)x = -c^Tx \leq \|c\|\|x\| = \|c\|.
$$

Now let $x(\lambda) = -(Q + \lambda I)^{-1}c$, the problem becomes finding the root of $\|x(\lambda)\|^2 = 1$.

Lemma 1 The analytic function $\|x(\lambda)\|^2$ is convex monotonically decreasing with $\alpha = 12$ in Corollary 1.

Theorem 3 The 1-spherical constrained quadratic minimization can be computed in $O(\log \log(\|c\|/\epsilon))$ iterations where each iteration solve a symmetric (positive definite) system of linear equations of n variables.

What about 2-spherical constrained quadratic minimization, that is, quadratic minimization with 2 ellipsoidal constraints?
Spherical Trust-Region Method for Minimizing Lipschitz $f(x)$

Recall the second-order β-Lipschitz condition: for any two points x and d

$$
\|g(x + d) - g(x) - \nabla g(x)d\| \leq \beta \|d\|^2,
$$

where $g(x) = \nabla f(x)$ and $\nabla g(x) = \nabla^2 f(x)$. It implies

$$
f(x + d) - f(x) \leq \nabla f(x)^T d + \frac{1}{2} d^T \nabla^2 f(x) d + \frac{\beta}{3} \|d\|^3.
$$

\[
\begin{align*}
f(x + d) - f(x) &= \nabla f(x)^T d - \frac{1}{2} d^T \nabla^2 f(x) d \\
&= \int_0^1 d^T (\nabla f(x + td) - \nabla f(x)) dt - \frac{1}{2} d^T \nabla^2 f(x) d \\
&= \int_0^1 d^T (\nabla f(x + td) - \nabla f(x) - \nabla^2 f(x)(td)) dt \\
&\leq \int_0^1 \|d\| \|\nabla f(x + td) - \nabla f(x) - \nabla^2 f(x)(td)\| dt \\
&\leq \int_0^1 \|d\| \|\beta\| t \|d\|^2 dt \quad \text{(by 2nd-order -Lipschitz condition)} \\
&= \beta \|d\|^3 \int_0^1 t^2 dt = \frac{\beta}{3} \|d\|^3.
\end{align*}
\]
The second-order method, at the kth iterate, would let $x^{k+1} = x^k + d^k$ where

$$d^k = \arg \min_d \quad (c^k)^T d + \frac{1}{2} d^T Q^k d + \frac{\beta}{3} \alpha^3$$

s.t. $\|d\| \leq \alpha$,

with $c^k = \nabla f(x^k)$ and $Q^k = \nabla^2 f(x^k)$. One typically fixed α to a “trusted” radius α^k so that it becomes a sphere-constrained problem (the inequality is normally active if the Hessian is non PSD):

$$(Q^k + \lambda^k I)d^k = -c^k, \quad (Q^k + \lambda^k I) \succeq 0, \quad \|d^k\|_2^2 = (\alpha^k)^2.$$

For fixed α^k, the method is generally called trust-region method.
Convergence Speed of the Spherical Trust-Region Method

Is there a trusted radius such that the method converging? A simple choice would fix $\alpha^k = \sqrt{\epsilon}/\beta$. Then from reduction (2)

$$f(x^{k+1}) - f(x^k) \leq -\frac{\lambda^k}{2} \|d^k\|^2 + \frac{\beta}{3} (\alpha^k)^3 = -\frac{\lambda^k (\alpha^k)^2}{2} + \frac{\beta}{3} (\alpha^k)^3 = -\frac{\lambda^k \epsilon}{2\beta^2} + \frac{\epsilon^{3/2}}{3\beta^2}.$$

Also

$$\|g(x^{k+1})\| = \|g(x^{k+1}) - (c^k + Q^k d^k) + (c^k + Q^k d^k)\|$$

$$\leq \|g(x^{k+1}) - (c^k + Q^k d^k)\| + \|(c^k + Q^k d^k)\|$$

$$\leq \beta \|d^k\|^2 + \lambda^k \|d^k\| = \beta (\alpha^k)^2 + \lambda^k \alpha^k = \frac{\epsilon}{\beta} + \frac{\lambda^k \sqrt{\epsilon}}{\beta}.$$

Thus, one can stop the algorithm as soon as $\lambda^k = \sqrt{\epsilon}$ so that the inequality becomes $\|g(x^{k+1})\| \leq \frac{2\epsilon}{\beta}$ and the function value is decreased at least $-\frac{\epsilon^{1.5}}{6\beta^2}$. Furthermore, $|\lambda_{min}(\nabla g(x^k))| \leq \lambda^k = \sqrt{\epsilon}$.

