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Linear Programming Methodological Philosophy

Optimality Conditions: (1) Primal Feasibility, (2) Dual Feasibility, (3) Zero-Duality Gap/Prima-Dual

Complementarity.

Recall that the (primal) Simplex Algorithm maintains the primal feasibility and complementarity while

working toward dual feasibility. (The Dual Simplex Algorithm maintains dual feasibility and

complementarity while working toward primal feasibility.)

In contrast, interior-point methods will move in the interior of the feasible region, hoping to by-pass many

corner points on the boundary of the region. The primal-dual interior-point method maintains both primal

and dual feasibility while working toward complementarity.

The key for the simplex method is to make computer see corner points; and the key for interior-point

methods is to stay in the interior of the feasible region.
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Interior-Point Algorithms for LP

(LP ) min cTx s.t. Ax = b, x ≥ 0 <=> (LD) max bTy s.t.ATy + s = c, s ≥ 0.

intFp = {x : Ax = b, x > 0} ̸= ∅

intFd = {(y, s) : s = c−ATy > 0} ̸= ∅.

Let z∗ denote the optimal value and

F = Fp ×Fd.

We are interested in finding an ϵ-approximate solution for the LP problem:

xT s = cTx− bTy ≤ ϵ.

For simplicity, we assume that an interior-point pair (x0,y0, s0) is known, and we will use it as our initial

point pair.
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Barrier Functions and Analytic Center

Consider the barrier function optimization problems:

(PB) minimize −
∑n
j=1 log xj

s.t. x ∈ intFp
and

(DB) maximize
∑n
j=1 log sj

s.t. (y, s) ∈ intFd

The maximizer x (or (y, s)) of (PB) (or (BD)) is called the analytic center of bounded polyhedron Fp (or

Fd). Applying the KKT conditions and using X = diag(x), we have

−X−1e−ATy = 0 or − e−XATy = 0, Ax = b, x > 0.

After introducing auxiliary vector s = X−1e, the conditions become

Xs = e

Ax = b

−ATy − s = 0

x > 0.

or

Sx = e

Ax = 0

−ATy − s = −c

s > 0.
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Figure 1: The dual analytic center maximizes the product of slacks.
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Examples

Fp = {x :
∑
j

xj = 1, x ≥ 0}.

The analytic center of Fp would be

xc = (
1

n
; ...;

1

n
), y = −n, s = (n; ...; n).

Fd = {y : 0 ≤ y ≤ e}.

The analytic center of Fd would be

yc = argmax
∑
i

(log(yi) + log(1− yi)) = argmax
∑
i

log(yi(1− yi))

that is

yc = (
1

2
; ...;

1

2
), s =

1

2
e, x = 2e.

Why “analytic”: depending on the analytical representation data.
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Logarithmic Function and Scaled Concordant Lipschitz

Lemma 1 Let B(x) = −
∑n
j=1 log(xj). Then, for any point x > 0 and direction vector d such that

∥X−1d∥∞ ≤ α(< 1),

−eTX−1d ≤ B(x+ d)−B(x) ≤ −eTX−1d+
∥X−1d∥2

2(1− α)
.

The Barrier function property can be generalized to the so-called Second-Order Scaled Concordant

Lipschitz Condition: for any x > 0 and x+ d in the function domain:

∥X
(
∇f(x+ d)−∇f(x)−∇2f(x)d

)
∥ ≤ βαd

T∇2f(x)d, whenever ∥X−1d∥ ≤ α(< 1).

Such condition can be verified using Taylor Expansion Series; basically, the scaled third derivative of the

function is bounded by its (unscaled) second derivative.

• All quadratic functions are scaled concordant Lipschitz with βα = 0.

• Convex function − log(x) is scaled concordant Lipschitz with βα = 1
(1−α) .

• All power functions {xp : x > 0} with integer p are scaled concordant Lipschitz with βα = O(p)
(1−α) .
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Affine-Scaling Gradient Projection

To compute the analytic center, we consider the affine-scaling GPM from any feasible x > 0:

minimize −eTX−1d

s.t. Ad = 0, ∥X−1d∥ ≤ α
or

minimize −eTd′

s.t. AXd′ = 0, ∥d′∥ ≤ α

which has a close-form solution

d′ = α(I −XAT (AX2AT )−1AX)e/∥(I −XAT (AX2AT )−1AX)e∥.

