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The 1.5-Order Algorithm: Conjugate Gradient Method I

The second-order information is used but no need to inverse it.

0) Initialization: Given initial solution x0. Let g0 = ∇f(x0), d0 = −g0 and k = 0.

1) Iterate Update:

xk+1 = xk + αkdk, where αk =
−(gk)Tdk

(dk)T∇2f(xk)dk
.

2) Compute Conjugate Direction: Compute gk+1 = ∇f(xk+1). Unless k = n− 1:

dk+1 = −gk+1 + βkdk where βk =
(gk+1)T∇2f(xk)dk

(dk)T∇2f(xk)dk

and set k = k + 1 and go to Step 1.

3) Restart: Replace x0 by xn and go to Step 0.

For convex quadratic minimization, this process end in no more than 1 round.
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The 1.5 Order Algorithm: Conjugate Gradient Method II

The information of the Hessian is learned (more on this later):

0) Initialization: Given initial solution x0. Let g0 = ∇f(x0), d0 = −g0 and k = 0.

1) Iterate Update:

xk+1 = xk + αkdk

where one-dimensional search of αk is applied.

2) Compute Conjugate Direction: Compute gk+1 = ∇f(xk+1). Unless k = n− 1:

dk+1 = −gk+1 + βkdk

where βk =
∥gk+1∥2

∥gk∥2
or βk =

(gk+1 − gk)Tgk+1

∥gk∥2
.

and set k = k + 1 and go to Step 1.

3) Restart: Replace x0 by xn and go to Step 0.
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Bisection Method: First Order Method

For a one variable problem, an KKT point is the root of g(x) := f ′(x) = 0.

Assume we know an interval [a b] such that a < b, and g(a)g(b) < 0. Then we know there exists an x∗,

a < x∗ < b, such that g(x∗) = 0; that is, interval [a b] contains a root of g. How do we find x within an

error tolerance ϵ, that is, |x− x∗| ≤ ϵ?

0) Initialization: let xl = a, xr = b.

1) Let xm = (xl + xr)/2, and evaluate g(xm).

2) If g(xm) = 0 or xr − xl < ϵ stop and output x∗ = xm. Otherwise, if g(xl)g(xm) > 0 set

xl = xm; else set xr = xm; and return to Step 1.

The length of the new interval containing a root after one bisection step is 1/2 which gives the linear

convergence rate is 1/2.
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Figure 1: Illustration of Bisection
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Golden Section Method: Zero Order Method

Assume that the one variable function f(x) is Unimodel in interval [a b], that is, for any point x ∈ [ar bl]

such that a ≤ ar < bl ≤ b, we have that f(x) ≤ max{f(ar), f(bl)}. How do we find x∗ within an

error tolerance ϵ?

0) Initialization: let xl = a, xr = b, and choose a constant 0 < r < 0.5;

1) Let two other points x̂l = xl + r(xr − xl) and x̂r = xl + (1− r)(xr − xl), and evaluate their

function values.

2) Update the triple points xr = x̂r, x̂r = x̂l, xl = xl if f(x̂l) < f(x̂r); otherwise update the triple

points xl = x̂l, x̂l = x̂r, xr = xr ; and return to Step 1.

In either cases, the length of the new interval after one golden section step is (1− r). If we set

(1− 2r)/(1− r) = r, then only one point is new in each step and needs to be evaluated. This give

r = 0.382 and the linear convergence rate is 0.618.
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Figure 2: Illustration of Golden Section
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Newton’s Method: A Second Order Method

For functions of a single real variable x, the KKT condition is g(x) := f ′(x) = 0. When f is twice

continuously differentiable then g is once continuously differentiable, Newton’s method can be a very

effective way to solve such equations and hence to locate a root of g. Given a starting point x0, Newton’s

method for solving the equation g(x) = 0 is to generate the sequence of iterates

xk+1 = xk − g(xk)

g′(xk)
.

The iteration is well defined provided that g′(xk) ̸= 0 at each step.

For multi-variables, Newton’s method for minimizing f(x) is defined as

xk+1 = xk − (∇2f(xk))−1∇f(xk).

We now introduce the second-order β-Lipschitz condition: for any point x and direction vector d

∥∇f(x+ d)−∇f(x)−∇2f(x)d∥ ≤ β∥d∥2.

