Conic Duality

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye
Vectors and Norms

- **Real numbers:** \mathbb{R}, \mathbb{R}_+, $\text{int} \mathbb{R}_+$
- **n-dimensional Euclidean space:** \mathbb{R}^n, \mathbb{R}_+^n, $\text{int} \mathbb{R}_+^n$
- **Component-wise:** $\mathbf{x} \geq \mathbf{y}$ means $x_j \geq y_j$ for $j = 1, 2, \ldots, n$
- **$\mathbf{0}$:** vector of all zeros; and **\mathbf{e}:** vector of all ones
- **Inner-product** of two vectors:
 \[\mathbf{x} \cdot \mathbf{y} := \mathbf{x}^T \mathbf{y} = \sum_{j=1}^{n} x_j y_j \]
- **Euclidean norm:** $\| \mathbf{x} \|_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$,
 - **Infinity-norm:** $\| \mathbf{x} \|_\infty = \max\{|x_1|, |x_2|, \ldots, |x_n|\}$,
 - **p-norm:** $\| \mathbf{x} \|_p = \left(\sum_{j=1}^{n} |x_j|^p \right)^{1/p}$
• The **dual** of the p norm, denoted by $\| \cdot \|^*$, is the q norm, where $\frac{1}{p} + \frac{1}{q} = 1$

• Column vector:

$$\mathbf{x} = (x_1; x_2; \ldots; x_n)$$

Row vector:

$$\mathbf{x} = (x_1, x_2, \ldots, x_n)$$

• Transpose operation: A^T

• A set of vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$ is said to be **linearly dependent** if there are scalars $\lambda_1, \ldots, \lambda_m$, not all zero, such that the **linear combination**

$$\sum_{i=1}^{m} \lambda_i \mathbf{a}_i = \mathbf{0}$$

• A **linearly independent** set of vectors that span \mathbb{R}^n is a **basis**.
Hyper plane and Half-spaces

\[H = \{ x : ax = \sum_{j=1}^{n} a_j x_j = b \} \]

\[H^+ = \{ x : ax = \sum_{j=1}^{n} a_j x_j \leq b \} \]

\[H^- = \{ x : ax = \sum_{j=1}^{n} a_j x_j \geq b \} \]
Figure 1: Plane and Half-Spaces

\[3x + 5y > 15 \]
\[3x + 5y = 15 \]
\[3x + 5y < 15 \]
Matrices and Norms

- **Matrix:** \(\mathbb{R}^{m \times n} \), \(i \)th row: \(a_i \), \(j \)th column: \(a_{.j} \), \(ij \)th element: \(a_{ij} \)

- \(A_I \) denotes the submatrix of \(A \) whose rows belong to index set \(I \), \(A_J \) denotes the submatrix whose columns belong to index set \(J \), \(A_{IJ} \) denotes the submatrix whose rows belong to index set \(I \) and columns belong to index set \(J \).

- **Determinant:** \(\det(A) \), **Trace:** \(\text{tr}(A) \)

- The operator norm of \(\|A\| \),

\[
\|A\|^2 := \max_{0 \neq x \in \mathbb{R}^n} \frac{\|Ax\|^2}{\|x\|^2}
\]

- All-zero matrix: \(0 \), and identity matrix: \(I \)

- Symmetric matrix: \(Q = Q^T \)
• Positive Definite: $Q \succ 0$ iff $x^T Q x > 0$, for all $x \neq 0$

• Positive Semidefinite: $Q \succeq 0$ iff $x^T Q x \geq 0$, for all x

• Null space and Row space of matrix A:

Theorem 1 The null space and row space of a matrix are perpendicular to each other, that is,

$$x^T s = 0, \quad \forall \ Ax = 0 \text{ and } s = A^T y.$$
Symmetric Matrix Space

- n-dimensional symmetric matrix space: S^n

- Inner Product:
 \[X \bullet Y = \text{tr} X^T Y = \sum_{i,j} X_{i,j} Y_{i,j} \]

- Frobenius norm:
 \[\|X\|_f = \sqrt{\text{tr} X^T X} \]

- Positive semidefinite matrix set: S^n_+, Positive definite matrix set: int S^n_+
• Decomposition of Symmetric Positive Semidefinite Matrices:

\[X = \sum_{i=1}^{r} x_i x_i^T \]

where \(r \) is the rank of \(X \), and \(x_i^T x_j = 0 \) for \(i \neq j \).

