
CME307/MS&E311: Optimization Lecture Note #16

Optimization Algorithms Review and Project Discussions

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/˜yyye

1

CME307/MS&E311: Optimization Lecture Note #16

Optimization Algorithms

Optimization algorithms tend to be iterative procedures. Starting from a given point x0, they generate a

sequence {xk} of iterates (or trial solutions) that converge to a “solution” – or at least they are designed

to be so.

Recall that scalar {xk} converges to 0 if and only if for all real numbers ε > 0 there exists a positive

integer K such that

|xk| < ε for all k ≥ K.

Then {xk} converges to solution x∗ if and only if {∥xk − x∗∥} converges to 0.

We study algorithms that produce iterates according to

• well determined rules–Deterministic Algorithm

• random selection process–Randomized Algorithm.

The rules to be followed and the procedures that can be applied depend to a large extent on the

characteristics of the problem to be solved.

2

CME307/MS&E311: Optimization Lecture Note #16

Generic Algorithms for Minimization and Global Convergence Theorem

A Generic Algorithm: A point to set mapping in a subspace of Rn.

Theorem 1 Let A be an “algorithmic mapping” defined over set X , and let sequence {xk}, starting from

a given point x0, be generated from

xk+1 ∈ A(xk).

Let a solution set S ⊂ X be given, and suppose

i) all points {xk} are in a compact set;

ii) there is a continuous (merit) function z(x) such that if x ̸∈ S, then z(y) < z(x) for all y ∈ A(x);

otherwise, z(y) ≤ z(x) for all y ∈ A(x);

iii) the mapping A is closed at points outside S.

Then, the limit of any convergent subsequences of {xk} is a solution in S.

A mapping is closed if yk = A(xk)→ ȳ and xk → x̄ implies ȳ = A(x̄) (mostly proved by

contradiction).

3

CME307/MS&E311: Optimization Lecture Note #16

Descent Direction Methods

In this case, merit function z(x) = f(x), that is, just the objective itself.

(A1) Test for convergence If the termination conditions are satisfied at xk, then it is taken (accepted) as a

“solution.” In practice, this may mean satisfying the desired conditions to within some tolerance. If so,

stop. Otherwise, go to step (A2).

(A2) Compute a search direction, say dk ̸= 0. This might be a direction in which the function value is

known to decrease within the feasible region.

(A3) Compute a step length, say αk such that

f(xk + αkdk) < f(xk).

This may necessitate a one-dimensional (or line) search.

(A4) Define the new iterate by setting

xk+1 = xk + αkdk

and return to step (A1).

4

CME307/MS&E311: Optimization Lecture Note #16

Algorithm Complexity and Speeds

• Finite versus infinite convergence. For some classes of optimization problems there are algorithms

that obtain an exact solution—or detect the unboundedness–in a finite number of iterations.

• Polynomial-time versus exponential-time. The solution time grows, in the worst-case, as a function of

problem sizes (number of variables, constraints, accuracy, etc.).

• Convergence order and rate. If there is a positive numberγ such that

∥xk − x∗∥ ≤ O(1)

kγ
∥x0 − x∗∥,

then {xk} converges arithmetically to x∗ with power γ. If there exists a number γ ∈ [0, 1) such that

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥ (⇒ ∥xk − x∗∥ ≤ γk∥x0 − x∗∥),

then {xk} converges geometrically or linearly to x∗ with rate γ. If there exists a number γ ∈ [0, 1)

∥xk+1 − x∗∥ ≤ γ∥xk − x∗∥2 after γ∥xk − x∗∥ < 1

then {xk} converges quadratically to x∗ (such as
{
(12)

2k
}

).

5

CME307/MS&E311: Optimization Lecture Note #16

Algorithm Classes

Depending on information of the problem being used to create a new iterate, we have

(a) Zero-order algorithms. Popular when the gradient and Hessian information are difficult to obtain, e.g.,

no explicit function forms are given, functions are not differentiable, etc.

Golden-Section Method for one-dimensional search - linear convergence rate 0.618

(b) First-order algorithms. Most popular now-days, suitable for large scale data optimization with low

accuracy requirement, e.g., Machine Learning, Statistical Predictions...

Bi-Section Method for one-dimensional search - linear convergence rate 0.5

(c) Second-order algorithms. Popular for optimization problems with high accuracy need, e.g., some

scientific computing, etc.

Newton’s method: superior local quadratic (order-two) convergence, but may fail globally.

Most algorithm analyses are based on solving various Lipschitz conditions/constants.

All algorithms allow some inexactness in numerical computation.

6

CME307/MS&E311: Optimization Lecture Note #16

First-Order Algorithms: the Steepest Descent Method

Let f be a differentiable function and assume we can compute (column vector)∇f . We want to solve the

unconstrained minimization problem

min
x∈Rn

f(x).

