
MS&E314: Optimization in ML&DS Lecture Note #02

Mathematical Optimization Models and Applications II

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/˜yyye

Chapters 1, 2.1-2, 6.1-2, 7.2, 11.3, 11.6

1

MS&E314: Optimization in ML&DS Lecture Note #02

Unconstrained Optimization: Logistic Regression I

Similar to SVM, given the two-class discrimination training data points ai ∈ Rn, according to the logistic

model, the probability that it’s in a class C , say in Red, is represented by a linear/affine function with

slope-vector x and intersect scalar x0:

ea
T
i x+x0

1 + ea
T
i
x+x0

.

Thus, for some training data points, we like to determine intercept x0 and slope vector x ∈ Rn such that

ea
T
i x+x0

1 + ea
T
i
x+x0

=

 1, if ai ∈ C

0, otherwise
.

Then the probability to give a “right classification answer” for all training data points is(∏
ai∈C

ea
T
i x+x0

1 + ea
T
i
x+x0

) ∏
ai ̸∈C

1

1 + ea
T
i
x+x0


2

MS&E314: Optimization in ML&DS Lecture Note #02

Logistic Regression II

Therefore, we like to maximize the probability when deciding intercept x0 and slope vector x ∈ Rn(∏
ai∈C

ea
T
i x+x0

1 + ea
T
i
x+x0

) ∏
ai ̸∈C

1

1 + ea
T
i
x+x0

 =

(∏
ai∈C

1

1 + e−aT
i
x−x0

) ∏
ai ̸∈C

1

1 + ea
T
i
x+x0

 ,

which is equivalently to maximize

−

(∑
ai∈C

ln(1 + e−aT
i x−x0)

)
−

∑
ai ̸∈C

ln(1 + ea
T
i x+x0)

 .

Or

min
x0,x

(∑
ai∈C

ln(1 + e−aT
i x−x0)

)
+

∑
ai ̸∈C

ln(1 + ea
T
i x+x0)

 .

This is an unconstrained optimization problem, where the objective is a convex function of decision

variables: intercept x0 and slope vector x ∈ Rn.

3

MS&E314: Optimization in ML&DS Lecture Note #02

Sparse Linear Regression Problems

We want to find a sparsest solution to fit exact data measurements, that is, to minimize the number of

non-zero entries in x such that Ax = b:

minimize ∥x∥0 = |{j : xj ̸= 0}|
subject to Ax = b.

Sometimes this objective can be accomplished by LASSO:

minimize ∥x∥1 =
∑n

j=1 |xj |
subject to Ax = b.

It can be equivalently represented by (?)

minimize
∑n

j=1 yj

subject to Ax = b, −y ≤ x ≤ y;
or

minimize
∑n

j=1(x
′
j + x′′

j)

subject to A(x′ − x′′) = b, x′ ≥ 0, x” ≥ 0.

Both are linear programs!

4

MS&E314: Optimization in ML&DS Lecture Note #02

Sparsest Data Fitting continued

A better approximation of the objective can be accomplished by

minimize ∥x∥p :=
(∑n

j=1 |xj |p
)1/p

subject to Ax = b;
or minimize ∥Ax− b∥2 + µ

(∑n
j=1 |xj |p

)1/p
for some 0 < p < 1, where µ > 0 is a regularization parameter.

Or simply

minimize ∥x∥pp :=
(∑n

j=1 |xj |p
)

subject to Ax = b;
or minimize ∥Ax− b∥2 + β

(∑n
j=1 |xj |p

)
;

where the former is a linearly constrained (nonconvex) optimization problem and the latter is an

unconstrained (nonconvex) optimization problem

5

MS&E314: Optimization in ML&DS Lecture Note #02

Quadratic Programming (QP): Portfolio Management

For expected return vector r and co-variance matrix V of an investment portfolio, one management model

is:

minimize xTV x

subject to rTx ≥ µ,

eTx = 1, x ≥ 0,

or simply

minimize xTV x

subject to rTx ≥ µ,

eTx = 1,

where e is the vector of all ones.

