
The problem

An inequality-constrained nonlinear programming problem may be posed in
the form

minimize
x∈IRn

f(x)

subject to c(x) ≥ 0,
(1)

where f(x) is a nonlinear function and c(x) is an m-vector of nonlinear
functions with ith component ci(x), i = 1,. . . , m. We shall assume that
f and c are sufficiently smooth. Let x∗ denote a solution to (1). We are
mainly concerned about smoothness in the neighborhood of x∗. In such a
neighborhood we assume that both the gradient of f(x) denoted by g(x)
and the m × n Jacobian of c(x) denoted by J(x) exist and are Lipschitz
continuous. As is the case with the unconstrained problem a solution to
this problem may not exist. Typically additional assumptions are made to
ensure a solution does exist. A common assumption is to assume that the
objective f(x) is bounded below on the feasible set. However, even this is
not sufficient to assure a minimizer exists but it is obviously a necessary
condition for an algorithm to be assured of converging. If the feasible region
is compact then a solution does exist. We shall only be concerned with local
solutions.

First-order optimality conditions

The problem is closely related to the equality-constrained problem. If it was
known which constraints were active (exactly satisfied) at a solution and
which were slack (strictly positive) then the optimality conditions for (1)
could be replaced by the optimality conditions for the equality case. Note
that this does not imply the inequality problem could be replaced by an
equality problem when it comes to determining a solution by an algorithm.
The inequality problem may have solutions corresponding to different sets of
constraints being active. Also an equality problem may have solutions that
are not solutions of the inequality problem. Nonetheless this equivalence
in a local neighborhood enables us to determine the optimality conditions
for this problem from those of an equality-constrained problem. In order to
study the optimality conditions it is necessary to introduce some notation.

Let ĉ(x) and c̄(x) denote the constraints active and slack at x respec-
tively. Likewise, let Ĵ(x) and J̄ denote their respective Jacobians. Assume
that Ĵ(x∗) is full rank. Points at which the Jacobian of the active constraints
is full rank are said to be regular. It follows from the necessary conditions

1



for the equality case that

g(x∗)− Ĵ(x∗)Tλ̂ = 0,
ĉ(x∗) = 0,
c̄(x∗) > 0,

where λ̂ is vector of Lagrange multipliers. These equations may be written
in the form:

g(x∗)− J(x∗)Tλ∗ = 0,
c(x∗) ≥ 0,

λ∗T c(x∗) = 0,

where λ∗ is the extended set of Lagrange multipliers. The set is extended by
defining a multiplier to be zero for the slack constraints at x∗ (c̄(x∗)).

The above first-order optimality conditions are not the only necessary
conditions. Unlike the equality case there may be a feasible arc that moves
off one or more of the active constraints along which the objective is reduced.
In other words we need some characterization that is necessary for the active
set to be binding. The key to identifying the binding set is to examine the
sign of λ̂.

It follows from the definition of λ̂ that

λ̂ = (Ĵ ĴT)−1Ĵg, (2)

where the argument x∗ has been dropped for simplicity. Note that (2)
implies that ‖λ̂‖ is bounded.

Define p as
Ĵp = δe + ej ,

where δ > 0, e denotes the vector of ones and ej is the unit column with
one in the jth position. It follows from the assumption on the continuity of
the Jacobian that x∗+αp is feasible for 0 ≤ α ≤ ᾱ, if ᾱ is sufficiently small.
From the mean-value theorem we have

f(x∗ + αp) = f(x∗) + αpTg(x∗ + ξαp),

where 0 ≤ ξ ≤ 1. The Lipschitz continuity of g implies M exists such that

pTg(x∗ + ξαp) ≤ pTg(x∗) + αM.

It follows that

f(x∗ + αp) ≤ f(x∗) + α(pTg(x∗) + αM).

2



From the necessary conditions on x∗ we get

pTg(x∗) = pTĴTλ̂,

which implies
f(x∗ + αp) ≤ f(x∗) + α(pTĴTλ̂ + αM).

Using the definition of p gives

f(x∗ + αp) ≤ f(x∗) + α(δeTλ̂ + λ̂j + αM).