In the absence of further information, we seek a KKT solution of f , that is, a point x∗ at which

∇f(x∗) = 0. Here we choose direction vector dk = −∇f(xk) as the search direction at xk. The

number αk ≥ 0, called step-size, is chosen “appropriately,” namely to satisfy

αk = argmin
α

f(xk − α∇f(xk)).

Then the new iterate is defined as xk+1 = xk − αk∇f(xk).

Now, if∇f(xk+1) ̸= 0, then−∇f(xk+1) is a direction of descent at xk+1; in fact, it is the direction of

steepest descent. The convergence speed of SDM is arithmetic with 1
ϵ2 in general, and 1

ϵ in the convex

case, for desired accuracy ϵ.

Many different step-size rules and direction modifications were proposed.

7

CME307/MS&E311: Optimization Lecture Note #16

SDM Variants I

• The Barzilai and Borwein rule: Let ∆k
x = xk − xk−1 and ∆k

g = ∇f(xk)−∇f(xk−1),

αk =
(∆k

x)
T∆k

g

(∆k
g)

T∆k
g

or αk =
(∆k

x)
T∆k

x

(∆k
x)

T∆k
g

.

• The fixed step-size rule: αk = 1
β for objective functions being the (first-order) β-Lipschitz; that is, for

any two vectors x and d,

∥∇f(x+ d)−∇f(x)∥ ≤ β∥d∥ ⇒ f(x+ d)− f(x) ≤ ∇f(x)Td+
β

2
∥d∥2.

• Doubling/Halving rule: stat at a good step-size guess α:

Case 1: If α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 then α← 2α, stop as soon as the inequality is reversed and return

the latest α with α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 ;

Case 2: Otherwise α← α/2; stop as soon as α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 and return it.

8

CME307/MS&E311: Optimization Lecture Note #16

SDM Variants II

• The Accelerated Steepest Descent Method (ASDM): a carefully designed modification of two

consecutive SDM step solutions for for objective functions being the (first-order) β-Lipschitz, where the

convergence speed of ASDM is arithmetic with 1
ϵ1/2

.

• The Conjugate Gradient (CG) Method: an intermediate SDM and Newton’s method obtained by

successively selecting conjugate-gradient directions as the method progresses.

• The Parallel Tangent Method (PARTAN): a complete cycle consists of taking two steepest descent

steps and then searching along the line connecting the starting point and the point obtained after the

two SDM steps.

• Stochastic (sub)Gradient Method, application to online linear programming.

• The Quasi-Newton (QN) Method: an essentially Newton’s method with a on-line learning process of

Hessian via rank-one or rank-two update.

All of the latter three methods converge in finite number of steps for solving convex quadratic optimization.

9

CME307/MS&E311: Optimization Lecture Note #16

Second-Order (SO) Algorithms: Newton’s Method with a Step-Size

For unconstrained optimization, the iteration is given by

xk+1 = xk − αk(∇2f(xk))−1∇f(xk),

where z in the pure Newton’s method αk = 1.

Convergence: quadratically if the starting point is close enough AND the Hessian matrix is non-singular at

every iterate and the limit point. It converges in one step if the function is quadratic and the Hessian matrix

is non-singular.

A step-size would work for strictly convex optimization, since (∇2f(xk))−1 is positive definite so that

−(∇2f(xk))−1∇f(xk) is a descent direction.

More generally, a modified Newton method would be

xk+1 = xk − αk(∇2f(xk) + γkI)−1∇f(xk),

for some positive number γk such that∇2f(xk) + γkI is positive definite for descent property.

The convergence analysis of SO algorithms is typically associated with the so-called second-order

10

CME307/MS&E311: Optimization Lecture Note #16

β-Lipschitz condition: for any two points x and vector d

∥∇f(x+ d)−∇f(x)−∇2f(x)d∥ ≤ β∥d∥2,

which implies

f(x+ d)− f(x) ≤ ∇f(x)Td+
1

2
dT∇2f(x)d+

β

3
∥d∥3.

Note that a function may not be Lipschitz everywhere, but Lipschitz when x is bounded.

Thus, one can solve a sequence of cubic minimization:

min
α,d
∇f(xk)Td+

1

2
dT∇2f(xk)d, s.t. ∥d∥ ≤ α

which is called the spherical “Trust-Region” method, which would be discussed next.

The convergence speed is arithmetic with 1
ϵ1.5 in general, and log(1ϵ) in the convex case, for desired

accuracy ϵ.

11

CME307/MS&E311: Optimization Lecture Note #16

Spherical Trust-Region Method for Minimizing Lipschitz f(x)

Recall the second-order β-Lipschitz condition: for any two points x and d

∥g(x+ d)− g(x)−∇g(x)d∥ ≤ β∥d∥2,

where g(x) = ∇f(x) and∇g(x) = ∇2f(x). It implies

f(x+ d)− f(x) ≤ ∇f(x)Td+
1

2
dT∇2f(x)d+

β

3
∥d∥3.

f(x+ d)− f(x)−∇f(x)Td− 1
2d

T∇2f(x)d

=
∫ 1

0
dT (∇f(x+ td)−∇f(x))dt− 1

2d
T∇2f(x)d

=
∫ 1

0
dT
(
∇f(x+ td)−∇f(x)−∇2f(x)(td)

)
dt

≤
∫ 1

0
∥d∥∥∇f(x+ td)−∇f(x)−∇2f(x)(td)∥dt

≤
∫ 1

0
∥d∥β∥td∥2dt (by 2nd-order -Lipschitz condition)

= β∥d∥3
∫ 1

0
t2dt = β

3 ∥d∥
3.