This is a (convex) quadratic program.

6

MS&E314: Optimization in ML&DS Lecture Note #02

More CLP Examples: Robust Portfolio Management

In applications, r and V may be estimated under various scenarios, say ri and Vi for i = 1, ...,m. Then,

we like

minimize maxi x
TVix

subject to mini r
T
i x ≥ µ,

eTx = 1, x ≥ 0.

⇒

minimize α

subject to rTi x ≥ µ, ∀i√
xTVix ≤ α, ∀i

eTx = 1, x ≥ 0.

This is a quadratically constrained quadratic program (QCQP). If factorize Vi = RT
i Ri and let

yi = Rix, we can rewrite the problem as

minimize α

subject to rTi x ≥ µ, yi −Rix = 0, ∀i
∥yi∥ ≤ α, ∀i, eTx = 1, x ≥ 0,

which is an SOCP with additional benefits.

7

MS&E314: Optimization in ML&DS Lecture Note #02

Portfolio Selection Problem

If no more than k stocks can be selected into your portfolio as a policy constraint?

minimize xTV x

subject to rTx ≥ µ,

eTx = 1,

0 ≤ x ≤ y, eTy ≤ k, y ∈ {0, 1}n

This is a mixed-integer quadratic program (MIP).

If the integer variables are restricted 0 or 1, it is also names as the binary optimization problem.

8

MS&E314: Optimization in ML&DS Lecture Note #02

Graph Realization and Sensor Network Localization

Given a graph G = (V,E) and sets of non–negative weights, say {dij : (i, j) ∈ E}, the goal is to

compute a realization of G in the Euclidean space Rd for a given low dimension d, where the distance

information is preserved.

More precisely: given anchors ak ∈ Rd, dij ∈ Nx, and d̂kj ∈ Na, find xi ∈ Rd such that

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d̂2kj , ∀ (k, j) ∈ Na.

This is a set of Quadratic Equations, which can be represented as an optimization problem:

min
xi∀i

∑
(i,j)∈Nx

(∥xi − xj∥2 − d2ij)
2 +

∑
(k,j)∈Na

(∥ak − xj∥2 − d̂2kj)
2.

Does the system have a localization or realization of all xj ’s? Is the localization unique? Is there a

certification for the solution to make it reliable or trustworthy? Is the system partially localizable with a

certification?

It can be relaxed to SOCP (change “=” to “≤”) or SDP.

9

MS&E314: Optimization in ML&DS Lecture Note #02

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1: 50-node 2-D Sensor Localization.

10

MS&E314: Optimization in ML&DS Lecture Note #02

Matrix Representation of SNL and SDP Relaxation

Let X = [x1 x2 ... xn] be the d× n matrix that needs to be determined and ej be the vector of all zero

except 1 at the jth position. Then

xi − xj = X(ei − ej) and ak − xj = [I X](ak;−ej)

so that

∥xi − xj∥2 = (ei − ej)
TXTX(ei − ej)

∥ak − xj∥2 = (ak;−ej)
T [I X]T [I X](ak;−ej) =

(ak;−ej)
T

 I X

XT XTX

 (ak;−ej).

11

MS&E314: Optimization in ML&DS Lecture Note #02

Or, equivalently,

(ei − ej)
TY (ei − ej) = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T

 I X

XT Y

 (ak;−ej) = d̂2kj , ∀ k, j ∈ Na,

Y = XTX.

Relax Y = XTX to Y ≽ XTX , which is equivalent to matrix inequality: I X

XT Y

 ≽ 0.

This matrix has rank at least d; if it’s d, then Y = XTX , and the converse is also true.

The problem is now an SDP problem: when the SDP relaxation is exact?

Algorithm: Convex relaxation first and steepest-descent-search second strategy?

12

MS&E314: Optimization in ML&DS Lecture Note #02

Stochastic Optimization and Learning

In real world, we most often do

mimimizex∈X EFξ
[h(x, ξ)] (1)

where ξ represents random variables with the joint distribution Fξ .