It follows from the boundedness of λ̂ that if λ̂j < 0 then for δ sufficiently
small there exists ᾱ such that for 0 < α ≤ ᾱ,

f(x∗ + αp) < f(x∗).
Consequently, a necessary condition for x∗ to be a minimizer under the
assumptions made is that λ̂ ≥ 0. Equivalently, λ∗ ≥ 0.

For different assumptions such as Ĵ not being full rank the condition
need not hold as the following simple case illustrates. Suppose we have an
equality-constrained problem with c(x) = 0 then an equivalent inequality-
constrained problem is

minimize
x∈IRn

f(x)

subject to c(x) ≥ 0,
−c(x) ≥ 0.

It follows that all constraints are active at a solution. We know in this
case there are no necessary conditions on the Lagrange multipliers. Clearly
the Jacobian of the active constraints is not full rank. Geometrically what
breaks down is that there is no perturbation from x∗ that moves feasible with
respect to one constraint without violating at least one other constraint.

The condition c(x∗)Tλ∗ = 0 is a complementarity condition. At least one
of (ci(x∗), λ∗i ) must be zero. It is possible for both to be zero. If there is no
index for which both are zero then c(x∗) and λ∗ are is said to satisfy strict
complementarity.

If Ĵ(x∗) is full rank then it follows from (2) that λ∗ is an isolated point.
The function L(x, λ)

L(x, λ) = F (x)− λTc(x),

is known as the Lagrangian. The optimality condition

g(x∗)− J(x∗)Tλ∗ = 0

3



is equivalent to ∇xL(x∗, λ∗) = 0. It is also equivalent to Z(x∗)Tg(x∗) = 0,
where the columns of Z(x) are a basis for the null space of the rows of Ĵ(x).
The vector Z(x)Tg(x) is called the reduced gradient.

Clearly Lagrange multipliers play a significant role in defining the solu-
tion of an inequality-constrained problem. There is a significant difference
in that role between linear and nonlinear constraints. In the case of linear
constraints the numerical value of the multiplier plays no role in defining x∗
only the sign of the multiplier is significant. For nonlinear constraints the
numerical value as well as the sign is of significance. To appreciate why it
first necessary to appreciate that for problems that are nonlinear in either
the constraints or the objective, curvature of the functions are relevant in
defining x∗. More precisely the curvature of the Lagrangian. It easily seen
that curvature of the objective is relevant since for unconstrained problems
no solution would exist otherwise. To appreciate that curvature in c(x) is
relevant note that any problem can be transformed into a problem with
just a linear objective by adding an extra variable. For example, add the
constraint xn+1 − f(x) ≥ 0 and minimize xn+1 instead of f(x). Since we
have established the curvature of f(x) is relevant that relevance must still be
there even though f(x) now appears only within a constraint. It is harder
to appreciate that it is the relative curvature of the various constraints and
objective that is of significance.

1 Second-order optimality conditions

We shall now assume that the problem functions are twice continuous differ-
entiable. From the unconstrained case it is known that a necessary condition
is that ∇2f(x∗) is positive semidefinite. Obviously a generalization of this
condition needs to hold for (1). Again the Lagrangian will be shown to play
a key role. We start by examining the behavior of f(x) along a feasible arc
emanating from x∗. Although the first-order optimality conditions make the
first-order change in the objective along a feasible arc non-negative, it could
be zero. Consequently, the second-order change needs to be non-negative
for arcs where this is true.

We restrict our interest to feasible arcs that remain on the set of con-
straints active at x∗. If x(α) represents a twice differentiable arc, with x(0) =
x∗, that lies on the active set then ĉ(x(α)) = 0. Define p ≡ d(x(0))/dα and
h ≡ d2(x(0))/dα2. We have

4



d

dα
ĉi

(
x(α)

)
= ∇(ĉi(x(α))T d

dα
x(α).

d2

dα2
ĉi

(
x(α)

)
=

d

dα
x(α)T∇2ĉi(x(α))

d

dα
x(α)

+∇ĉi(x(α))T d2

dα2
x(α).

Since ĉ(x(α)) = 0 it follows that

d2

dα2
ĉi

(
x(0)

)
= ∇ĉi(x∗)Th + pT∇2ĉi(x∗)p = 0. (3)

Similarly we get

d2

dα2
f(x(0)) = g(x∗)Th + pT∇2f(x∗)p.