12

CME307/MS&E311: Optimization Lecture Note #16

The second-order method, at the kth iterate, would let xk+1 = xk + dk where

dk = argmind (ck)Td+ 1
2d

TQkd+ β
3α

3

s.t. ∥d∥ ≤ α,

with ck = ∇f(xk) and Qk = ∇2f(xk). One typically fixed α to a “trusted” radius αk so that it

becomes a sphere-constrained problem (the inequality is normally active if the Hessian is non PSD):

(Qk + λkI)dk = −ck, (Qk + λkI) ≽ 0, ∥dk∥22 = (αk)2.

For fixed αk, the method is generally called trust-region method.

The Trust-Region can be ellipsoidal such as ∥Sd∥ ≤ α where S is a PD diagonal scaling matrix.

13

CME307/MS&E311: Optimization Lecture Note #16

Convergence Speed of the Spherical Trust-Region Method

Is there a trusted radius such that the method converging? A simple choice would fix αk =
√
ϵ/β. Then

from reduction (??)

f(xk+1)− f(xk) ≤ −λk

2
∥dk∥2 + β

3
(αk)3 = −λk(αk)2

2
+

β

3
(αk)3 = −λkϵ

2β2
+

ϵ3/2

3β2
.

Also

∥g(xk+1)∥ = ∥g(xk+1)− (ck +Qkdk) + (ck +Qkdk)∥
≤ ∥g(xk+1)− (ck +Qkdk)∥+ ∥(ck +Qkdk)∥
≤ β∥dk∥2 + λk∥dk∥ = β(αk)2 + λkαk = ϵ

β + λk√ϵ
β .

Thus, one can stop the algorithm as soon as λk ≤
√
ϵ so that the inequality becomes ∥g(xk+1)∥ ≤ 2ϵ

β

and the function value is decreased at least− ϵ1.5

6β2 . Furthermore, |λmin(∇g(xk))| ≤ λk =
√
ϵ.

Theorem 2 Let the objective function p∗ = inf f(x) be finite. Then in O(β2(f(x0)−p∗))
ϵ1.5 iterations of the

trust-region method, the norm of the gradient vector is less than ϵ and the Hessian is
√
ϵ-positive

semidefinite, where each iteration solves a spherical-constrained quadratic minimization discussed earlier.

14

CME307/MS&E311: Optimization Lecture Note #16

Adaptive Spherical Trust-Region Method

One can treat α as a variable in

dk = argmin(d,α) (ck)Td+ 1
2d

TQkd+ β
3α

3

s.t. ∥d∥ ≤ α.

Then, the optimality conditions of this sub-problem would be

(Qk + λI)dk = −ck, (Qk + λI) ≽ 0, ∥d∥22 = α2,

and α = λ
β . Thus, let d(λ) = −(Qk + λI)−1ck, the problem becomes finding the root λ of

∥d(λ)∥2 − λ2

β2
= 0,

where λ ≥ −λmin(Q
k) > 0 (assume that the current Hessian is not PSD yet), as in the Hybrid of

Bisection and Newton method discussed earlier in log log(1/ϵ) arithmetic operations.

In practice, even β is unknown, one can forward/backward choose λ such as the objective function is

reduced by a sufficient quantity, and there is no need to find the exact root.

15

CME307/MS&E311: Optimization Lecture Note #16

Relation to Quadratic Regularization/Proximal-Point Method

One can also interpret the Spherical Trust-Region method as the Quadratic Regularization Method

dk(λ) = argmind (ck)Td+ 1
2d

TQkd+ λ
2 ∥d∥

2

where parameter λ makes (Qk + λI) ≽ 0. Then consider the one-variable function

ϕ(λ) := f(xk + dk(λ))

and do one-variable minimization of ϕ(λ) over λ. Then let λk be a minimizer and

xk+1 = xk + dk(λk).

Thus, based on the earlier analysis, we must have at least

f(xk+1)− f(xk) ≤ − ϵ1.5

6β2

for some (local) Lipschitz constant β of the objective function.

Note that the algorithm needs to estimate only the minimum eigenvalue, λmin(Q
k), of the Hessian. One

heuristic is to let λk decreases geometrically and do few possible line-search steps.

16

CME307/MS&E311: Optimization Lecture Note #16

Dimension-Reduced Second-Order Method with Trust Region: one dimension

Let Hk = ∇2f(xk), gk = ∇f(xk), xk+1 = xk − αgk or xk+1 = xk − αgk/∥gk∥ for some α.