Note that d = Xd′ so that we let x+ = x+ d, which should remain positive:

x+ = x+ d = x+Xd′ = X(e+ d′) > 0

as long as x > 0 and ∥d′∥ < 1. Then, from Lemma 1 the Barrier function value would be decreased at

least by

B(x+)−B(x) ≤ −α∥(I −XAT (AX2AT )−1AX)e∥+ α2

2(1− α)
.
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Convergence Speed Analysis

For simplicity, let y(x) = (AX2AT )−1AXe and s(x) = ATy(s) so that

(I −XAT (AX2AT )−1AX)e = e−Xs(x).

Note that y(x) minimizes miny ∥e−XATy∥2.

Thus, as long as ∥e−Xs(x)∥ ≥ 1, the Barrier function can be decreased by a universal constant

−α+ α2

2(1−α) = −3/4 when we set α = 1/2.

If the quantity ∥e−Xs(x)∥ < 1, then we simply let x+ = x+X(e−Xs(x)), in which case we now

prove ∥e−X+s(x+)∥ ≤ ∥e−Xs(x)∥2 (quadratic convergence)!

∥e−X+s(x+)∥2 ≤ ∥e−X+s(x)∥2, (because y(x+) minimizes the squares)

= ∥e− (2X −X2S(x)s(x)∥2

=
∑n
j=1

(
1− 2xjsj(x) + x2j (sj(x))

2
)2

=
∑n
j=1(1− xjsj(x))

4

≤
(∑n

j=1(1− xjsj(x))
2
)2

= ∥e−Xs(x)∥4.
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Analytic Volume and Cutting Plane for LP: Geometric Interpretation

AV (Fd) :=
n∏
j=1

s̄j =
n∏
j=1

(cj − aTj ȳ)

can be viewed as the analytic volume of polytope Fd or simply F in the rest of discussions.

If one inequality in F , say the first one, needs to be translated, change aT1 y ≤ c1 to aT1 y ≤ aT1 ȳ; i.e.,

the first inequality is parallelly moved and it now cuts through ȳ and divides F into two bodies.

Analytically, c1 is replaced by aT1 ȳ and the rest of data are unchanged. Let

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = 2, ..., n and c+1 = aT1 ȳ.
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Figure 2: Translation of a hyperplane to the AC.
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Analytic Volume Reduction of the New Polytope

Let ȳ+ be the analytic center of F+. Then, the analytic volume of F+

AV (F+) =
n∏
j=1

(c+j − aTj ȳ
+) = (aT1 ȳ − aT1 ȳ

+)
n∏
j=2

(cj − aTj ȳ
+).

We have the following volume reduction theorem:

Theorem 1
AV (F+)

AV (F)
≤ exp(−1).

12



CME307/MS&E311: Optimization Lecture Note #13

Proof

Since ȳ is the analytic center of F , there exists x̄ > 0 such that

X̄ s̄ = X̄(c−AT ȳ) = e and Ax̄ = 0.

Thus,

s̄ = (c−AT ȳ) = X̄−1e and cT x̄ = (c−AT ȳ)T x̄ = eTe = n.

We have

eT X̄ s̄+ = eT X̄(c+ −AT ȳ+) = eT X̄c+

= cT x̄− x̄1(c1 − aT1 ȳ) = n− 1.
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AV (F+)

AV (F)
=

n∏
j=1

s̄+j
s̄j

=
n∏
j=1

x̄j s̄
+
j

≤

 1

n

n∑
j=1

x̄j s̄
+
j

n

=

(
1

n
eT X̄ s̄+

)n
=

(
n− 1

n

)n
≤ exp(−1).
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Analytic Volume of Polytope and Multiple Cutting Planes

Now suppose we translate k(< n) hyperplanes, say 1, 2, ..., k, moved to cut the analytic center ȳ of F ,

that is,

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = k + 1, ..., n and c+j = aTj ȳ for j = 1, ..., k.

Corollary 1
AV (F+)

AV (F)
≤ exp(−k).
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Barrier Regularization Function for LP: Algebraic Implementation

Consider the LP pair with the barrier function

(LPB) minimize cTx− µ
∑n
j=1 log xj

s.t. x ∈ intFp
<=>

(LDB) maximize bTy + µ
∑n
j=1 log sj

s.t. (y, s) ∈ intFd,

and they are primal-dual to each other and share a common set of KKT Optimality Conditions:

Xs = µe

Ax = b

−ATy − s = −c;

(1)

where barrier parameter

µ =
xT s

n
=

cTx− bTy

n
,

so that it’s the average of complementarity or duality gap. As µ varies, the optimizers form the LP central

paths in the primal and dual feasible regions, respectively.
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Figure 3: The central path of y(µ) in a dual feasible region.
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Examples

min
∑
j

cjxj − µ
∑
j

log(xj) s.t.
∑
j

xj = 1.

cj −
µ

xj
= y, xj > 0, ∀j,

thus, xj =
µ

cj−y , ∀j. Then, from∑
j

µ

cj − y
= 1, cj − y > 0, ∀j,

we can solve y(µ) and x(µ) as the roots of polynomials.
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Central Path for Linear Programming

C = {(x(µ),y(µ), s(µ)) ∈ intF : Xs = µe, 0 < µ <∞} ;

is called the (primal and dual) central path of linear programming.

