MS&E314: Optimization in ML&DS Lecture Note #02

Mathematical Optimization Models and Applications Il

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/ yyye
Chapters 1, 2.1-2,6.1-2,7.2,11.3, 11.6



MS&E314: Optimization in ML&DS Lecture Note #02

Unconstrained Optimization: Logistic Regression | I

Similar to SVM, given the two-class discrimination training data points a; € R, according to the logistic
model, the probability that it's in a class (, say in Red, is represented by a linear/affine function with
slope-vector X and intersect scalar x:

T
eai X+x0

1 + 6afx—|—a:0 ’

Thus, for some training data points, we like to determine intercept x( and slope vector x € R" such that

i X+T0 1, ifa; € C

- .
1 4 ei x+o 0, otherwise

Then the probability to give a “right classification answer” for all training data points is

aTx—i—xo 1
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Logistic Regression |l I

Therefore, we like to maximize the probability when deciding intercept ' and slope vector x € R"

g2 X0 1 1 1
< H 1 + €a7l x+ac0> H 1 _|_ ea?x—i—xo - < H 1 _|_ ea?xw0> H 1 _|_ ea?x—i—xo

ang

a;cC ang’ a;cC

which is equivalently to maximize

Or

This is an unconstrained optimization problem, where the objective is a convex function of decision

variables: intercept x( and slope vector x € R™.
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Sparse Linear Regression Problems I

We want to find a sparsest solution to fit exact data measurements, that is, to minimize the number of

non-zero entries in x such that Ax = b:
minimize ||x|lo = [{j : x; # 0}
subjectto Ax = b.
Sometimes this objective can be accomplished by LASSO:
minimize  [|x[|1 = > 7 |75
subjectto Ax = b.

It can be equivalently represented by (?)

C e n C e n / /!
minimize > . Y, . Mminimize > i (@) + )
subjectto Ax =Db, —y <x<y; subjectto A(x' —x")=b, x' >0, x” > 0.

Both are linear programs!
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.- : (&
Sparsest Data Fitting continued I we [ AY =D ((
2
V .
X -
A better approximation of the objective can be accomplished by

L~
minimize [|x||, := (327, |57

subjectto Ax = b;

1/p
or  minimize |[Ax — b|? —1 ‘37j|p)

for some 0 < p < 1, where v > 0 is a regularization parameter. BH< pelf
Or simply
minimize ||x||P = ( " P)
IIi 2= 1] or  minimize |Ax — bl[*+ 3 (Z?Zl |:Cj\p) ;

subjectto Ax = b;

where the former is a linearly constrained (nonconvex) optimization problem and the latter is an

unconstrained (nonconvex) optimization problem
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Actet

Quadratic Programming (QP): Portfolio Management I

where e is the vector of all ones.

This is a (convex) quadratic program.
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More CLP Examples: Robust Portfolio Management I

In applications, r and V' may be estimated under various scenarios, say r; and V; for7z = 1, ..., m. Then,
we like
- minimize «
minimize max; x" V;X - _
subjectto ;X > p, Vi

VxIVix < «, Vi

elx=1,x > 0.

subjectto  min; v} x > p, =

elx=1,x > 0.

This is a quadratically constrained quadratic program (QCQP). If factorize V; = RZ-TRZ- and let
y; = R;x, we can rewrite the problem as
1 MpDsE k
minimize «
subjectto  Tix > p, y; — Rix =0, Vi
lyill < a, Vi, e'x=1,x > 0,

which is an SOCP with additional benefits.
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Portfolio Selection Problem '

If no more than k stocks can be selected into your portfolio as a policy constraint?

minimize x!Vx

subject to

This is a mixed-integer quadratic program (MIP).

If the integer variables are restricted O or 1, it is also names as the binary optimization problem.
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Graph Realization and Sensor Network Localization I

Given a graph G = (V, E/) and sets of non—-negative weights, say {d;; : (¢,j) € E'}, the goal is to
compute a realization of (&' in the Euclidean space R for a given low dimension d, where the distance
information is preserved.

More precisely: given anchors a;, € R?, dij € N, and czkj c N,, find x; € R% such that

YE

2.
%ER 2 HXZ—X]HEZCF V('L,])ENmy i<j7
lar — %5112 = di;, ¥ (k, ) € Na.