Let ḡk = gk/∥gk∥. Then, for the second expression, one can solve the one-dimensional trust-region

problem: αk = argminα∈R −∥gk∥α+ qk

2 α2, subject to spherical trust-region (or interval)

α2 ≤ (ϵ/β)2, where qk = (ḡk)THkḡk. The optimality conditions of this sub-problem are λk ≥ 0 and

(qk + λk)αk = ∥gk∥, (qk + λk) ≥ 0, λk(
√
ϵ/β − αk) = 0.

As long as λk ≥
√
ϵ, the objective function would be reduced by the same quantity as that in the

full-dimensional case. Otherwise, if further qk ≤
√
ϵ, we must have ∥gk∥ ≤ 2ϵ

β .

Now what happens when λk <
√
ϵ and qk >

√
ϵ in the sub-problem? Denote by dk = −αkḡk,

xk+1 = xk + dk and gk+1 = ∇f(xk+1). Then

gk+1 = (gk+1 − gk −Hkdk) + (gk +Hkdk)

and

17

CME307/MS&E311: Optimization Lecture Note #16

(ḡk)Tgk+1 = (ḡk)T (gk+1 − gk −Hkdk) + (ḡk)T (gk +Hkdk)

= (ḡk)T (gk+1 − gk −Hkdk) + ∥gk∥ − qkαk

≤ (ḡk)T (gk+1 − gk −Hkdk) + λkαk.

which implies that (noting ∥ḡk∥ = 1):

|(ḡk)Tgk+1| ≤ ∥ḡk∥ · ∥(gk+1 − gk −Hkdk)∥+ ϵ
β ≤ β(αk)2 + ϵ

β = 2ϵ
β .

Proposition 1 Let the objective function p∗ = inf f(x) be finite. Then in O(β2(f(x0)−p∗))
ϵ1.5 iterations of

the one-dimensional trust-region method, the absolute-value of a gradient vector norm or the projection of

the new gradient vector onto the current gradient subspace is less than O(ϵ). Furthermore, the Hessian is√
ϵ-positive semidefinite on the current gradient subspace.

Note that if either ∥gk+1∥ or ∥gk∥ is less than ϵ, then the algorithm stops. Otherwise, gk+1 must be

almost orthogonal to gk which has created a new search direction very different from the previous one.

One can also try xk+1 = xk − αgḡk + αuuk where uk is a random vector

uk ∈ N(0, I − ḡk(ḡk)T) such that E[(ḡk)Tuk] = 0 and E[uk(uk)T + ḡk(ḡk)T] = I and

(αg, αu) is decided by solving a two-dimensional trust-region subproblem. Or choose uk as the

momentum direction (xk − xk−1) as follows.

18

CME307/MS&E311: Optimization Lecture Note #16

Dimension-Reduced Second-Order Method with Trust Region: two-dimension

Let Hk = ∇2f(xk), dk = xk − xk−1 and gk = ∇f(xk), and

Qk =

 (gk)THkgk −(dk)THkgk

−(dk)THkgk (dk)THkdk

 ∈ S2, ck =

 −∥gk∥2

(gk)Tdk

 ∈ R2.

Then, similar to the full-dimensional Spherical Trust-Region, one can construct a 2-dimensional

trust-region quadratic model:

αk(λk) = argminα∈R2 (ck)Tα+ 1
2α

TQkα+ λk

2 ∥α∥
2

where parameter λk makes (Qk + λkI) ≽ 0. Finally let

xk+1 = xk − αk
1g

k + αk
2d

k.

Again, if the Hessian∇2f(xk) is not available, one can approximate

Hkgk ∼ ∇(xk + gk)− gk and Hkdk ∼ ∇(xk + dk)− gk ∼ −(gk−1 − gk);

or more accurate difference approximation between two gradients.

19

CME307/MS&E311: Optimization Lecture Note #16

A Path-Following Algorithm for Unconstrained Optimization I

For any µ > 0 consider the (unique) optimal solution x(µ) for problem

x(µ) = argmin f(x) +
µ

2
∥x∥2,

and they form a path down to x(0) and satisfy gradient equations with parameter µ:

g(x) + µx = 0, with µ = µk > 0. (1)

Let the approximation path error at xk with µ = µk be

∥g(xk) + µkxk∥ ≤ 1

2β
µk.

Then, we like to compute a new iterate xk+1, using Newton’s method with xk as an initial solution, such

that

∥g(xk+1) + µk+1xk+1∥ ≤ 1

2β
µk+1, where 0 ≤ µk+1 < µk.

If µk can be decreased at a geometric rate, independent of ϵ, and each update uses one Newton step,

then this would lead to a linearly convergent algorithm.

20

CME307/MS&E311: Optimization Lecture Note #16

Feasible FO Algorithms for Non-Negative Conic Optimization

min f(x) s.t. x ≥ 0.