Theorem 2 Let both (LP) and (LD) have interior feasible points for the given data set (A,b, c). Then for

any 0 < µ <∞, the central path point pair (x(µ),y(µ), s(µ)) exists and is unique. Moreover, the

followings hold.

i) The central path point (x(µ), s(µ)) is bounded for 0 < µ ≤ µ0 and any given 0 < µ0 <∞.

ii) For 0 < µ′ < µ,

cTx(µ′) < cTx(µ) and bTy(µ′) > bTy(µ)

if both primal and dual have no constant objective values.

iii) (x(µ), s(µ)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point

x(0)P∗ > 0 and the limit point y(0), s(0)Z∗ > 0 are the analytic centers of the optimal solution

sets of primal and dual, respectively; where (P ∗, Z∗) is the strictly complementarity partition if

variable index set {1, 2, ..., n}.
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Proof of (iii)

Since x(µ) and s(µ) are both bounded, they have at least one limit point which we denote by x(0) and

s(0). Let x∗
P∗ > 0 (x∗

Z∗ = 0) and s∗Z∗ > 0 (s∗P∗ = 0), be the analytic centers on the optimal sets of

on the primal and dual optimal faces, respectively, that is, they are the maximizers of

{
∏
j∈P∗ xj : AP∗xP∗ = b, xP∗ ≥ 0} and

{
∏
j∈Z∗ sj : sZ∗ = cZ∗ −ATZ∗y ≥ 0, cP∗ −ATP∗y = 0}, respectively. Note

(x(µ)− x∗)T (s(µ)− s∗) = 0, so that

n∑
j

(
s∗jx(µ)j + x∗js(µ)j

)
= nµ, or

∑
j∈P∗

(
x∗j

x(µ)j

)
+

∑
j∈Z∗

(
s∗j

s(µ)j

)
= n.

Therefore, from the arithmetic-geometric mean inequality we have

∏
j∈P∗

x∗j
x(µ)j

∏
j∈Z∗

s∗j
s(µ)j

≤ 1, or

 ∏
j∈P∗

x(µ)j

 ∏
j∈Z∗

s(µ)j

 ≥

 ∏
j∈P∗

x∗j

 ∏
j∈Z∗

s∗j


The limit points must also satisfy the inequality which implies

∏
j∈P∗ x(0)j ≥

∏
j∈P∗ x∗j and∏

j∈Z∗ s(0)j ≥
∏
j∈Z∗ s∗j . But the analytic center is unique so that the claim is true.
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The Primal-Dual Path-Following Algorithm for LP

In general, we start from an (approximate) central path point (xk,yk, sk) ∈ F such that

∥Xksk − µke∥ ≤ σµk, for some σ ∈ [0, 1).

Then, let µk+1 = (1− η)µk for some η ∈ (0, 1], we aim to find a new pair (x,y, s) ∈ F such that

Xs = µk+1e.

We start from (xk,yk, sk) ∈ F and apply the Newton iteration for direction vectors (dx,dy,ds):

Skdx +Xkds = µk+1e−Xksk

Adx = 0

ATdy + ds = 0

,

then let xk+1 = xk + dx, yk+1 = yk + dy, sk+1 = sk + ds. Carefully choosing σ = O(1)

and η = O( 1√
n
) guarantees (xk+1, sk+1) > 0 and

∥Xk+1sk+1 − µk+1e∥ ≤ σµk+1, for the same σ ∈ [0, 1).

Too many restrictions when following a path... Is a function-driven interior-point algorithm?
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Primal-Dual Potential Function for LP

For (x,y, s) ∈ intF , the joint primal-dual potential function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑
j=1

log(xjsj), for some ρ > 0.

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n log n,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).

Given a pair (xk,yk, sk) ∈ intF , compute direction vectors (dx,dy,ds) from the Newton iteration:

Skdx +Xkds = (xk)T sk

n+ρ e−Xksk,

Adx = 0,

ATdy + ds = 0.

(2)

How to solve the equation system efficiently using the block structures?
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Block Structure in the KKT System

Skdx +Xkds = rk,

Adx = 0,

ATdy + ds = 0.