In the following, for notation simplicity, we use g(x) = ∇f(x) and ∇g(x) = ∇2f(x).
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Local Convergence Theorem of Newton’s Method

Theorem 1 Let f(x) be β-Lipschitz and the smallest absolute eigenvalue of its Hessian uniformly

bounded below by λmin > 0. Then, provided that ∥x0 − x∗∥ is sufficiently small, the sequence

generated by Newton’s method converges quadratically to x∗ that is a KKT solution with g(x∗) = 0.

∥xk+1 − x∗∥ = ∥xk − x∗ −∇g(xk)−1g(xk)∥
= ∥∇g(xk)−1

(
g(xk)−∇g(xk)(xk − x∗)

)
∥

= ∥∇g(xk)−1
(
g(xk)− g(x∗)−∇g(xk)(xk − x∗)

)
∥

≤ ∥∇g(xk)−1∥∥g(xk)− g(x∗)−∇g(xk)(xk − x∗)∥
≤ ∥∇g(xk)−1∥β∥xk − x∗∥2 ≤ β

λmin
∥xk − x∗∥2.

(1)

Thus, when β
λmin

∥x0 − x∗∥ < 1, the quadratic convergence takes place:

β

λmin
∥xk+1 − x∗∥ ≤

(
β

λmin
∥xk − x∗∥

)2

.

Such a starting solution x0 is called an approximate root of g(x).
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How to Check a Point being an Approximate Root

Theorem 2 (Smale 86). Let g(x) be an analytic function. Then, if x in the domain of g satisfies

sup
k>1

∣∣∣∣g(k)(x)k!g′(x)

∣∣∣∣1/(k−1)

≤ (1/8)

∣∣∣∣g′(x)g(x)

∣∣∣∣ .
Then, x is an approximate root of g.

In the following, for simplicity, let the root be in interval [0 R].

Corollary 1 (Y. 92). Let g(x) be an analytic function in R++ and let g be convex and monotonically

decreasing. Furthermore, for x ∈ R++ and k > 1 let∣∣∣∣g(k)(x)k!g′(x)

∣∣∣∣1/(k−1)

≤ α

8
x−1

for some constant α > 0. Then, if the root x̄ ∈ [x̂, (1 + 1/α)x̂] ⊂ R++, x̂ is an approximate root of g.
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Hybrid of Bisection and Newton I

Note that the interval becomes wider and wider at geometric rate when x̂ is increased.

Thus, we may symbolically construct a sequence of points:

x̂0 = ϵ, x̂1 = (1 + 1/α)x̂0, ..., and x̂j = (1 + 1/α)x̂j−1, ...

until x̂j = x̂J ≥ R. Obviously the total number of points, J , of these points is bounded by

O(log(R/ϵ)). Moreover, define a sequence of intervals

Ij = [x̂j−1, x̂j ] = [x̂j−1, (1 + 1/α)x̂j−1].

Then, if the root x̄ of g is in any one of these intervals, say in Ij , then the front point x̂j−1 of the interval

is an approximate root of g so that starting from it Newton’s method generates an x with |x− x̄| ≤ ϵ in

O(log log(1/ϵ)) iterations.
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Hybrid of Bisection and Newton II

Now the question is how to identify the interval that contains x̄?

This time, we bisect the number of intervals, that is, evaluate function value at point x̂jm where

jm = [J/2]. Thus, each bisection reduces the total number of the intervals by a half. Since the total

number of intervals is O(log(R/ϵ)), in at most O(log log(R/ϵ)) bisection steps we shall locate the

interval that contains x̄.

Then the total number iterations, including both bisection and Newton methods, is O(log log(R/ϵ))

iterations.

Here we take advantage of the global convergence property of Bisection and local quadratic convergence

property of Newton, and we would see more of these features later...
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Spherical Constrained Nonconvex Quadratic Minimization I

min
1

2
xTQx+ cTx, s.t. ∥x∥2 = 1.

where Q ∈ Sn is any symmetric data matrix. If c = 0 this problem becomes finding the least eigenvalue

of Q.

The necessary and sufficient condition (can be proved using SDP) for x being a global minimizer of the

problem is

(Q+ λI)x = −c, (Q+ λI) ≽ 0, ∥x∥22 = 1,

which implies λ ≥ −λmin(Q) > 0 where λmin(Q) is the least eigenvalue of Q. If the optimal

λ∗ = −λmin(Q), then c must be orthogonal to the λmin(Q)-eigenvector, and it can be checked using

the power algorithm.