Theorem 4 Let the objective function $p^* = \inf f(x)$ be finite. Then in $\frac{O(\beta^2 (f(x^0) - p^*)}{\epsilon^{1.5}}$ iterations of the second-order method, the norm of the gradient vector is less than ϵ and the Hessian is $\sqrt{\epsilon}$-positive semidefinite, where each iteration solves a spherical-constrained quadratic minimization discussed earlier.
Adaptive Spherical Trust-Region Method

One can treat α as a variable in

$$
\mathbf{d}^k = \arg\min_{\mathbf{d}, \alpha} \quad (\mathbf{c}^k)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \mathbf{Q}^k \mathbf{d} + \frac{\beta}{3} \alpha^3 \\
\text{s.t.} \quad \|\mathbf{d}\| \leq \alpha.
$$

Then besides

$$(\mathbf{Q}^k + \lambda \mathbf{I}) \mathbf{d}^k = -\mathbf{c}^k, \quad (\mathbf{Q}^k + \lambda \mathbf{I}) \succeq 0, \quad \|\mathbf{d}\|_2^2 = \alpha^2;$$

the optimality conditions also include

$$
\alpha = \frac{\lambda}{\beta}.
$$

Thus, let $\mathbf{d}(\lambda) = -(\mathbf{Q}^k + \lambda \mathbf{I})^{-1} \mathbf{c}^k$, the problem becomes finding the root of

$$
\|\mathbf{d}(\lambda)\|_2^2 = \frac{\lambda^2}{\beta^2},
$$

where $\lambda \geq -\lambda_{min}(\mathbf{Q}^k) > 0$ (assume that the current Hessian is not PSD yet), as in the Hybrid of Bisection and Newton method discussed earlier.
Relation to Quadratic Regularization/Proximal-Point Method

One can also interpret the Spherical Trust-Region method as the Quadratic Regularization Method

\[d^k(\lambda) = \arg \min_d \ (c^k)^T d + \frac{1}{2} d^T Q^k d + \frac{1}{2} \lambda \|d\|^2 \]

where parameter \(\lambda \) makes \((Q^k + \lambda I) \succeq 0 \).

Then consider the one-variable function

\[\phi(\lambda) := f(x^k + d^k(\lambda)) \]

and do one variable minimization of \(\phi(\lambda) \) over \(\lambda \) such that \(\lambda \geq \max\{0, -\lambda_{\text{min}}(Q^k)\} \).

Let \(\lambda^k = \arg \min \phi(\lambda) \) and \(x^{k+1} = x^k + d^k(\lambda^k) \). Then, based on the above analysis, we must have at least

\[f(x^{k+1}) - f(x^k) \leq -\frac{\epsilon^{1.5}}{6\beta^2} \]

where \(\beta \) is the (global) Lipschitz constant of the objective function. Note that the algorithm needs to estimate only the minimum eigenvalue of the Hessian.
Would Convexity Help?

Before we answer this question, let’s summarize a generic form one iteration of the Second Order Method for solving $\nabla f(x) = g(x) = 0$:

$$(\nabla g(x^k) + \mu I)(x - x^k) = -\gamma g(x^k), \quad \text{or}$$

$$g(x^k) + \nabla g(x^k)(x - x^k) + \mu(x - x^k) = (1 - \gamma)g(x^k).$$

Many interpretations: when

- $\gamma = 1, \mu = 0$: pure Newton;
- γ and μ are sufficiently large: SDM;
- $\gamma = 1$ and μ decreases to 0: Homotopy or path-following method.
A Path-Following Algorithm for Unconstrained Optimization I

For any $\mu > 0$ consider the (unique) optimal solution $x(\mu)$ for problem

$$x(\mu) = \arg\min_x f(x) + \frac{\mu}{2} \|x\|^2,$$

and they form a path down to $x(0)$ and satisfy gradient equations with parameter μ:

$$g(x) + \mu x = 0,$$

with $\mu = \mu^k > 0$. \hspace{1cm} (3)

Let the approximation path error at x^k with $\mu = \mu^k$ be

$$\|g(x^k) + \mu^k x^k\| \leq \frac{1}{2\beta} \mu^k.$$

Then, we like to compute a new iterate x^{k+1}, using Newton’s method with x^k as an initial solution, such that

$$\|g(x^{k+1}) + \mu^{k+1} x^{k+1}\| \leq \frac{1}{2\beta} \mu^{k+1}, \quad \text{where} \ 0 \leq \mu^{k+1} < \mu^k.$$

If μ^k can be decreased at a geometric rate, independent of ϵ, and each update uses one Newton step, then this would lead to a linearly convergent algorithm.
We analyze the path-following algorithm when f is convex and meet a Concordant Lipschitz condition: for any point x and a $\beta \geq 1$

$$\|\nabla f(x + d) - \nabla f(x) - \nabla^2 f(x)d\| \leq \beta d^T \nabla^2 f(x)d$$

whenever $\|d\| \leq O(1) < 1$ (4)

and $x + d$ in the function domain. Such condition can be verified using Taylor Expansion Series; basically, the third derivative of the function is bounded by its second derivative.