Scale the first block to: dx + (Sk)−1Xkds = (Sk)−1rk.

Multiplying A to both sides and using the second block equations: A(Sk)−1Xkds = A(Sk)−1rk.

Applying the third block equations: −A(Sk)−1XkATdy = A(Sk)−1rk.

This is an m×m positive definite system, and solve it for dy ; then ds from the third block; then dx from

the first block.

Positive Definite System Equation Solver: Qd = r where Q is a PD matrix.

Matrix Factorization:

• Cholesky: RTR = Q, where R is a Right-Triangle matrix

• LDLT = Q, where L is a Left-Triangle matrix.
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Description of Algorithm for LP

Given (x0,y0, s0) ∈ intF . Set ρ ≥
√
n and k := 0.

While (xk)T sk ≥ ϵ do

1. Set (x, s) = (xk, sk) and compute (dx,dy,ds) from (2).

2. Let xk+1 = xk + αkdx, yk+1 = yk + αkdy , and sk+1 = sk + αkds where

αk = argmin
α≥0

ψn+ρ(x
k + αdx, s

k + αds).

3. Let k := k + 1 and return to Step 1.
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Theorem 3 Let ρ ≥
√
n. Then, the potential reduction algorithm generates the (interior) feasible solution

sequence {xk,yk, sk} such that

ψn+ρ(x
k+1, sk+1)− ψn+ρ(x

k, sk) ≤ −0.15.

Thus, if ψn+ρ(x
0, s0) ≤ ρ log((x0)T s0) + n log n, the algorithm terminates in at most

O(ρ log((x0)T s0/ϵ)) iterations with (xk)T sk = cTxk − bTyk ≤ ϵ.

The proof used a key fact: dTxds = −dTxA
Tdy = 0 for the directions. Also

(xk)T sk ≤ exp(
ψn+ρ(x

k,sk)−n logn
ρ )

≤ exp(
ψn+ρ(x

0,s0)−n logn−ρ log((x0)T s0/ϵ)
ρ )

≤ exp(ρ log(x
0,s0)−ρ log((x0)T s0/ϵ)

ρ )

= exp(log(ϵ)) = ϵ.

The role of ρ? And more aggressive step size?
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Proof Sketch of the Reduction Theorem

We first have the following lemma:

Lemma 2 Let the direction vector d = (dx,dy,ds) be computed by (2), and let θ =
α
√

min(XSe)

∥(XS)−1/2r∥
where α is a positive constant less than 1. Let

x+ = x+ θdx, y+ = y + θdy, and s+ = s+ θds.

Then, we have (x+,y+, s+) ∈ intF and

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√

min(XSe)∥(XS)−1/2(e− (n+ρ)
xT s

Xs)∥+ α2

2(1−α)

.

26



CME307/MS&E311: Optimization Lecture Note #13

ψ(x+, s+)− ψ(x, s)

= (n+ ρ) log
(
1 +

θdT
s x+θdT

x s
xT s

)
−
∑n
j=1

(
log(1 +

θdsj
sj

) + log(1 +
θdxj

xj
)
)

≤ (n+ ρ)
(
θdT

s x+θdT
x s

xT s

)
−
∑n
j=1

(
log(1 +

θdsj
sj

) + log(1 +
θdxj

xj
)
)

≤ (n+ ρ)
(
θdT

s x+θdT
x s

xT s

)
− θeT (S−1ds +X−1dx) +

||θS−1ds||2+||θX−1dx||2
2(1−α)

≤ n+ρ
xT s

θ(dTs x+ dTx s)− θeT (S−1ds +X−1dx) +
α2

2(1−α)

= θ
(
n+ρ
xT s

eT (Xds + Sdx)− eT (S−1ds +X−1dx)
)
+ α2

2(1−α)

= θ
(
n+ρ
xT s

eT (Xds + Sdx)− eT (XS)−1(Xds + Sdx)
)
+ α2

2(1−α)

= θ
(
n+ρ
xT s

XSe− e
)T

(XS)−1 (Xds + Sdx) +
α2

2(1−α)

= θ
(
n+ρ
xT s

XSe− e
)T

(XS)−1
(

xT s
n+ρe−XSe

)
+ α2

2(1−α)

= −θ · n+ρ
xT s

· ∥(XS)−1/2r∥2 + α2

2(1−α)

= −α
√

min(XSe) · ∥n+ρ
xT s

(XS)−1/2r∥+ α2

2(1−α) .
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Let v = XSe. Then, we can prove the following technical lemma:

Lemma 3 Let v ∈ Rn be a positive vector and ρ ≥
√
n. Then,√

min(v)∥V −1/2(e− (n+ ρ)

eTv
v)∥ ≥

√
3/4 .