The minimal objective value:

1

2
xTQx+ cTx = −1

2
xT (Q+ λI)x− 1

2
λ∥x∥2 = −λ

2
, (2)
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Sphere Constrained Nonconvex Quadratic Minimization II

WLOG, Let us assume that the least eigenvalue is 0. Then we must have λ ≥ 0. If the optimal λ∗ = 0,

then c must be a 0-eigenvector of Q, and it can be checked using the power algorithm to find it. Therefore,

we assume that the optimal λ > 0.

Furthermore, there is an upper bound on λ:

λ ≤ λ∥x∥2 ≤ xT (Q+ λI)x = −cTx ≤ ∥c∥∥x∥ = ∥c∥.

Now let x(λ) = −(Q+ λI)−1c, the problem becomes finding the root of ∥x(λ)∥2 = 1.

Lemma 1 The analytic function ∥x(λ)∥2 is convex monotonically decreasing with α = 12 in Corollary 1.

Theorem 3 The 1-spherical constrained quadratic minimization can be computed in O(log log(∥c∥/ϵ))
iterations where each iteration costs O(n3) arithmetic operations.

What about 2-spherical constrained quadratic minimization, that is, quadratic minimization with 2

ellipsoidal constraints?
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Second Order Method for Minimizing Lipschitz f(x)

Recall the second-order β-Lipschitz condition: for any two points x and y

∥g(x+ d)− g(x)−∇g(x)d∥ ≤ β∥d∥2,

which further implies

f(x+ d)− f(x) ≤ g(x)Td+
1

2
dT∇g(x)d+

β

3
∥d∥3.

The second-order method, at the kth iterate, would let xk+1 = xk + dk where

dk = argmind (ck)Td+ 1
2d

TQkd+ β
3α

3

s.t. ∥d∥ ≤ α,

with ck = g(xk) and Qk = ∇g(xk). One typically fixed α to a “trusted’ radius αk so that it becomes a

sphere-constrained problem (the inequality is normally active if the Hessian is non PSD):

(Qk + λkI)dk = −ck, (Qk + λkI) ≽ 0, ∥dk∥22 = (αk)2.
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Convergence Speed of the Second Order Method

A naive choice would be αk =
√
ϵ/β. Then from reduction (2)

f(xk+1)− f(xk) ≤ −λk

2
∥dk∥2 + β

3
(αk)3 = −λk(αk)2

2
+

β

3
(αk)3 = −λkϵ

2β2
+

ϵ3/2

3β2
.

Also

∥g(xk+1)∥ = ∥g(xk+1)− (ck +Qkdk) + (ck +Qkdk)∥
≤ ∥g(xk+1)− (ck +Qkdk)∥+ ∥(ck +Qkdk)∥
≤ β∥dk∥2 + λk∥dk∥ = β(αk)2 + λkαk = ϵ

β + λk√ϵ
β .

Thus, one can stop the algorithm as soon as λk =
√
ϵ so that the inequality becomes

∥g(xk+1)∥ ≤ 2ϵ
β . Furthermore, |λmin(∇g(xk))| ≤ λk =

√
ϵ.

Theorem 4 Let the objective function p∗ = inf f(x) be finite. Then in O(β2(f(x0)−p∗))
ϵ1.5 iterations of the

second-order method, the norm of the gradient vector is less than ϵ and the Hessian is
√
ϵ-positive

semidefinite.
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Would Convexity Help?

Before we answer this question, let’s summarize a generic form one iteration of the Second Order Method

for solving ∇f(x) = g(x) = 0:

(∇g(xk) + λI)(x− xk) = −γg(xk), or

g(xk) +∇g(xk)(x− xk) + λ(x− xk) = (1− γ)g(xk).

Many interpretations: when

• γ = 1, λ = 0: pure Newton;

• γ and λ are sufficiently large: SDM;

• γ = 1 and λ decreases to 0: Homotopy or path-following method.

The Quasi-Newton Method More generally:

x = xk − αkSkg(xk),

for a symmetric matrix Sk with a step-size αk.
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The Quasi-Newton Method

For convex qudratic minimization, the convergnece rate becomes
(

λmax(S
kQ)−λmin(S

kQ)
λmax(SkQ)+λmin(SkQ)

)2

where

λmax and λmin represent the largest and smallest eigenvalues of a matrix.