• Interior-Point SDM on Logarithmic Barrier µ
∑

j log(xj) or Potential Function

2n log(f(x)− z)−
∑
j

log(xj)

where z is an objective lower bound.

• Interior-Point Affine-Scaling SDM: dk = −(Xk)2∇f(xk), where Xk = diag(xk); and the

step-size is a certain fraction to the boundary and the Lipschitz constant, which ever is smaller. Its

convergence speed is arithmetic with 1
ϵ2 in general, and 1

ϵ in the convex case, for desired accuracy ϵ.

• SDM Followed by Feasible-Region-Projection: Question in HW3

– x̂k+1 = xk − 1
β∇f(x

k)

– xk+1 = ProjK(x̂k+1)

21

CME307/MS&E311: Optimization Lecture Note #16

Feasible FO Algorithms for SDP Conic Optimization

min f(X) s.t. X ≽ 0.

• Interior-Point SDM with Logarithmic Barrier µ log det(X) or Potential Function

2n log(f(X)− z)− log det(X)

where z is an objective lower bound.

• Interior-Point Affine-Scaling SDM: Dk = −Xk∇f(Xk)Xk; and the step-size is a certain fraction to

the boundary and the Lipschitz constant, which ever is smaller. Its convergence speed is arithmetic

with 1
ϵ2 in general, and 1

ϵ in the convex case, for desired accuracy ϵ.

• SDM Followed by Feasible-Region-Projection (Question in HW3):

– X̂k+1 = Xk − 1
β∇f(X

k)

– Xk+1 = ProjK(X̂k+1)

22

CME307/MS&E311: Optimization Lecture Note #16

Feasible FO Algorithms for Optimization with Equality Constraints

min f(x) s.t. Ax = b ∈ Rm, x ≥ 0 ∈ Rn.

• Reduced Gradient Method: at each step, consider the problem only in terms of the n−m

independent variables due to the linear equality constraints (which variables are called nonbasic

variables in Linear Programming). Then the objective can be viewed as the independent variables, and

its gradient with respect to independent variables is the reduced gradient/cost vector. Therefore, the

problem simply becomes a non-negative conic problem.

• Sequential LP Method: Find a feasible and descent direction from the current feasible iterate xk:

min
d
∇f(xk)d s.t. Ad = 0 ∈ Rm, xk + d ≥ 0 ∈ Rn,

then take a step-size along the minimal direction.

• Interior-Point SDM: minimizing the potential function with only equalty constraints and apply the

Gradient-Projection SDM; and its convergence speed is arithmetic with 1
ϵ2 in general, and 1

ϵ in the

convex case, for desired accuracy ϵ.

• Backtrack step-size rule similar to those discussed earlier.

23

CME307/MS&E311: Optimization Lecture Note #16

SO Algorithms for Linearly Constrained Optimization: Interior-Point Methods

min f(x) s.t. Ax = b ∈ Rm, x ≥ 0 ∈ Rn.

Furthermore, let f(x) be convex and satisfy the second-order βα-Scaled Concordant Lipschitz condition:

for any point x > 0 (where the function does not need to be differentiable at the boundary)

∥X
(
∇f(x+ d)−∇f(x)−∇2f(x)d

)
∥ ≤ βαd

T∇2f(x)d, whenever ∥X−1d∥ ≤ α(< 1).

This condition is specially suitable for analyzing interior-point methods described below.

Given a strictly feasible (x > 0,y, s = ∇f(x)−ATy > 0), compute direction vectors (dx,dy,ds):

Sdx +Xds = r := xT s
n+ρe−Xs,

Adx = 0,

∇2f(x)dx −ATdy − ds = 0.

Let

θ =
α
√

min(XSe)

∥(XS)−1/2r∥

24

CME307/MS&E311: Optimization Lecture Note #16

where α ∈ (0 1) is a constant depending on βα, and

x+ = x+ θdx, y+ = y + θdy, and s+ = ∇f(x+)−ATy+.

Then, (x+ > 0,y, s+ > 0) is strictly feasible and the algorithm convergence speed is log 1
ϵ . For linear

programming, the speed is quadratically convergent once the iterate is close to the optimal solution set.

No need to understand complexity proofs of interior-point methods, but high level ideas and concepts such

as central-path and potential functions!

25

CME307/MS&E311: Optimization Lecture Note #16

The Lagrangian Function and Method

Consider

f∗ := min f(x) s.t. h(x) = 0, x ∈ X.

The Lagrangian function:

L(x,y) = f(x)− yTh(x),

and the Augmented Lagrangian function:

La(x,y) = f(x)− yTh(x) +
β

2
∥h(x)∥2.

Let the dual function be:

ϕ(y) = min
x∈X

La(x,y); (2)

and the dual problem

(f∗ ≥)ϕ∗ := max ϕ(y). (3)

In many cases, one can find y∗ of dual problem (3), a unconstrained optimization problem; then go ahead

to find x∗ using (2).