• Let \(X \) be a positive semidefinite matrix of rank \(r \), \(A \) be any given symmetric matrix. Then, there is a decomposition of \(X \)

\[X = \sum_{j=1}^{r} x_j x_j^T, \]

such that for all \(j \),

\[x_j^T A x_j = A \bullet (x_j x_j^T) = A \bullet X/r. \]
Affine and Convex Combination

$S \subset \mathbb{R}^n$ is affine if

$$[x, y \in S \text{ and } \alpha \in \mathbb{R}] \implies \alpha x + (1 - \alpha)y \in S.$$

When x and y are two distinct points in \mathbb{R}^n and α runs over \mathbb{R},

$$\{z : z = \alpha x + (1 - \alpha)y\}$$

is the line set determined by x and y.

When $0 \leq \alpha \leq 1$, it is called the convex combination of x and y and it is the line segment between x and y.
Convex Sets

- Set notations: \(x \in \Omega, \ y \not\in \Omega \ S \cup T, \ S \cap T \)

- \(\Omega \) is said to be a **convex set** if for every \(x^1, x^2 \in \Omega \) and every real number \(\alpha \in [0, 1] \), the point \(\alpha x^1 + (1 - \alpha)x^2 \in \Omega \).

- **Intersection** of convex sets is convex; the **convex hull** of a set \(\Omega \) is the intersection of all convex sets containing \(\Omega \).

- A point in a set is called an **extreme point** of the set if it cannot be represented as the convex combination of two distinct points of the set.

- A set is a **polyhedral** set if it has finitely many extreme points.
Let C_1 and C_2 be convex sets in a same space. Then,

- $C_1 \cap C_2$ is convex.
- $C_1 + C_2$ is convex, where
 \[C_1 + C_2 = \{b_1 + b_2 : b_1 \in C_1 \text{ and } b_2 \in C_2\}. \]
- $C_1 \oplus C_2$ is convex, where
 \[C_1 \oplus C_2 = \{(b_1; b_2) : b_1 \in C_1 \text{ and } b_2 \in C_2\}. \]
Cones

- A set K is a cone if $x \in K$ implies $\alpha x \in K$ for all $\alpha > 0$

- A convex cone is cone and it’s also a convex-set.

- Dual cone:
 \[K^* := \{ y : y \cdot x \geq 0 \text{ for all } x \in K \} \]
 $-K^*$ is also called the polar of K.

- The dual of a cone is always a closed convex cone.
Cone Examples

• Example 2.1: The \(n \)-dimensional non-negative orthant,
 \(\mathcal{R}_+^n = \{ x \in \mathcal{R}^n : x \geq 0 \} \), is a convex cone; and it’s self dual.

• Example 2.2: The set of all positive semi-definite symmetric matrices in \(S_+^n \),
 \(S_+^n \), is a convex cone, called the positive semi-definite matrix cone; and it’s self dual.

• Example 2.3: The set \(\{ x \in \mathcal{R}^n : x_1 \geq \| x_{-1} \| \} \), \(\mathcal{N}_2^n \), is a convex cone in \(\mathcal{R}^n \) called the second-order (norm) cone; and it’s self dual.

• Example 2.4: The set \(\{ x \in \mathcal{R}^n : x_1 \geq \| x_{-1} \|_p \} \), \(\mathcal{N}_p^n \), is a convex cone in \(\mathcal{R}^n \) for \(p \geq 1 \) called the \(p \)-order (norm) cone; and its dual is the \(q \)-order cone where \(\frac{1}{p} + \frac{1}{q} = 1 \).
Cone and Dual Facts

Let K_1 and K_2 be both closed convex cones. Then

i) $(K_1^*)^* = K_1$.

ii) $K_1 \subset K_2 \implies K_2^* \subset K_1^*$.

iii) $(K_1 \oplus K_2)^* = K_1^* \oplus K_2^*$.

iv) $(K_1 + K_2)^* = K_1^* \cap K_2^*$.

v) $(K_1 \cap K_2)^* = K_1^* + K_2^*$.
Convex Polyhedral Cones I

- A cone K is (convex) **polyhedral** if its intersection with a hyperplane is a polyhedral set.