Since
d

dα
f(x(0)) = g(x∗)Tp = 0

(otherwise there would be a descent direction from x∗) we require that

g(x∗)Th + pT∇2f(x∗)p ≥ 0.

Substituting for g(x∗) using the first-order optimality conditions gives

hTJ(x∗)T λ∗ + pT∇2f(x∗)p ≥ 0.

It follows from (3) and the definition of the extended multipliers that we
require

−
m∑

i=1

λ∗i pT∇2ci(x∗)p + pT∇2f(x∗)p ≥ 0.

From the definition of L(x∗, λ∗) and Ĵ(x∗)p = 0 this condition is equivalent
to requiring that Z(x∗)T∇2L(x∗, λ∗)Z(x∗) be positive semi-definite. This
matrix is called the reduced Hessian of the Lagrangian. Since the condition is
on the second derivatives it is termed a second-order optimality condition. It
can now be appreciated that the numerical value of the Lagrange multipliers
play a role in defining the solution of a nonlinearly-constrained problem.
Note that when there are n active constraints then there is no feasible arc
that remains on the active set and the second-order optimality condition is

5



empty. When Ĵ has n rows then the reduced Hessian has zero dimension.
For convenience we can define symmetric matrices of zero dimension to be
positive definite.

Necessary and sufficient conditions for x∗ to be a minimizer are complex.
However, sufficient conditions are easy to appreciate. We have established no
feasible descent direction exists that moves off any of the active constraints.
Consequently, if λ̂ > 0 then f(x) increases along any feasible arc emanating
from x∗ that moves off a constraint. We now only need to be sure the same
is true for all arcs emanating from x∗ that remaining on the active set. This
is assured if

d2

dα2
f(x(0)) = g(x∗)Th + pT∇2f(x∗)p > 0,

which implies Z(x∗)T∇2L(x∗, λ∗)Z(x∗) is positive definite. Assuming that
x∗ is a regular point, strict complementarity hold, the first-order necessary
conditions hold, and the reduced Hessian at x∗ is positive definite then x∗
is a minimizer and an isolated point.

Algorithms

Algorithms for inequality problems have a combinatorial element not present
in algorithms for equality-constrained problems. The simplest case of lin-
ear programming (LP) illustrates the point. Under mild assumptions the
solution of an LP is given by the solution of a set of linear equations, ie.
a vertex of the feasible region. The difficult issue is determining which of
the constraints define those equations. If there are m inequality constraints
and n variables there are m!/n!(n−m)! choices of active constraints. Even
for modest values of m and n the possible choices are astronomical. This
clearly rules out methods based on exhaustive search.

One class of methods to solve inequality problems are so-called active-
set methods an example being the simplex method for LP. First a guess is
made of the active set (called the working set) and then an estimate to the
solution of the resulting equality-constrained problem is computed (in the
case of LP or quadratic programming (QP) this would be precise) and at
the new point a new guess is made of the active set. The estimate of the
solution of the equality-constrained problem is usually made by finding a
point that satisfies an approximation to the first-order necessary conditions.
Unless an intelligent guess is made of the active set such algorithms are
doomed to fail. Typically after the initial active set such algorithms generate
subsequent working sets automatically. For linearly-constrained problems

6



this is usually a very simple procedure. Assuming the current iterate is
feasible an attempt is made to move to the new estimate of the solution.
If this is infeasible the best (or a point better than the current iterate) is
found along the direction to the new estimate. The constraints active at
the new feasible point are then used to define the working set. Usually
the active set will be the working set but occasionally we need to move off
a constraint that is currently active. How to identify such a constraint is
usually straightforward and can be done by examining an estimate to the
Lagrange multipliers (obtained from the solution to the approximation of
the first-order necessary conditions). More complex strategies are possible
that move off several constraints simultaneously. An initial feasible point
is found by solving an LP. One consequence of this strategy is that it is
only necessary to consider working sets for which the objective function has
a lower value than at the current iterate. Once we are in a neighborhood
of the solution the working set does not change if strict complementarity
holds at the solution and x∗ is a regular point. Typically the change in the
working set at each iteration of active-set methods for linearly-constrained
problems is small (usually one), which results in efficiencies when computing
the estimate to the new equality-constrained problem. In practice active-set
methods work well and usually identify the active set at the solution with
very little difficulty. For an LP the number of iterations required to identify
the active set usually grows linearly with the size of the problem. However,
pathological cases exist in which the number of iterations is astronomical
and real LP problems do arise where the number of iterates required is
much greater than the typical case. Nonetheless algorithms for linearly-
constrained problems based on active-set methods are highly successful.

