CME307/MS&E311: Optimization Lecture Note #13

Second Order Optimization Algorithms |

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.
Winter 2015

http://www.stanford.edu/ yyye
Chapters 7, 8,9 and 10



CME307/MS&E311: Optimization Lecture Note #13

The 1.5-Order Algorithm: Conjugate Gradient Method | I

The second-order information is used but no need to inverse it.
0) Initialization: Given initial solution x". Let g = V f(x"),d" = —g" and k = 0.

1) lterate Update:
_(gk)Tdk
(dk)TVQf(Xk)dk )

xFL = xF 4+ o*d¥, where o =

.Unless k = n — 1:

(8" )TV f(x*)d"
(dF)TV2 f (xk)dF

2) Compute Conjugate Direction: Compute ng — Vf(ka)

détt = —gFtl 4 gFA*  where B =

andset £ = k + 1 and go to Step 1.
3) Restart: Replace x" by x* and go to Step 0.

For convex quadratic minimization, this process end in no more than 1 round.
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The 1.5 Order Algorithm: Conjugate Gradient Method i I

The information of the Hessian is learned (more on this later):
0) Initialization: Given initial solution x". Let g’ = V f(x"),d" = —g" and k = 0.

1) lterate Update:
<FH1 — xF 4 ok gF
where one-dimensional search of a/* is applied.

2) Compute Conjugate Direction: Compute g* 1 = V f(x*T1). Unless k = n — 1:

dk:—|—1 k:—|—1 Bkdk
Hgk+1H2 " (gk+1 o gk)Tgk—H
where ¥ = or 8% =
gk gk

and set k = k + 1 and go to Step 1.

3) Restart: Replace x by x" and go to Step O.
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Bisection Method: First Order Method '

For a one variable problem, an KKT point is the root of g(x) := f'(x) = 0.

Assume we know an interval [a b| such that @ < b, and g(a)g(b) < 0. Then we know there exists an =™,

a < x* < b, such that g(x*) = 0; that is, interval [a b| contains a root of g. How do we find 2 within an

error tolerance ¢, thatis, |x — 2| < €?
0) Initialization: let x; = a, x, = b.
1) Let z,, = (27 + x,-)/2, and evaluate g(x,, ).

2) If g(x,,) = 0orx,. —x; < €stop and output +* = x,,,. Otherwise, if g(x;)g(x,,) > 0 set

T = I,,;else set x,, = x,,; and return to Step 1.

The length of the new interval containing a root after one bisection step is 1/2 which gives the linear

convergence rate is 1/2.
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Figure 1: lllustration of Bisection
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Golden Section Method: Zero Order Method '

Assume that the one variable function f () is Unimodel in interval [a b], that is, for any point = € [a,. b;]

such that a < a, < b; < b, we have that f(x) < max{f(a,), f(b;)}. How do we find ™ within an
error tolerance €?

0) Initialization: let z; = a, x,, = b, and choose a constant 0 < r < 0.5;

1) Let two other points 7; = x; + (2, — x;) and Z,. = x; + (1 — r)(x, — x7), and evaluate their
function values.

2) Update the triple points =, = &, &, = 27, x; = x; if f(2;) < f(Z,); otherwise update the triple
points x; = ¥;,x; = &, T, = x,; and return to Step 1.

In either cases, the length of the new interval after one golden section step is (1 — 7). If we set

(1 —2r)/(1 —r) = r, then only one point is new in each step and needs to be evaluated. This give
r = 0.382 and the linear convergence rate is 0.618.
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Figure 2: lllustration of Golden Section
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Newton’s Method: A Second Order Method '

For functions of a single real variable x, the KKT condition is g(x) := f'(z) = 0. When f is twice
continuously differentiable then g is once continuously differentiable, Newton’s method can be a very
effective way to solve such equations and hence to locate a root of g. Given a starting point 2Y, Newton’s

method for solving the equation g(a:) = ( is to generate the sequence of iterates

k
I N g(z") .
g' (")

The iteration is well defined provided that ¢’ (") # 0 at each step.

For multi-variables, Newton’s method for minimizing f(x) is defined as
skl — kb _ <v2f(Xk)>—1vf<Xk:>.
We now introduce the second-order [3-Lipschitz condition: for any point x and direction vector d
IVf(x+d) = Vf(x) -V f(x)d] < 8ld|]*.
In the following, for notation simplicity, we use g(x) = V f(x) and Vg(x) = V* f(x).
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Local Convergence Theorem of Newton’s Method I

Theorem 1 Let f(x) be (-Lipschitz and the smallest absolute eigenvalue of its Hessian uniformly

bounded below by \,,,;,, > 0. Then, provided that || x" — x*|| is sufficiently small, the sequence

generated by Newton’s method converges quadratically to X™ that is a KKT solution with g(x*) = 0.

IA

IA

x" —x" — Vg(x*)"'g(x")]|

Vg(x")™! (g(x") — Vg(x")(x" —x%)) |
Vg(x") 7! (g(x") — g(x*) — Vg(x")(x" —x)) | (1)
Ve (x")7[lg(x") — g(x*) — Vg(x")(x" —x*)|
Ve (x*) TH|Blx*F —x*|* < 3 flxF - x72.

