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Nash and Correlated Equilibria

Abstract

In this document we will look at useful facts and definitions about Nash and correlated
equilibria for two person games. More specifically we’ll give a brief definition of both
equilibria, and then we’ll point out the relation between them.
We will next introduce a numerical approach aimed at calculating Nash Equilibria of a
symmetric game we wish to explore in CME 334. A motivation for this approach will
be given in a future document.



2 Nash and Correlated Equilibria

1. Game Theory Definitions and Properties

Let 1 ≤ i ≤ n and 1 ≤ j ≤ n be integers. a
(k)
i,j , the elements of Ak, are the payoff

player k receives when he plays along the pure strategy i and the other player plays
along the pure strategy j. This defines a two-player game in strategic form.

For a given finite set S, let ∆(S) be the set of all probability distributions on S.
That is π ∈ ∆(S) iff π ∈ [0, 1]|S| and

∑|S|
i=1 πi = 1.

Definition 1 Nash Equilibrium for the game represented by (A1, A2).
Let C1 and C2 be the set of strategies available to players 1 and 2 respectively. We say
that (π, ρ) is a Nash equilibrium iff π ∈ ∆(C1), ρ ∈ ∆(C2) and

1. ∀σ1 ∈ ∆(C1), πT A1ρ ≥ σT
1 A1ρ

2. ∀σ2 ∈ ∆(C2), ρT A2π ≥ σT
2 A2π

In other words the expected payoff of player 1 is maximized for the probability
distribution π given that player 2 uses probability distribution ρ (and similarly for
player 2).

This is a quadratic problem. In order to transform this into a linear problem, we
introduce the concept of Correlated Equilibrium

Definition 2 Let Γ be a nxn matrix whose elements are in IR+ and such that∑
i,j γij = 1 (ie Γ is a probability distribution on the set of all possible pairs of strate-

gies). We say that Γ is a correlated equilibria if the following conditions (called the
Strategic Incentive Constraints.)are satisfied:

1. ∀(i, k),
∑n

j=1 γi,j .(a
(1)
i,j − a

(1)
k,j) ≥ 0; and

2. ∀(j, k),
∑n

i=1 γi,j .(a
(2)
j,i − a

(2)
k,i ) ≥ 0

This defines a Linear Program, which we can solve efficiently.

The relationship between this two concepts is very direct. It is easy to prove that,
given a Nash Equilibrium, if we define the matrix ρ.πT , this matrix is a Correlated
Equlibrium. From this definition it is obvious that the matrix is of rank-one. We can
also prove that if the matrix M is a Correlated Equilibria and M is of rank-one, then
M is a product distribution over the set of possible pairs of strategies, and that the
factor distributions represent a Nash Equlibrium.

From the preceding observation, we can see that by relaxing the definition of Equi-
librium from Nash to Correlated Equilibrium, we are able to compute efficiently the
set of Correlated Equilibria. Now, to find a Nash Equilibrium we only need to find
a point in the intersection of the set of Correlated Equilibria and the set of rank-one
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matrices. An additional remark is that one can look for a symmetric rank-one matrix
when the matrices A1 and A2 are equal. We will focus on this particular case.

2. Numerical Approach to Explore

Given a correlated equilibrium, one could try to reduce the rank of the matrix to
get as close as possible to a rank-one matrix. This problem is very complicated, so we
will adopt a different approach. We will assume that we are in the rank-one matrices
set and also that our resulting matrix is a probability distribution.

More precisely: Given a nxn matrix A with positive entries ai,j , find a vector u in IRn

such that

1. (i) ∀i, ui ≥ 0

2. (ii) uT e = 1 where e is the vector with all entries equal to one

3. (iii) ∀(i, j), ui.u
T (Ai −Aj) ≥ 0 where Ai is the ith column of A

So far we have tried to define the distance of our current rank-one matrix to the
polytope defined by (iii) (Call it P ) as the absolute value of the sum of the violation
of constraints.

More precisely: Given a vector u that satisfies both (i) and (ii) and a matrix A as
above, we define the distance from u to the polytope P as

dP (u) =
∑

(i,j)∈V ui.u
T (Aj −Ai) with V = {(i, j)|ui.u

T (Ai −Aj) < 0}

My goal in the context of CME 334 project is to find an efficient numerical algorithm
to solve the problem min{dP (u)} such that u ≥ 0 and uT e = 1.