Combining these Lemmas 2 and 3 we have

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√
3/4 +

α2

2(1− α)
= −δ

for a constant δ.

28



CME307/MS&E311: Optimization Lecture Note #13

Initialization

• Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to

find a feasible point of the problem. Theoretically, this approach can retain the currently best

complexity result.

• The big M method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty

parameter M to force solutions to become feasible during the algorithm.

• Phase I-then-Phase II method, i.e., first try to find a feasible point (and possibly one for the dual

problem), and then start to look for an optimal solution if the problem is feasible and bounded.

• Combined Phase I-Phase II method, i.e., approach feasibility and optimality simultaneously. To our

knowledge, the “best” complexity of this approach is O(n log((x0)T s0/ϵ)).
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption concerning the existence

of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big M penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and

optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an

infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems

Recall that a pair of LP has two alternatives

(Solvable) Ax− b = 0

−ATy + c ≥ 0,

bTy − cTx = 0,

y free, x ≥ 0

or

(Infeasible) Ax = 0

−ATy ≥ 0,

bTy − cTx > 0,

y free, x ≥ 0

(HP ) Ax− bτ = 0

−ATy + cτ = s ≥ 0,

bTy − cTx = κ ≥ 0,

y free, (x; τ) ≥ 0

where the two alternatives are:

(Solvable) : (τ > 0, κ = 0) or (Infeasible) : (τ = 0, κ > 0)
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Let’s Find a Feasible Solution of (HP)

Given x0 = e > 0, s0 = e > 0, and y0 = 0, we formulate a self-dual LP problem:

(HS −DP ) min (n+ 1)θ

s.t. Ax −bτ +b̄θ = 0,

−ATy +cτ −c̄θ ≥ 0,

bTy −cTx +z̄θ ≥ 0,

−b̄Ty +c̄Tx −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free.

Note that (y = 0, x = e, τ = 1, θ = 1) is a strictly feasible point for (HSDP). Moreover, one can

show that the constraints imply

eTx+ eT s+ τ + κ− (n+ 1)θ = (n+ 1),

which serves as a normalizing constraint for (HSDP) to prevent the all-zero solution.
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Main Result

Theorem 4 The interior-point algorithm solves (HS-DP) in O(
√
n log n

ϵ ) steps and each step solves a

system of linear equations as the same size as in feasible algorithms, and it always produces an optimal

solution (y∗,x∗, τ∗, s∗, κ∗, θ∗ = 0) where τ∗ + κ∗ > 0. If τ∗ > 0 then it produces an optimal

solution pair for the original LP problem; if κ∗ > 0, then it produces a certificate to prove (at least) one of

the pair is infeasible.
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Extensions to Solving SDP: Potential Function

For any X ∈ intFp and (y, S) ∈ intFd, let parameter ρ > 0 and

ψn+ρ(X,S) := (n+ ρ) log(X • S)− log(det(X) · det(S)),

ψn+ρ(X,S) = ρ log(X • S) + ψn(X,S) ≥ ρ log(X • S) + n log n.

Then, ψn+ρ(X,S) → −∞ implies that X • S → 0. More precisely, we have

X • S ≤ exp(
ψn+ρ(X,S)− n log n

ρ
).
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Primal-Dual SDP Alternative Systems

A pair of SDP has two alternatives under mild conditions

(Solvable) AX − b = 0

−ATy + C ≽ 0,

bTy − C •X = 0,

y free, X ≽ 0

or

(Infeasible) AX = 0

−ATy ≽ 0,

bTy − C •X > 0,

y free, X ≽ 0
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An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

(HSDP ) AX − bτ = 0

−ATy + Cτ = s ≥ 0,

bTy − C •X = κ ≥ 0,

y free, X ≽ 0, τ ≥ 0,

where the three alternatives are

(Solvable) : (τ > 0, κ = 0)

(Infeasible) : (τ = 0, κ > 0)

(All others) : (τ = κ = 0).
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Software Implementation

Cplex-Barrier IBM, GUROBI, COPT

SEDUMI: http://sedumi.mcmaster.ca/

MOSEK: http://www.mosek.com/products_mosek.html

SDDPT3: http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html

DSDP (Dual Semidefinite Programming Algorithm):

http://www.stanford.edu/˜yyye/Col.html

CVX/ECOS: http://www.stanford.edu/˜boyd/cvx

hsdLPsolver and more: http://www.stanford.edu/˜yyye/matlab.html
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