— x*|| < 1, the quadratic convergence takes place:

Thus, when ~——

2
—ux’f“—x*ug( g Hx“x*H) |

>\m7jn

is called an approximate root of g(x).

Such a starting solution x
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How to Check a Point being an Approximate Root I

Theorem 2 (Smale 86). Let g(x) be an analytic function. Then, if x in the domain of g satisfies

g®) (@) |V g (x)
klg'(x) g(x)

sup
k>1

</s)

Then, x is an approximate root of q.
In the following, for simplicity, let the root be in interval [0 R].

Corollary 1 (Y. 92). Let g(x) be an analytic function in R™™ and let g be convex and monotonically
decreasing. Furthermore, forx € R and k > 1 let

1/(k—1)
g ()
klg'(x)

for some constant o > 0. Then, ifthe root T € [, (1 + 1/a)z] C RT™T, & is an approximate root of g.

a
< —X
8
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Hybrid of Bisection and Newton | I

Note that the interval becomes wider and wider at geometric rate when 2 is increased.

Thus, we may symbolically construct a sequence of points:
To=¢€ 21 =(14+1/a)g,...,and 2, = (1 +1/a)Z;_1, ...

until £; = 27 > I2. Obviously the total number of points, ./, of these points is bounded by
O(log(R/¢€)). Moreover, define a sequence of intervals

Ij = &1, ;5] = [#j—1, (L + 1/a)Z;j].

Then, if the root = of g is in any one of these intervals, say in /, then the front point §7j_1 of the interval
IS an approximate root of g so that starting from it Newton’s method generates an x with |:U — :7;\ < €in
O(loglog(1/¢)) iterations.
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Hybrid of Bisection and Newton i I

Now the question is how to identify the interval that contains x?

This time, we bisect the number of intervals, that is, evaluate function value at point 7 ;, where

Jm = |J/2]. Thus, each bisection reduces the total number of the intervals by a half. Since the total
number of intervals is O(log(R/€)), in at most O(log log( R /¢)) bisection steps we shall locate the
interval that contains .

Then the total number iterations, including both bisection and Newton methods, is O (log log( R /¢€))
iterations.

Here we take advantage of the global convergence property of Bisection and local quadratic convergence
property of Newton, and we would see more of these features later...
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Spherical Constrained Nonconvex Quadratic Minimization | I

1
min §XTQX—|—CTX, st ||x|* = 1.

where () € S™ is any symmetric data matrix. If c = O this problem becomes finding the least eigenvalue
of ().
The necessary and sufficient condition (can be proved using SDP) for x being a global minimizer of the

problem is
(Q+A)x=—c, (Q+A) =0, |x]5=1,

which implies A > —\,,,;,, (Q) > 0 where \,,,;,,(Q) is the least eigenvalue of (). If the optimal
A= —X\nin(Q), then ¢ must be orthogonal to the \,,,;,, (())-eigenvector, and it can be checked using

the power algorithm.

The minimal objective value:

1 1 1
§XTQX +clx = —axT(Q + A )x — 5)‘“XH2 —= —%, (2)
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Sphere Constrained Nonconvex Quadratic Minimization Il I

WLOG, Let us assume that the least eigenvalue is 0. Then we must have A > 0. If the optimal \* = 0,
then ¢ must be a 0-eigenvector of (), and it can be checked using the power algorithm to find it. Therefore,

we assume that the optimal A > 0.

Furthermore, there is an upper bound on A:

A< M| <x(Q + A)x = —e'x < [|e||[|x]| = [c].
Now let x(\) = —(Q + AI)~'c, the problem becomes finding the root of ||x(\)||* = 1.
I°

Lemma 1 The analytic function ||x(\)||* is convex monotonically decreasing with v = 12 in Corollary 1.

Theorem 3 The 1-spherical constrained quadratic minimization can be computed in O (log log(||c||/€))

iterations where each iteration costs O(n3) arithmetic operations.

What about 2-spherical constrained quadratic minimization, that is, quadratic minimization with 2

ellipsoidal constraints?
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Second Order Method for Minimizing Lipschitz f(x)

Recall the second-order 3-Lipschitz condition: for any two points x and y
lg(x +d) — g(x) — Ve(x)d|| < gld]|?,
which further implies
1
fx+d) — f(x) < g(x)7d + JdVa(x)d + 5]’
The second-order method, at the kth iterate, would let x*T! = x* + d* where
d* = argming (c*)Td+ 3d7Q"d + %ofg
st 1d]| < e,

k

with c¥ = g(x*) and Q* = Vg(x"). One typically fixed c to a “trusted’ radius " so that it becomes a

sphere-constrained problem (the inequality is normally active if the Hessian is non PSD):

(Q + A" I)d" = —c*, (Q" + A1) = 0, [|d"[3 = (a")*.
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Convergence Speed of the Second Order Method I

A naive choice would be o = \/€/ 3. Then from reduction (2)

k k( k)2 k 3/2
PO = ) < =t P+ Bt = -8 4 Bty = 2
Also
B = g — (cf + Qhd¥) + (c* + QHd)|