• Pros: In many cases, the expected value is a good measure of performance

• Cons: One has to know the exact distribution of ξ to perform the stochastic optimization so that we

most frequently use sample distribution. Then, deviant from the assumed distribution may result in

sub-optimal solutions. Even know the distribution, the solution/decision is generically risky.

13

MS&E314: Optimization in ML&DS Lecture Note #02

Deep-Learning on Neural-Network I

The input vector is denoted by x and the output vector of layer l is denoted by yl. The edge-weights of

layer l are denoted by wl
i,j where the relation of input-output is

ylj = max{0, wl
0,j +

∑
i

wl
i,jy

l−1
j }, ∀j, l = 1, ..., L.

where the formula is called ReLU operator/function and y0 = x.

14

MS&E314: Optimization in ML&DS Lecture Note #02

Deep-Learning on Neural-Network II

The Deep-Learning is to use massive sample images/inputs x to optimize/train (or learn edge-weights

wl
i,j such that a (classification) sample-average error function is minimized. In other words, for this

example, the outputs of images/inputs of Panda and Gibbon are distinguishable/separable, or they belong

to different regions in the output space.

When all weights are determined, then the last-layer output vector of the neural-network, denoted by

yL(x), is a vector function/mapping of an input vector x.

The neural network verification, for this example, is to find the smallest distortion of a given typical Panda

image such that its output is in the output-region of normal Gibbon images, that is,

minimizex ∥x− x̂∥2

subject to yL(x) ∈ a (convex) region outside of yL(x̂).

15

MS&E314: Optimization in ML&DS Lecture Note #02

Learning with Noises/Distortions

Goodfellow et al. [2014]

16

MS&E314: Optimization in ML&DS Lecture Note #02

Distributionally Robust Optimization and Learning

On the other hand: Why does error occur? Believing that the sample distribution is the true distribution...

In practice, although the exact distribution of the random variables may not be known, people usually know

certain observed samples or training data and other statistical information. Thus, we can consider an

enlarged distribution set D that confidently containing the sample distribution, and do

minimizex∈X maxFξ∈D EFξ
[h(x, ξ)] (2)

In DRO, we consider a set of distributions D and choose one to minimize the expected value for the worst

distribution in D. When choosing D, we need to consider the following:

• Tractability

• Practical (Statistical) Meanings

• Performance (the potential loss comparing to the benchmark cases)

This is a nonlinear Saddle-Point Min-Max optimization/zero-sum-game problem

17

MS&E314: Optimization in ML&DS Lecture Note #02

Reinforcement Learning: Markov Decision/Game Process

• RL/MDPs provide a mathematical framework for modeling sequential decision-making in situations

where outcomes are partly random and partly under the control of a decision maker.

• Markov game processes (MGPs) provide a mathematical slidework for modeling sequential

decision-making of two-person turn-based zero-sum game.

• MDGPs are useful for studying a wide range of optimization/game problems solved via dynamic

programming, where it was known at least as early as the 1950s (cf. Shapley 1953, Bellman 1957).

• Modern applications include dynamic planning under uncertainty, reinforcement learning, social

networking, and almost all other stochastic dynamic/sequential decision/game problems in

Mathematical, Physical, Management and Social Sciences.

18

MS&E314: Optimization in ML&DS Lecture Note #02

MDP Stationary Policy and Cost-to-Go Value

• An MDP problem is defined by a given number of states, indexed by i, where each state has a number

of actions, Ai, to take. Each action, say j ∈ Ai, is associtaed with an (immeidiate) cost cj of taking,

and a probability distribution pj to transfer to all possible states at the next time period.

• A stationary policy for the decision maker is a function π = {π1, π2, · · · , πm} that specifies an

action in each state, πi ∈ Ai, that the decision maker will take at any time period; which also lead to a

cost-to-go value for each state.

• The MDP is to find a stationary policy to minimize/maximize the expected discounted sum over the

infinite horizon with a discount factor 0 ≤ γ < 1:

∞∑
t=0

γtE[cπit (it, it+1)].

