ASSIGNMENT 1

1. Prove that the dual cone of the p-order cone, $p = 1, \ldots, \infty$, is the q-order cone where $\frac{1}{q} + \frac{1}{p} = 1$.

2. (a). Exercise 1.3, Course Monograph, Chapter 1, page 27.
 (b). Exercise 1.8, Course Monograph, Chapter 1, page 28.

3. Let X be a positive semidefinite matrix of rank r, and A be any given symmetric matrix. Then, there is a decomposition of X

 \[X = \sum_{i=1}^{r} x_i x_i^T, \]

 such that for all i,

 \[x_i^T A x_i = A \bullet (x_i x_i^T) = A \bullet X/r. \]

4. Let $f(X) = \log \det(X)$ over positive definite matrix cone.
 (a). f is a concave function.
 (b). find out $\nabla f(X)$ and $\nabla^2 f(X)$.

5. Exercise 1.11, Course Monograph, Chapter 1, page 28.

6. Download SEDUMI1.05, DSDP5.8, and/or CVX and install them in Matlab. Solve the SDP example on Lecture Note #1.