For nonlinear problem the issue of identifying the active set at the solu-
tion is usually less significant since even when the active set is known the
number of iterations required to solve a problem may be large. A more rel-
evant issue is that not knowing the active set causes some problems such as
making the linear algebra routines much more complicated. For small prob-
lems this is of little consequence but in the large-scale case it complicates
the data structures required.

Nonlinearly-constrained problems are usually an order of magnitude
more complicated to solve than linearly-constrained problems. One rea-
son is that algorithms for problems with nonlinear constraints usually do
not maintain feasible iterates. If a problem has just one nonlinear equal-
ity constraint then generating each member of a sequence that lies on that
constraint is itself an infinite process. Methods that generate infeasible in-
terates need to have some means of assessing whether a point is better than

7



another point. For feasible-point algorithms this is a simple issue since the
objective provides a measure of merit. A typical approach is to define a
merit function, which balances a change in the objective against the change
in the degree of infeasibility. A commonly used merit function is

M(x, ρ) = f(x) + ρ

m∑

i=1

max{0, −ci(x)},

where ρ is a parameter that needs to be sufficiently large. Usually it will not
be known what “sufficiently” large is so this parameter is adjusted as the se-
quence of iterates is generated. Note that M(x, ρ) is not a smooth function
and has a discontinuity in its derivative when any element of c(x) is zero. In
particular it is not continuous at x∗ when a constraint is active at x∗. Were
this not the case then constrained problems could be transformed to un-
constrained problems and solved as such. While transforming a constrained
problem into a simple single smooth unconstrained problem is not possible
the transformation approach is the basis of a variety of methods. A popular
alternative to direct methods is to transform the problem into that of solv-
ing a sequence of smooth linearly-constrained problems. This is the method
at the heart of MINOS (see [8, 9]) one of the most widely used methods for
solving problems with nonlinear constraints. Other transformation methods
transform the problem to that of solving a sequence of unconstrained or
bounds-constrained problem. Transformation methods have an advantage
of over direct methods when developing software. For example, if you have a
method for solving large-scale linearly-constrained problems then it can be
used as a kernal in an algorithm to solve large-scale nonlinearly-constrained
problems.

References

[1] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M.: Nonlinear
Programming: Theory and Algorithms, second ed., John Wiley and Sons,
New York, 1993, ISBN 0-471-55793-5.

[2] Bertsekas, D. P.: Nonlinear Programming, Athena Scientific, Bel-
mont, 1999 (second edition), ISBN 1-886529-14-0.

[3] Fletcher, R.: Practical Methods of Optimization, John Wiley and
Sons, 1988, ISBN 0-471-91547-5

8



[4] Karush, W.: Minima of functions of several variables with inequal-
ities as side constraints, Master’s thesis, Department of Mathematics,
University of Chicago, 1939.

[5] Gill, P. E., Murray, W. and Wright, M. H.: Practical Optimiza-
tion, Academic Press, 1981, ISBN 0-12-283952-8

[6] Kuhn, H. W.: ‘Nonlinear programming: a historical note’, in J. K.
Lenstra, A. H. G. Rinnooy Kan, and A. Schrijver (eds.): History
of Mathematical Programming: A Collection of Personal Reminiscences,
Elsevier Science Publishers B. V., 1991, pp. 82–96.

[7] Kuhn, H. W., and Tucker, A. W.: ‘Nonlinear programming’, in
J. Neyman (ed.): Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, University of California Press,
1951, pp. 481–492.

[8] B. A. Murtagh and M. A. Saunders: A projected Lagrangian al-
gorithm and its implementation for sparse nonlinear constraints. Math.
Prog. Study, 16:84–117, 1982.

[9] B. A. Murtagh and M. A. Saunders: MINOS 5.4 User’s Guide.
Report SOL 83-20R, Department of Operations Research, Stanford Uni-
versity, Stanford, CA, 1993.

[10] Nash, S. G., and Sofer, A.: Linear and Nonlinear Programming,
McGraw-Hill, New York, 1996, ISBN 0-07-046065-5.

9