This is a set of Quadratic Equations—whickh-ean-be-represented-as—an-entimization problem:

Does the system have a IoCalizationmo Zatiorrotaft= =S tsthetocall s'there a

certification for the solution to make it reliable or trustworthy? Is the system partially localizable with a

certification? h
‘*(‘ Junu/€ X {ZQ(C(K‘A

It can be relaxed to SOCP (change “="to “<”) or SDP. Z
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Figure 1: 50-node 2-D Sensor Localization.
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Matrix Representation of SNL and SDP Relaxation I

Let X = [x1 X9 ... Xn] be the d X n matrix that needs to be determined and e; be the vector of all zero
except 1 at the 7th position. Then

x;—x; =X(e;—e;) and ar —x; =[] X|(ar;—e;)

so that
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Or, equivalently, ~  €WYWUJS

Relax Y = X' X to Y = X1 X, which is equivalent to matrix inequality:
—
R m—l:
Y- Xy I X

- ' ~ 0.

oo Vc\.Cf\:L

This matrix has rank at least d: if it's d, then Y = X’ X, and the converse is also true.

The problem is now an SDP problem: when the SDP relaxation is exact?

Algorithm: Convex relaxation first and steepest-descent-search second strategy?
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Stochastic Optimization and Learning I
—
In real world, we most often do Hf\ L——',% Los=C X/ €>

mimimizexex Er, [h(x, )] (1)

where & represents random variables with the joint distribution F.

e Pros: In many cases, the expected value is a good measure of performance

e Cons: One has to know the exact distribution@ perform the stochastic optimization so that we
most frequently use sample distribution. Then, deviant from the assumed distribution may result in

sub-optimal solutions. Even know the distribution, the solution/decision is generically risky.
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Deep-Learning on Neural-Network |

Input #1 — — .—~ Output #1
Input #2 — ; 2 - : 75 - = .—> Output #2
7 W SN R : B X5 S );3’
Input #3 — X ¢ R RIS 00 <0 ‘% Output #3
V% 'S MK ) T X > . ‘
Input #4 —
Input #5 —{ =N

The input vector is denoted by x and the output vector of layer [ is denoted by yl. The edge-weights of
layer [ are denoted by w,f j where the relation of input-output is

yg = max{0, w(l),j + Zwﬁ’jyé-_l}, Vi, l=1,.., L.

where the formula is called ReLU operator/function and y' = x.
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Deep-Learning on Neural-Network Il I

The Deep-Learning is to use massive sample images/inputs X to optimize/train (or learn edge-weights

[
Wy j

example, the outputs of images/inputs of Panda and Gibbon are distinguishable/separable, or they belong

such that a (classification) sample-average error function is minimized. In other words, for this

to different regions in the output space.

When all weights are determined, then the last-layer output vector of the neural-network, denoted by

y 1 (x), is a vector function/mapping of an input vector x.

The neural network verification, for this example, is to find the smallest distortion of a given typical Panda

image such that its output is in the output-region of normal Gibbon images, that is,

minimize,,  ||x — X||?

subjectto  y(x) € a (convex) region outside of y (X).
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Learning with Noises/Distortions I

“panda” “gibbon”

57.7% conhidence Q0. 3% confidence

Goodfellow et al. [2014]
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Distributionally Robust Optimization and Learning I

On the other hand: Why does error occur? Believing that the sample distribution is the true distribution...

In practice, although the exact distribution of the random variables may not be known, people usually know
certain observed samples or training data and other statistical information. Thus, we can consider an

enlarged distribution set D that confidently containing the sample distribution, and do

minimizexc x | maxg, ep Er, [h(X, §)] (2)

In DRO, we consider a set of distributions D and choose one to minimize the expected value for the worst
distribution in D. When choosing D, we need to consider the following:

e Tractability
s i

e Practical (Statistical) Meanings
TN ——
e Performance (the potential loss comparing to the benchmark cases)
—

This is a nonlinear Saddle-Point Min-Max optimization/zero-sum-game problem
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Reinforcement Learning: Markov Decision/Game Process I

b oo = &

e RL/MDPs provide a mathematical framework for modeling sequential decision-making in situations

where outcomes are partly ragg(_)m and partly under the control of a decision maker.

e Markov game processes (MGPs) provide a mathematical slidework for modeling sequential

N

decision-making of two-person turn-based zero-sum game.

e MDGPs are useful for studying a wide range of optimization/game problems solved via dynamic
'___’_/
programming, where it was known at least as early as the 1950s (cf. Shapley 1953, Bellman 1957).

e Modern applications include dynamic planning under uncertainty, reinforcement learning, social
networking, and almost all other stochastic dynamic/sequential decision/game problems in

Mathematical, Physical, Management and Social Sciences.