- All quadratic functions are concordant Lipschitz with $\beta = 0$.
- Convex function e^x is concordant Lipschitz with $\beta = O(1)$ but it is not regular Lipschitz.
- Convex function $-\log(x)$ is neither regular Lipschitz nor concordant Lipschitz.
- Function $f(x) := \phi(Ax - b)$ is concordant Lipschitz if $\phi(\cdot)$ is regular Lipschitz and strictly convex.
A Path-Following Algorithm for Unconstrained Optimization II

When μ^k is replaced by μ^{k+1}, say $(1 - \eta)\mu^k$ for some $\eta \in (0, 1]$, we aim to find a solution x such that

$$g(x) + (1 - \eta)\mu^k x = 0,$$

we start from x^k and apply the Newton iteration:

$$g(x^k) + \nabla g(x^k) d + (1 - \eta)\mu^k (x^k + d) = 0, \quad \text{or}$$

$$\nabla g(x^k) d + (1 - \eta)\mu^k d = -g(x^k) - (1 - \eta)\mu^k x^k.$$ \hfill (5)

From the second expression, we have

\[
\|\nabla g(x^k) d + (1 - \eta)\mu^k d\| = \| - g(x^k) - (1 - \eta)\mu^k x^k \|
\]

\[
= \| - g(x^k) - \mu^k x^k + \eta \mu^k x^k \|
\]

\[
\leq \| - g(x^k) - \mu^k x^k \| + \eta \mu^k \| x^k \|
\]

\[
\leq \frac{1}{2} \beta \mu^k + \eta \mu^k \| x^k \|. \quad \hfill (6)
\]
On the other hand

\[\| \nabla g(x^k) d + (1 - \eta) \mu^k d \|^2 = \| \nabla g(x^k) d \|^2 + 2(1 - \eta) \mu^k d^T \nabla g(x^k) d + ((1 - \eta) \mu^k)^2 \| d \|^2. \]

From convexity, \(d^T \nabla g(x^k) d \geq 0 \), together with (6) we have

\[((1 - \eta) \mu^k)^2 \| d \|^2 \leq \left(\frac{1}{2\beta} + \eta \| x^k \| \right) q^2 (\mu^k)^2 \quad \text{and} \]

\[2(1 - \eta) \mu^k d^T \nabla g(x^k) d \leq \left(\frac{1}{2\beta} + \eta \| x^k \| \right) q^2 (\mu^k)^2. \]

The first inequality implies

\[\| d \|^2 \leq \left(\frac{1}{2\beta(1 - \eta)} + \frac{\eta}{1 - \eta} \| x^k \|^2 \right). \]

Let the new iterate be \(x^+ = x^k + d \). The second inequality implies

\[\| g(x^+) + (1 - \eta) \mu^k x^+ \|
\[= \| g(x^+) - (g(x^k) + \nabla g(x^k) d) + (g(x^k) + \nabla g(x^k) d) + (1 - \eta) \mu^k (x^k + d) \|
\[= \| g(x^+) - g(x^k) + \nabla g(x^k) d \|
\[\leq \beta d^T \nabla g(x^k) d \leq \frac{\beta}{2(1 - \eta)} \left(\frac{1}{2\beta} + \eta \| x^k \| \right)^2 \mu^k. \]
We now just need to choose $\eta \in (0, 1)$ such that

$$\left(\frac{1}{2\beta(1-\eta)} + \frac{\eta}{1-\eta} \|x^k\| \right)^2 \leq 1 \quad \text{and}$$

$$\frac{\beta \mu^k}{2(1-\eta)} \left(\frac{1}{2\beta} + \eta \|x^k\| \right)^2 \leq \frac{1}{2\beta} (1 - \eta) \mu^k = \frac{1}{2\beta} \mu^{k+1}.$$

For example, given $\beta \geq 1$,

$$\eta = \frac{1}{2\beta(1 + \|x^k\|)}$$

would suffice.

This would give a linear convergence since $\|x^k\|$ is typically bounded following the path to the optimality, while the convergence in non-convex case is only arithmetic.

Convexity, together with some types of second-order methods, make convex optimization solvers into practical technologies.
A Path-Following Algorithm for Unconstrained Optimization III

More question related to the path-following algorithm (Suggested Project 3):

- For convex case, since $x(\mu)$ is the unique minimizer of

\[
\min f(x) + \frac{\mu}{2} \|x\|^2,
\]

what is the limit of $x(\mu)$ as $\mu \to 0^+$?

- More practical strategy to decrease μ?

- Apply first-order or 1.5-order algorithms for solving each step of the path-following, since it is to minimize a strictly convex quadratic function?

- What happen when f is bounded from below but not convex, and just meet the standard Lipschitz condition? The key is analyzing $x(\mu)$, which may form multiple paths. Then can we still follow the path?