< lgx"") = (c* + Q"ad")|| + [|(c* + Q*d)]|

< Blld¥ % + NF||dF|| = Blak)? + Aok = & + 2

Thus, one can stop the algorithm as soon as N = ﬁ so that the inequality becomes

lg(xFT1)]| < % Furthermore, |\ (Vg (x?))| < \F = /e

2 0y _ =%
Theorem 4 Let the objective function p* = inf f(x) be finite. Then in O (fe(f =) jterations of the
second-order method, the norm of the gradient vector is less than ¢ and the Hessian is \/E -positive

semidefinite.
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Would Convexity Help? I

Before we answer this question, let's summarize a generic form one iteration of the Second Order Method
for solving V f(x) = g(x) = 0:
(Vg(x") + AT)(x — x*) = —yg(x"), or
g(x*) + Vg (x¥)(x — x*) + A(x — x¥) = (1 - 7)g(x").

Many interpretations: when

e v =1, A = 0: pure Newton;

e ~ and )\ are sufficiently large: SDM;

e v = 1 and A decreases to ): Homotopy or path-following method.
The Quasi-Newton Method More generally:

x = x" — o SFg(x"),

for a symmetric matrix S* with a step-size ar.
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The Quasi-Newton Method '

kY y k 2
For convex qudratic minimization, the convergnece rate becomes (imamggkgngf\‘m”ggkgg) where

Amax @nd A\, represent the largest and smallest eigenvalues of a matrix.

S* can be viewed as a Preconditioner—typically an approximation of the Hessian matrix inverse, and can

be learned from a regression model:
q" = g(x") —g(x") = Q(x" —xF) =Qd"*, k=0,1,...

We actually learn Q! from Q~'q* = dj, £ =0, 1, ... The process start with H*, k. = 0.1, ...,
where the rank of H" is k, that is, we each step lean a rank-one update: given H*~ 1, ", d” we solve
(H*=1 4 n* (05 T) gk = d*

for vector h”. Then after n iterations, we build up H" = Q_l.

You also “learnig while doing”: x* 1 = x* — o/“(”T_kI + %H’“)g(xk), which is similar to the

Conjugate Gradient method.

We now give a confirmation answer: convexity helps a lot in Second-Order methods.
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A Path-Following Algorithm for Unconstrained Optimization | I

We assume that f is convex and meet a local Lipschitz condition: for any point x anda 3 > 1
lg(x +d) — g(x) — Vg(x)d|| < 8d’ Vg(x)d, whenever ||d| < O(1) (3)
and x + d in the function domain. We start from a solution x”* that approximately satisfies
g(x)+Ax =0, with A=2\">0. (4)

Such a solution X()\) exists for any A > ( because it is the (unique) optimal solution for problem

A
x(\) = argmin [(x) + 5x]?,

and they form a path down to x(0). Let the approximation path error at x" with A = \* be

1
lg(x") + A*x"| < A,

20
Then, we like to compute a new iterate x**! such that
1
lg(xF ) + Nerixhtl) < ﬁ)\kﬂ, where 0 < A HL < A%,
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A Path-Following Algorithm for Unconstrained Optimization Il I

When )" is replaced by A\ 11 say (1 — n)\* for some 7 € (0, 1], we aim to find a solution x such that

g(x) + (1 —n)A*x =0,
we start from x* and apply the Newton iteration:

g(x*) +Vg(x")d+ (1 —n)A*(x" +d) =0, or
Ve(x")d + (1 —n)A'd = —g(x*) — (1 — n)A"x*.

From the second expression, we have

- g(x") = (1= n)A"|

— g(x¥) = AP 4 AT

— g(x") = AxE| 4+ A<
55 A" 4 AR ||x"]].

IV (x")d + (1 —n)A*d|

IA

IA
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On the other hand
IVg(x")d + (1 —n)A"d|]?> = [|[Ve(x")d|]* + 2(1 — n)A*d" Vg(x")d + ((1 — n)A")?||d]*.

From convexity, d” || Vg(x")d > 0, together with (6) we have

(L=mA)?[dI? < (g5 +0lx"1)*(AF)? and
2(1 —=mA*d[Veg(x")d < (55 +nlx"[)*(A*)?
The first inequality implies
1
d|I” < — L
I < (g + 72 X

Let the new iterate be xT = x* + d. The second inequality implies

g(x*) + (1 — )Xo |

g(x") — (g(x") + Ve(xt)d) + (g(xF) + Ve(xh)d) + (1 - )X (xF + )|
£0c) ~ 8¢ + V(x|

BATVg(xM)d < 5 (o + k]2 Ak

I
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We now just need to choose 77 € (0, 1) such that

<—25(11;n) + L Ix)? < 1 and
A
2(61_77)(21@ +lx")? < ﬁ(l = %Ak“.
For example, given 5 > 1,
1

7’, p—
26(1 + [|x*|)
would suffice.

This would give a linear convergence since ||x” || is typically bounded following the path to the optimality,

while the covergence in non-convex case is only arithmetic.

Convexity, together with some types of second-order methods, make convex optimization solvers into
practical technoloies.
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