26

CME307/MS&E311: Optimization Lecture Note #16

• The Augmented Lagrangian Method: (1ϵ)

xk+1 = arg min
x∈X

La(x,y
k), and yk+1 = yk − βh(xk+1).

• The ADMM: (1ϵ)

xk+1
1 = argminx1 La(x1,x

k
2 ,y

k),

xk+1
2 = argminx2 La(x

k+1
1 ,x2,y

k),

yk+1 = yk − βh(xk+1
1 ,xk+1

2).

• The Multi-Block ADMM and Randomly Permuted Version

xk+1
1 = argminx1 La(x1, ...,x

k
n,y

k),

... ...

xk+1
n = argminx2 La(x

k+1
1 , ...xn,y

k),

yk+1 = yk − βh(xk+1
1 , ...,xk+1

2).

27

CME307/MS&E311: Optimization Lecture Note #16

Block Coordinate Descent Method for Unconstrained Optimization

min
x∈RN

f(x) = f((x1; x2, ...; xn)), where x = (x1; x2; ...; xn).

Let f(x) be differentiable every where and satisfy the (first-order) β-Coordinate Lipschitz condition, that

is, for any two points x and y

∥∇jf(x+ ej . ∗ d)−∇jf(x)∥ ≤ βj∥ej . ∗ d∥

where ej is the unit vector that ej = 1 and zero everywhere else, and .∗ is the component-wise product.

• Cyclic Block Coordinate Descent (CBCD) Method (Gauss-Seidel) 1
ϵ .

• Aitken Double Sweep Method 1
ϵ .

• Gauss-Southwell Method 1
ϵ .

• Randomly-Permuted Cyclic Block Coordinate Descent (RCBCD) Method 1
ϵ .

• Randomized Block Coordinate Descent (RBCD) Method 1
ϵ .

Often, one does not minimize each coordinate exactly, but takes a gradient step.

28

CME307/MS&E311: Optimization Lecture Note #16

Stochastic-Gradient-Method for Minimizing a Large-Sum of Functions

Large-Sum of Functions, e.g., Sample Average Approximation (SAA):

minx FM (x) := 1
M

∑M
i=1 f(x, ω

i).
Two Approaches:

• Sample-First and Iterate-Second, in particular, SAA: collect enough examples then search a solution

of an approximated deterministic optimization problem. The computation of the gradient vector:

∇FM (x) =
1

M

M∑
i=1

∇f(x, ωi) and xk+1 = xk − αk∇FM (xk).

• Sample and Iterate Concurrently – SGD: collect a sample set Sk of few samples of ω at iteration k:

ĝk =
1

|Sk|
∑
i∈Sk

∇f(xk, ωi) and xk+1 = xk − αkĝk.

Key Questions: how many samples are sufficient for an ϵ approximate solution to the original stochastic

optimization problem. This is the information/sample complexity issue in optimization.

29

CME307/MS&E311: Optimization Lecture Note #16

SGD with Batch-Size One

Apply SGD with one ωk sampled uniformly at iteration k:

ĝk = ∇f(xk, ωk) and xk+1 = xk − αkĝk.

• Works in general with the step size rule:

αk → 0 and

(∞∑
k=0

αk

)
→∞ (e.g., αk = O(k−1/2)).

• Specifically, αk = 1
β
√
k

, where β is the largest ∥ĝk∥; and return x̄ = 1
K

∑K−1
k=0 xk (L&Y pp292).

• A great technology to potentially reduce the computation complexity – need fewer samples at the

beginning.

• Potentially only select important and sensitive samples – learn where to sample.

• Dynamically incorporate new empirical observations to tune-up the probability distribution.

30

CME307/MS&E311: Optimization Lecture Note #16

Project-I: SNL

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj , ∀ (k, j) ∈ Na,
(4)

SDP relaxation for solving solve (4): Find a symmetric matrix Z ∈ Sd+n such that

min 0 • Z
s.t. Z1:d,1:d = I,

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)T • Z = d̂2kj , ∀ k, j ∈ Na,

Z ≽ 0.

(5)

Also a simple nonlinear least squares (NLS) approach to solve (4):

min
∑

(ij)∈Nx

(
∥xi − xj∥2 − d2ij

)2
+
∑

(kj)∈Na

(
∥ak − xj∥2 − d2kj

)2
(6)

31

CME307/MS&E311: Optimization Lecture Note #16

P-I: Questions

• Run some randomly generated problems (in 1D, 2D and 3D) with few (2, 3 and 4) anchors and tens

sensors to compare the SOCP, SDP, and NLS approaches.

• Create some noise data and solve the SDP relaxation to minimize∑
(ij)∈Nx

∣∣∥xi − xj∥2 − d2ij
∣∣+∑(kj)∈Na

∣∣∣∥ak − xj∥2 − d2kj

∣∣∣
• Use the SDP solution X̄ = [x̄1, x̄2,, x̄n] of Z̄ as the initial solution for model 6 and apply the

Steepest Descent Method for a number steps. How is the final solution?