- A convex cone K is **polyhedral** if and only if K can be represented by

 $K = \{ x : Ax \leq 0 \}$ or $\{ x : x = Ay, \ y \geq 0 \}$

 for some matrix A. In the latter case, K is generated by the columns of A.

- The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.
Figure 2: Polyhedral and non-polyhedral cones.
Convex Polyhedral Cones II

It has been proved that for cones the concepts of “polyhedral” and “finitely generated” are equivalent according to the following theorem.

Theorem 2 (*Minkowski and Weyl*) A convex cone C is polyhedral if and only if it is finitely generated, that is, the cone is generated by a finite number of vectors $b_1, ..., b_m$:

$$C = \text{cone}(b_1, ..., b_m) := \left\{ \sum_{i=1}^{m} b_i y_i : y_i \geq 0, \ i = 1, ..., m \right\}.$$
Carathéodory’s theorem

The following theorem states that a polyhedral cone can be generated by a set of basic directional vectors.

Theorem 3 Let convex polyhedral cone $C = \text{cone}(b_1, \ldots, b_m)$ and $x \in C$. Then, $x \in \text{cone}(b_{i_1}, \ldots, b_{i_d})$ for some linearly independent vectors b_{i_1}, \ldots, b_{i_d} chosen from b_1, \ldots, b_m.

Some times we even have:

$$\begin{cases} x \in \mathbb{R}_+^2 : \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} x \leq 0 \end{cases} = \begin{cases} \begin{pmatrix} 1 \\ 2 \end{pmatrix} y_1 + \begin{pmatrix} 2 \\ 1 \end{pmatrix} y_2 : y_1, y_2 \geq 0 \end{cases}.$$
Figure 3: Representations of a polyhedral cone.
The most important theorem about the convex set is the following **separating hyperplane** theorem (Figure 4).

Theorem 4 (*Separating hyperplane theorem*) Let $C \subset \mathcal{E}$, where \mathcal{E} is either \mathbb{R}^n or S^n, be a closed convex set and let b be a point exterior to C. Then there is a vector $a \in \mathcal{E}$ such that

$$a \cdot b > \sup_{x \in C} a \cdot x$$

where a is the norm direction of the hyperplane.
Figure 4: Illustration of the separating hyperplane theorem; an exterior point b is separated by a hyperplane from a convex set C.
Examples

Let C be a unit circle centered at point $(1; 1)$. That is,

$$C = \{ \mathbf{x} \in \mathbb{R}^2 : (x_1 - 1)^2 + (x_2 - 1)^2 \leq 1 \}.$$

If $\mathbf{b} = (2; 0)$, $\mathbf{a} = (-1; 1)$ is a separating hyperplane vector.

If $\mathbf{b} = (0; -1)$, $\mathbf{a} = (0; 1)$ is a separating hyperplane vector. It is worth noting that these separating hyperplanes are not unique.
Farkas’ Lemma for Polyhedral Cone

Theorem 5 Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then, the system
\[
\{ x : Ax = b, \ x \in \mathbb{R}^n_+ \}
\]
has a feasible solution x if and only if that
\[
\{ y : -A^T y \in \mathbb{R}^n_+, \ b^T y > 0, \ (b^T y = 1) \}
\]
has no feasible solution.

A vector y, with $A^T y \leq 0$ and $b^T y > 0$, is called an infeasibility certificate for the system $\{ x : Ax = b, \ x \geq 0 \}$.

Example: Let $A = (1, 1)$ and $b = -1$. Then, $y = -1$ is an infeasibility certificate for $\{ x : Ax = b, \ x \geq 0 \}$.
Farkas’ lemma is also called the alternative theorem, that is, exactly one of the two systems:

\[
\{ x : A x = b, \ x \geq 0 \}
\]

and

\[
\{ y : A^T y \leq 0, \ b^T y > 0, \ (b^T y = 1) \},
\]

is feasible.

