Semidefinite programming (SDP) has been developed to solve a wide range of problems in Engineering and Optimization. Although it possesses beautiful theoretical features and properties, the speed of SDP algorithms is unsatisfactory and un-scalable for many practical applications. In this project we explore methods to develop more efficient SDP models; more precisely, to decompose the single semidefinite matrix cone into a set of small-size semidefinite matrix cones, which we call the “smaller” SDP (SSDP) cone approach.

First some math notations. \mathbb{R}^d denotes the d-dimensional Euclidean space, S^n denotes the space of $n \times n$ symmetric matrices, T denotes transpose and $r(A)$ denotes the rank of A. For $A \in S^n$, A_{ij} denotes the (i,j)th entry of A, and $A_{(i_1, \ldots, i_k), (i_1, \ldots, i_k)}$ denotes the principal submatrix of A with the rows and columns indexed by i_1, \ldots, i_k. And for $A, B \in S^n$, $A \succeq B$ means that $A - B$ is positive semi-definite.

Given a general SDP problem:

$$\begin{align*}
\min & \quad C \cdot X \\
\text{s.t.} & \quad A_j \cdot X = b_j, \quad \forall j \\
& \quad X \succeq 0,
\end{align*}$$

where $X \in S^n$. We now consider a "decomposed" version of the problem:

$$\begin{align*}
\min & \quad C \cdot X \\
\text{s.t.} & \quad A_j \cdot X = b_j, \quad \forall j \\
& \quad X_{N_i, N_i} \succeq 0, \quad \forall i,
\end{align*}$$

where N_i is an index subset of $\{1, 2, \ldots, n\}$, and could be chosen from the problem data structure and sparsity pattern. Note that here N_is may not be disjoined.

Question 1: What is the dual of Problem (1)? What are the complementarity conditions?

Given a general SDP problem in the dual format:

$$\begin{align*}
\max & \quad \sum_j b_j y_j \\
\text{s.t.} & \quad \sum_j y_j A_j + S = C \\
& \quad S \succeq 0.
\end{align*}$$

We again consider a "decomposed" version of the problem:

$$\begin{align*}
\max & \quad \sum_j b_j y_j \\
\text{s.t.} & \quad \sum_j y_j A_j + S = C \\
& \quad S_{N_i, N_i} \succeq 0, \quad \forall i.
\end{align*}$$
Again N_is may not be disjoined.

Note that the problem can be rewritten as

$$\text{max} \quad \sum_j b_j y_j$$

s.t.

$$\sum_j y_j (A_j)_{N_i,N_i} + S_{N_i,N_i} = C_{N_i,N_i},$$

$$S_{N_i,N_i} \succeq 0, \forall i. \quad (3)$$

This is a standard SDP problem solved by DSDP5.8.

Question 2: What is the dual of Problem (2) or (3)? What are the complementarity conditions? How to construct a feasible "solution" to the original SDP?

Question 3: When the decomposed version is equivalent to the original problem?

Some definitions may be useful.

Definition 1. A undirected graph is a chordal graph if every cycle of length greater than three has a chord; see, e.g., [2].

Also, the concept of partial positive semi-definite matrix can be found, e.g., in [5, 6, 7].

Definition 2. A square matrix is called to be partial symmetric if it is symmetric to the extent of its specified entries, i.e., if the (i,j) entry of the matrix is specified, then so is the (j,i) entry and the two are equal. A partial semi-definite matrix is a partial symmetric matrix and every fully specified principal submatrix is positive semi-definite.

The following results was proved in [6]

Lemma 1. Every partial positive semi-definite matrix with undirected graph G has positive semi-definite completion if and only if G is chordal.

Question 4: How good is the decomposed versions? How do they perform? Apply the decomposition method to solving either Max-Cut problems or the sensor localization problem, using Sedumi [10] or DSDP [1]. Explain your computational results and try to develop theorems to support the findings.

Question 5: Since these SDP decompositions have a special form, can you develop tailored interior-point methods to solve them?

References