• Apply ADMM to the split nonlinear least squares:

min
∑

(ij)∈Nx

[
(xi − xj)

T (yi − yj)− d2ij
]2

+
∑

(kj)∈Na

[
(ak − xj)

T (ak − yj)− d2kj
]2

s.t. xj − yj = 0, ∀j.

• Apply Steepest Descent and Feasible Projection Method to SDP Relaxation (Slide 9 of Lecture 12) by

fixing one sensor at the origin, that is, only needs to localize n− 1 sensors. Furthermore, if the

location of other two sensors are known, then we can determine all other sensor locations.

32

CME307/MS&E311: Optimization Lecture Note #16

Project-II: An Online Linear Programming/Resource Allocation Example

order 1(t = 1) order 2(t = 2) Inventory(b)

Price(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100

Shoes 1 0 ... 50

T-shirts 0 1 ... 500

Jacket 0 0 ... 200

Socks 1 1 ... 1000

33

CME307/MS&E311: Optimization Lecture Note #16

P-II: Offline Formulation LP and CP

LP max πTx

s.t. ATx ≤ b,

x ≤ e,

x ≥ 0,

or

CP max πTx+ U(s)

s.t. ATx+ s = b, s ≥ 0

x ≤ e,

x ≥ 0.

U(·), in the form U(s) =
∑

i u(si), is a strcitly concave (risk aversion) and increasing value function of

the possible slack variables to value the uncertain revenue of remaining resources.

• Exponential u(si) = w · (1− exp(−asi)) for some positive constants a,w.

• Logarithmic u(si) = w · log(si) or u(si) = w · log(1 + si) for some positive constant w.

• Quadratic: u(si) =

 w · (1− (1− si/w)
2) 0 ≤ si ≤ w

w si ≥ w
for some positive constant b.

34

CME307/MS&E311: Optimization Lecture Note #16

P-II: Price Mechanism and SLPM and SCPM

The problem would be easy if there is an ”ideal price” vector:

Bid 1(t = 1) Bid 2(t = 2) Inventory(b) p∗

Bid(πt) $100 $30 ...

Decision x1 x2 ...

Pants 1 0 ... 100 $45

Shoes 1 0 ... 50 $45

T-shirts 0 1 ... 500 $10

Jackets 0 0 ... 200 $55

Hats 1 1 ... 1000 $15

Could such a ”ideal price” vector be learned?

35

CME307/MS&E311: Optimization Lecture Note #16

P-II: One-Time Learning Algorithm

We start with a simple

• Set xt = 0 for all 1 ≤ t ≤ ϵn;

• Solve the ϵ portion of the problem

maximizex
∑ϵn

t=1 πtxt

subject to
∑ϵn

t=1 aitxt ≤ ϵbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ϵn

and get the optimal Lagrange/dual solution p̂;

• Determine the future allocation xt as:

xt =

 0 if πt ≤ p̂Tat

1 if πt > p̂Tat

as long as aitxt ≤ bi −
∑t−1

j=1 aijxj for all i; otherwise, set xt = 0.

36

CME307/MS&E311: Optimization Lecture Note #16

P-II: Dynamic/Online Learning Algorithm

In the dynamic price learning algorithm, we update the price at time ϵn, 2ϵn, 4ϵn, ..., till 2kϵ ≥ 1.

At time ℓ ∈ {ϵn, 2ϵn, ...}, the price vector is the optimal Lagrange/dual solution to the following linear

program:

maximizex
∑ℓ

t=1 πtxt

subject to
∑ℓ

t=1 aitxt ≤ ℓ
nbi i = 1, ...,m

0 ≤ xt ≤ 1 t = 1, ..., ℓ

;

and this price vector is used to determine the allocation for the next immediate period, which is doubled

each update.

xt =

 0 if πt ≤ p̂ℓ
Tat

1 if πt > p̂ℓ
Tat

as long as aitxt ≤ bi −
∑t−1

j=1 aijxj for all i; otherwise, set xt = 0.

Do both Learning Mechanisms for the CP model.

37

CME307/MS&E311: Optimization Lecture Note #16

Project-III: First-Order Methods and Value-Iteration for MDP

MDP problem with m states and total n actions:

minx
∑

j∈A1
cjxj+ ... +

∑
j∈Am

cjxj

s.t.
∑

j∈A1
(e1 − γpj)xj+ ... +

∑
j∈Am

(em − γpj)xj = e,

... xj ... ≥ 0, ∀j,

(7)

maximizey
∑m

i=1 yi

subject to yi − γpT
j y ≤ cj , ∀j ∈ Ai, ∀i.

where yi represents the cost-to-go value in state i.

Question 1: Prove that in (7) every basic feasible solution represent a policy, i.e., the basic variables have

exactly one variable from each state i. Furthermore, prove each basic variable value is no less than 1, and

the sum of all basic variable values is m
1−γ .