Geometrically, Farkas’ lemma means that if a vector \(b \in \mathcal{R}^m \) does not belong to the cone generated by \(a_1, \ldots, a_n \), then there is a hyperplane separating \(b \) from \(\text{cone}(a_1, \ldots, a_n) \), that is,

\[
b \notin C := \{ A x : x \geq 0 \},
\]

which is a closed convex set(?).
Proof

Let \(\{x : Ax = b, \ x \geq 0\} \) have a feasible solution, say \(\bar{x} \). Then, \(\{y : A^T y \leq 0, \ b^T y > 0\} \) is infeasible, since otherwise,

\[
0 < b^T y = (Ax)^T y = x^T (A^T y) \leq 0
\]

since \(x \geq 0 \) and \(A^T y \leq 0 \).

Now let \(\{x : Ax = b, \ x \geq 0\} \) have no feasible solution, that is, \(b \not\in C := \{Ax : x \geq 0\} \). Then, by the separating hyperplane theorem, there is \(y \) such that

\[
y \cdot b > \sup_{c \in C} y \cdot c
\]

or

\[
y \cdot b > \sup_{x \geq 0} y \cdot (Ax) = \sup_{x \geq 0} A^T y \cdot x. \quad (1)
\]

Since \(0 \in C \) we have \(y \cdot b > 0 \).
Furthermore, $A^T y \leq 0$. Since otherwise, say $(A^T y)_1 > 0$, one can have a vector $\bar{x} \geq 0$ such that $\bar{x}_1 = \alpha > 0$, $\bar{x}_2 = \ldots = \bar{x}_n = 0$, from which

$$
\sup_{x \geq 0} A^T y \cdot x \geq A^T y \cdot \bar{x} = (A^T y)_1 \cdot \alpha
$$

and it tends to ∞ as $\alpha \to \infty$. This is a contradiction because $\sup_{x \geq 0} A^T y \cdot x$ is bounded from above by (1).
Farkas’ Lemma variant

Theorem 6 Let \(A \in \mathbb{R}^{m \times n} \) and \(c \in \mathbb{R}^n \). Then, the system \(\{ y : A^T y \leq c \} \) has a solution \(y \) if and only if that \(Ax = 0, x \geq 0, c^T x < 0 \) has no feasible solution \(x \).

Again, a vector \(x \geq 0 \), with \(Ax = 0 \) and \(c^T x < 0 \), is called a **infeasibility certificate** for the system \(\{ y : A^T y \leq c \} \).

Example: Let \(A = (1; -1) \) and \(c = (1; -2) \). Then, \(x = (1; 1) \) is an infeasibility certificate for \(\{ y : A^T y \leq c \} \).
Alternative Systems for General Cone?

\[\{ x : Ax = b, \ x \in C \} \]

and

\[\{ y : -A^T y \in C^*, \ b^T y > 0 \} ? \]

Counterexample:

\[A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

and

\[b = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \ C = S^2_+ . \]
Farkas Lemma for General Convex Cone

Theorem 7 Consider system \(\{ x : Ax = b, \ x \in K \} \) for a (closed) convex cone \(K \). Suppose that there exists vector \(\bar{y} \) such that \(-A^T \bar{y} \in \text{int} \ K^* \). Then,

- Set \(C := \{ Ax : x \in K \} \) is a closed convex set.
- The system \(\{ x : Ax = b, \ x \in K \} \) has a feasible solution \(x \) if and only if that \(\{ y : -A^T y \in K^*, \ b^T y > 0, \ (b^T y = 1) \} \) has no feasible solution.

Corollary 1 Consider system \(\{(y, s) : A^T y + s = c, \ s \in K \} \) for a (closed) convex cone \(K \). Suppose that there exists vector \(\bar{x} \) such that \(A\bar{x} = 0, \ \bar{x} \in \text{int} \ K^* \). Then,

- Set \(C := \{ A^T y + s : s \in K \} \) is a closed convex set.
- The system \(\{ x : Ax = 0, \ c \cdot x = -1, \ x \in K^* \} \) has a feasible solution \(x \) if and only if that \(\{(y, s) : A^T y + s = c, \ s \in K \} \) has no feasible solution.