18



MS&E314: Optimization in ML&DS Lecture Note #02

MDP Stationary Policy and Cost-to-Go Value I
e An MDP problem is defined by@\@dexed b@/here each state has a number

of actions,lAZ- ,}to take. Each action, say j € A;, is associtaed with an (immeidiate) cos@f taking,

and a probability distrib@o transfer to all possible states at the next time period. ot s
Ll ¥ 4

o A stationarr the decision maker is a function m = {7, 7o, - - -, 7, } that specifies an

m

action in each state, m; € A;, that the decision maker will take at any time period; which also lead to a

* Laq

cost-to-go vajue for each state.

e The MDP is to find a stationary policy to minimize/maximize the expected discounted sum over the
infinite horizon with a discount factor 0 < v < 1:

Zv et (it i),

e If the states are partitioned into two sets, one is to minimize and the other is to maximize the

discounted sum, then the process becomes a two-person turn-based zero-sum stochastic game.
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An MDGP Toy Example: Maze Robot Runners (Simplified) I

Actions are in red, blue and black; and all actions have zero cost except the state 4 to the exit/termination
state 5. Which actions to take from every state to minimize the total cost (called optimal policy)?

20
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Toy Example: Game Setting I
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States {0, 1,2, 5} minimize, while States {3, 4} maximize.
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Cost-to-go values on each state when actions in red are taken: the current policy is not optimal since there
are better actions to choose to minimize the cost.
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The Optimal Cost-to-Go Value Vector I

Let y € R represent the cost-to-go values of the 1m states, 2th entry for :th state, of a given policy.
Yy

The MDP problem entails choosing an optimal policy where the corresponding cost=to-g ctory”*
satisfying: e Y r — y = - 7’)
y :

<
o+ s =minfc; +yp; ¥, Vi €AY, Vi, | T
with optimal policy T

T, = arg min{cj + *ypjTy*, Vje A;}, Vi

In the Game setting, the conditions becomes:

QU e .\m}

y; =min{c; +vp,y*, Vj € A}, Viel,
-—\——
and
i = mﬁ{cj + vpfy*, Vie A} Vielr.
They both are fix-point or saddle-point optimization problems. The MDP problem can be cast as a linear

program; see next page.
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The Equivalent LP Formulation for MDP I

This model can be reformulated as an LP:

maximize,, (E:’il ylj

subjectto = Yy — fyp;fy < ¢,7€A

I

Yi —YP; Y ¢, j € A

Ym — foyry S Cj, ] S Am

Theorem 1 When y is maximized, there must be at least one inequality constraint in A; that becomes
equal for every state 1, that is, maximal y is a fixed point solution.

24
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The Maze Runner Example I

The Fixed-Point formulation:

yo = min{0+ yy1,0+ v(0.5y2 + 0.25y3 + 0.125y4 + 0.125y5)}
y1 = min{0+ yy2,0 + v(0.5y3 + 0.25y4 + 0.25y5) }

y2 = min{0+ yys, 0+ v(0.5y4 + 0.5y5)}

ys = min{0+yys,0+ys}

Yya = 14+9ys

ys = 0(orys =0+ ys)

The LP formulation:

maximizey, Yo+ Y1+ Y2 +yYs+ys+Ys

subjectto change each equality above into inequality

25
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The Interpretations of the LP Formulation I

The LP variables y € R represent the expected present cost-to-go values of the 1m states, respectively,

for a given policy.

The LP problem entails choosing variables in y, one for each state 7, that maximize eTy so that it is the

fixed point
* . ' T .
Yy; = gg}g{cgi +p;, ¥} Vi,
with an optimal policy

m; = argmin{c; + Wp;‘-Fy, je A}, Vi

It is well known that there exist a unique optimal stationary policy value vector y* where, for each state 7,

y; is the minimum expected present cost that an individual in state ¢ and its progeny can incur.

26
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States/Actions in the Tic-Tac-Toe Game against a Random Player

K ploseed ‘
!
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Action Costs in the Tic-Tac-Toe Game against a Random Player

Lt

\ x ‘ Any action leading to win has cost -1
\ Any action leading to lose has cost 1
\

\
\

28



MS&E314: Optimization in ML&DS Lecture Note #02

States/Actions in the Tic-Tac-Toe Game against an Adversary Player?
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