Sk can be viewed as a Preconditioner–typically an approximation of the Hessian matrix inverse, and can

be learned from a regression model:

qk := g(xk+1)− g(xk) = Q(xk+1 − xk) = Qdk, k = 0, 1, ...

We actually learn Q−1 from Q−1qk = dk, k = 0, 1, ... The process start with Hk, k = 0, 1, ...,

where the rank of Hk is k, that is, we each step lean a rank-one update: given Hk−1, qk, dk we solve

(Hk−1 + hk(hk)T )qk = dk

for vector hk. Then after n iterations, we build up Hn = Q−1.

You also “learnig while doing”: xk+1 = xk − αk(n−k
n I + k

nH
k)g(xk), which is similar to the

Conjugate Gradient method.

We now give a confirmation answer: convexity helps a lot in Second-Order methods.
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A Path-Following Algorithm for Unconstrained Optimization I

We assume that f is convex and meet a local Lipschitz condition: for any point x and a β ≥ 1

∥g(x+ d)− g(x)−∇g(x)d∥ ≤ βdT∇g(x)d, whenever ∥d∥ ≤ O(1) (3)

and x+ d in the function domain. We start from a solution xk that approximately satisfies

g(x) + λx = 0, with λ = λk > 0. (4)

Such a solution x(λ) exists for any λ > 0 because it is the (unique) optimal solution for problem

x(λ) = argmin f(x) +
λ

2
∥x∥2,

and they form a path down to x(0). Let the approximation path error at xk with λ = λk be

∥g(xk) + λkxk∥ ≤ 1

2β
λk.

Then, we like to compute a new iterate xk+1 such that

∥g(xk+1) + λk+1xk+1∥ ≤ 1

2β
λk+1, where 0 ≤ λk+1 < λk.
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A Path-Following Algorithm for Unconstrained Optimization II

When λk is replaced by λk+1, say (1− η)λk for some η ∈ (0, 1], we aim to find a solution x such that

g(x) + (1− η)λkx = 0,

we start from xk and apply the Newton iteration:

g(xk) +∇g(xk)d+ (1− η)λk(xk + d) = 0, or

∇g(xk)d+ (1− η)λkd = −g(xk)− (1− η)λkxk.
(5)

From the second expression, we have

∥∇g(xk)d+ (1− η)λkd∥ = ∥ − g(xk)− (1− η)λkxk∥
= ∥ − g(xk)− λkxk + ηλkxk∥
≤ ∥ − g(xk)− λkxk∥+ ηλk∥xk∥
≤ 1

2βλ
k + ηλk∥xk∥.

(6)
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On the other hand

∥∇g(xk)d+ (1− η)λkd∥2 = ∥∇g(xk)d∥2 + 2(1− η)λkdT∇g(xk)d+ ((1− η)λk)2∥d∥2.

From convexity, dT ∥∇g(xk)d ≥ 0, together with (6) we have

((1− η)λk)2∥d∥2 ≤ ( 1
2β + η∥xk∥)2(λk)2 and

2(1− η)λkdT ∥∇g(xk)d ≤ ( 1
2β + η∥xk∥)2(λk)2.

The first inequality implies

∥d∥2 ≤ (
1

2β(1− η)
+

η

1− η
∥xk∥)2.

Let the new iterate be x+ = xk + d. The second inequality implies

∥g(x+) + (1− η)λkx+∥
= ∥g(x+)− (g(xk) +∇g(xk)d) + (g(xk) +∇g(xk)d) + (1− η)λk(xk + d)∥
= ∥g(x+)− g(xk) +∇g(xk)d∥
≤ βdT∇g(xk)d ≤ β

2(1−η) (
1
2β + η∥xk∥)2λk.
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We now just need to choose η ∈ (0, 1) such that

( 1
2β(1−η) +

η
1−η∥x

k∥)2 ≤ 1 and
βλk

2(1−η) (
1
2β + η∥xk∥)2 ≤ 1

2β (1− η)λk = 1
2βλ

k+1.

For example, given β ≥ 1,

η =
1

2β(1 + ∥xk∥)
would suffice.

This would give a linear convergence since ∥xk∥ is typically bounded following the path to the optimality,

while the covergence in non-convex case is only arithmetic.

Convexity, together with some types of second-order methods, make convex optimization solvers into

practical technoloies.
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