38

CME307/MS&E311: Optimization Lecture Note #16

P-III: First-Order Methods and Value-Iteration for MDP

The Value-Iteration (VI) Method is, starting from any y0,

yk+1
i = min

j∈Ai

{cj + γpT
j y

k}, ∀i.

Question 2: Prove the contraction result:

∥yk+1 − y∗∥∞ ≤ γ∥yk − y∗∥∞, ∀k.

where y∗ is the fixed-point or optimal value vector, that is, y∗i = minj∈Ai{cj + γpT
j y

∗}, ∀i.

Question 3: In the VI method, if starting with any vector y0 ≥ y∗ and assuming y1 ≤ y0, then prove

the following entry-wise monotone property: y∗ ≤ yk+1 ≤ yk, ∀k.

On the other hand, if we start from a vector such that y0i < minj∈Ai{cj + γpT
j y

0}, ∀i (y0 in the

interior of the feasible region), then prove the entry-wise monotone property: y∗ ≥ yk+1 ≥ yk, ∀k.

39

CME307/MS&E311: Optimization Lecture Note #16

P-III: Randomized VI

Rather than go through all state values in each iteration, we modify the VI method, call it RamdomVI: In the

kth iteration, randomly select a subset of states Bk and do

yk+1
i = min

j∈Ai

{cj + γpT
j y

k}, ∀i ∈ Bk. (8)

In RandomVI, we only update a subset of state values at random in each iteration.

Question 4: What can you tell the convergence of the RandomVI method? Does it make a difference with

the classical VI method? How is the sample size affect the performance? Use simulated computational

experiments to verify your claims.

Importance Sampling: Rather than randomly select a subset of all states in each iteration, suppose we

build an “influence tree” from a given subset of states, say B, for all sates, denoted by I(B), that are

connected by any state in B. Then when states in B are updated in the current iteration, then selected a

subset of states in I(B) for updating in the next iteration. Redo the computational experiments using this

strategy for a sparsely connected (pj is a very sparse distribution vector for each action j) MDP network.

In doing so, many unimportant or irrelevant states may be avoided which results a state-reduction.

40

CME307/MS&E311: Optimization Lecture Note #16

P-III: Cyclic VI

Question 5: Here is another modification, called CyclicVI: In the kth iteration do

• Initialize ỹk = yk.

• For i = 1 to m

ỹki = min
j∈Ai

{cj + γpT
j ỹ

k} (9)

• yk+1 = ỹk.

In the CyclicVI method, as soon as a state value is updated, we use it to update the rest of state values.

What can you tell the convergence of the CyclicVI method? Does it make a difference with other VI

methods? Use simulated computational experiments to verify your claims. How is this cyclic method

related to the method at the bottom of Question 4?

41

CME307/MS&E311: Optimization Lecture Note #16

P-III: Randomly Permuted Cyclic VI

In the CyclicVI method, rather than with the fixed cycle order from 1 to m, we follow a random permutation

order, or sample without replacement to update the state values. More precisely, in the kth iteration do

0. Initialize ỹk = yk and Bk = {1, 2, ...,m}

1. – Randomly select i ∈ Bk

–

ỹki = min
j∈Ai

{cj + γpT
j ỹ

k} (10)

– remove i from Bk and return to Step 1.

3. yk+1 = ỹk.

We call it the randomly permuted CyclicVI or RPCyclicVI in short

What can you tell the convergence of the RPCyclicVI method? Does it compare with other VI methods?

Use simulated computational experiments to verify your claims.

42

CME307/MS&E311: Optimization Lecture Note #16

Project-IV: ADMM

minimizex
1
2x

TQx+ cTx

s.t. Ax = b, x ≥ 0.
(11)

We now reformulate the QP problem as

minimizex,x′
1
2x

TQx+ cTx

s.t. Ax = b, (y)

x− x′ = 0; (s)

x′ ≥ 0,

and consider the split augmented Lagrangian function:

L(x,x′ ≥ 0,y, s) =
1

2
xTQx+cTx−yT (Ax−b)−sT (x−x′)+

β

2

(
∥Ax− b∥2 + ∥x− x′∥2

)
.

43

CME307/MS&E311: Optimization Lecture Note #16

P-IV: Questions

• Split constraints Ax = b and x′ ≥ 0 and add x− x′ = 0 and apply Two-Block ADMM.

• Further partition x into p blocks, x = [x1,x2, ...,xp] and apply the cyclic multi-block ADMM.

• Randomly permute the update order of x1,x2, ...,xp, followed by update of x′ and then the

multipliers y, s, in each cycle of ADMM.

• In each cycle of ADMM, we randomly assemble variables into x1, ...,xp, and update x according in

the order of 1 to p, followed by updates of x′ and then the multipliers y, s.

• Consider the case of each xj = {0, 1} and apply RAC-ADMM. Applications include QAP,

Max-Bisection, Sparse-Portfolio Selection, etc.

44