• If the states are partitioned into two sets, one is to minimize and the other is to maximize the

discounted sum, then the process becomes a two-person turn-based zero-sum stochastic game.

19

MS&E314: Optimization in ML&DS Lecture Note #02

An MDGP Toy Example: Maze Robot Runners (Simplified)

Actions are in red, blue and black; and all actions have zero cost except the state 4 to the exit/termination

state 5. Which actions to take from every state to minimize the total cost (called optimal policy)?

20

MS&E314: Optimization in ML&DS Lecture Note #02

Toy Example: Game Setting

States {0, 1, 2, 5} minimize, while States {3, 4} maximize.

21

MS&E314: Optimization in ML&DS Lecture Note #02

The Cost-to-Go Values of the States

Cost-to-go values on each state when actions in red are taken: the current policy is not optimal since there

are better actions to choose to minimize the cost.

22

MS&E314: Optimization in ML&DS Lecture Note #02

The Optimal Cost-to-Go Value Vector

Let y ∈ Rm represent the cost-to-go values of the m states, ith entry for ith state, of a given policy.

The MDP problem entails choosing an optimal policy where the corresponding cost-to-go value vector y∗

satisfying:

y∗i = min{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i,

with optimal policy

π∗
i = argmin{cj + γpT

j y
∗, ∀j ∈ Ai}, ∀i.

In the Game setting, the conditions becomes:

y∗i = min{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i ∈ I−,

and

y∗i = max{cj + γpT
j y

∗, ∀j ∈ Ai}, ∀i ∈ I+.

They both are fix-point or saddle-point optimization problems. The MDP problem can be cast as a linear

program; see next page.

23

MS&E314: Optimization in ML&DS Lecture Note #02

The Equivalent LP Formulation for MDP

This model can be reformulated as an LP:

maximizey
∑m

i=1 yi

subject to y1 − γpT
j y ≤ cj , j ∈ A1

...

yi − γpT
j y ≤ cj , j ∈ Ai

...

ym − γpT
j y ≤ cj , j ∈ Am.

Theorem 1 When y is maximized, there must be at least one inequality constraint in Ai that becomes

equal for every state i, that is, maximal y is a fixed point solution.

24

MS&E314: Optimization in ML&DS Lecture Note #02

The Maze Runner Example

The Fixed-Point formulation:

y0 = min{0 + γy1, 0 + γ(0.5y2 + 0.25y3 + 0.125y4 + 0.125y5)}
y1 = min{0 + γy2, 0 + γ(0.5y3 + 0.25y4 + 0.25y5)}
y2 = min{0 + γy3, 0 + γ(0.5y4 + 0.5y5)}
y3 = min{0 + γy4, 0 + γy5}
y4 = 1 + γy5

y5 = 0 (or y5 = 0 + γy5)

The LP formulation:

maximizey y0 + y1 + y2 + y3 + y4 + y5

subject to change each equality above into inequality

25

MS&E314: Optimization in ML&DS Lecture Note #02

The Interpretations of the LP Formulation

The LP variables y ∈ Rm represent the expected present cost-to-go values of the m states, respectively,

for a given policy.

The LP problem entails choosing variables in y, one for each state i, that maximize eTy so that it is the

fixed point

y∗i = min
j∈Ai

{cji + γpT
jiy}, ∀i,

with an optimal policy

π∗
i = argmin{cj + γpT

j y, j ∈ Ai}, ∀i.

It is well known that there exist a unique optimal stationary policy value vector y∗ where, for each state i,

y∗i is the minimum expected present cost that an individual in state i and its progeny can incur.

26

MS&E314: Optimization in ML&DS Lecture Note #02

States/Actions in the Tic-Tac-Toe Game against a Random Player

27

MS&E314: Optimization in ML&DS Lecture Note #02

Action Costs in the Tic-Tac-Toe Game against a Random Player

28

MS&E314: Optimization in ML&DS Lecture Note #02

States/Actions in the Tic-Tac-Toe Game against an Adversary Player?

29

