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Introduction and Strategy

Trend following is one of the most clas-

sic investment styles used by investors for over

decades. The concept of trend following is rela-

tively simple: When there is a trend, follow it;

when things move against you or when the trend

isnt really there, cut your losses.

However, due to its simplicity, our team be-

lieves that trend following strategy itself might

not be able to capture the nuance and the com-

plexity of the financial market. Consequently,

with increased availability of data, we believe

machine learning techniques could play an im-

portant role in constructing a better trend fol-

lowing portfolio. That’s why our task for this

project is to replicate and improve on the basic

ideas of trend following.

Data

Investment Universe Selection

As per the project proposal, we narrowed

down our universe of assets to futures markets.

Using data sets from Quandl, we have access to

multiple different futures contracts. However, we

first select 9 different commodities to start off

with, including Crude Oil, Natural Gas, Gaso-

line, Gold, Silver, Copper, Agriculture, Corn,

Wheat, and Soybean. We consider 6 different

contracts for each commodity (1 to 6 months ex-

piration). The primary reason for looking into

a diverse set of assets is to diversify the port-

folio. In addition to that, the volume of fu-

tures contracts for specific commodities could be

a lot smaller than equity markets. Large buy or

sell orders could potentially move the market.

That’s why we want to invest in many different

contracts.

After inspecting and considering each data

set, we ended up selecting 7 different commodi-

ties, dropping Natural Gas and Gasoline from

our study due to incompleteness of the data set.

In addition to that, we also filter out commodi-

ties futures with low volume out as well. In the

end, we have in total of 36 different contracts

from 7 commodities.

Data Exploration

Since the data set we selected are relatively

complete, we did not encounter any challenging

problems. However, the original features in the

dataset is somewhat limited, so we decided to

add approximately 50 new ”trend-following” fea-

tures into the data set. Details of these features

will be discussed in the next section.

In addition to that, we also explore the corre-

lation between different assets. The correlation

plot is shown in the figure below.

Figure 1: Correlation of Returns of 36 Different Assets

In the plot above, there are quite a few no-

ticeable clusters of assets with high positive cor-

relation. Such clusters are the same commodity

with different expiration period. It’s also notable

that among all assets we selected, there is no pair

of futures contracts that have high negative cor-

relation.

Feature Generation

Features selected for the modeling were based

on traditional trend following indicators. These

were used in the prediction of the final response

variable, next day return, or (Pt+1 − Pt)/Pt.
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Continuous Variables

1. Simple Moving Average (SMA)

2. Exponential Moving Average (EMA)

3. Moving Average Convergence Divergence

(MACD)

4. Momentum Indicator

5. Day Since Cross

6. Number of days up - down

The simple moving average, momentum indica-

tor, and number of days of price upward move-

ment minus number of days of price downward

movement were calculated over several lookback

windows. Specifically over the time-frames of 5,

10, 15, 20, 50, and 100 days back. EMA variables

were included over lookback windows of 10, 12,

20, 26, 50, and 100 days. And, MACD was calcu-

lated as 12-day EMA - 26-day EMA. Days since

cross indicates the number of days since the last

crossover between an asset price and its EMA.

Categorical Variables

1. SMA Crossover indicator variables

2. EMA Crossover indicator variables

3. MACD Crossover indicator variables

The categorical variables were labeled at each

timestep as +1 to indicate a crossover with buy

signal, 0 to indicate no crossover, and -1 to

indicate a crossover with a sell signal. They

were calculated as asset price crossovers with all

the SMA, EMA, and MACD indicator variables

mentioned in the continuous variables section.

In traditional trend following strategies, these

crossover variables are important indicators of

detecting upward or downward trends that can

be ridden for profit. Our reasoning for feeding

all of them into our models was to allow the algo-

rithm to determine which ones are more accurate

predictors of next day returns.

Models

Linear Model

First, a linear regression model was trained

on 2014-2017 data and tested on 2017-2018 data.

The technique provided fairly stable predictable

patterns and in the unregularized version, all

parameters mentioned in the feature generation

section of this paper were used. A separate re-

gression was run on each asset available in the

training data in order to allow the models more

expressiveness in their understanding. The ad-

vantages of using a linear model on this problem

are that it is simple and easy to understand, and

it fits decently well to the data. Second, a reg-

ularized lasso regression model was trained on

the same training data and tested on the same

test data. Finally, a linear regression model was

trained to predict returns over a longer time

frame. Specifically, on 5-day returns. We at-

tempted this model because in a non-ideal trad-

ing system there are frictions. Namely, that

one-day returns are small and may be erased by

transaction costs and we might not enter the po-

sition until the next day. So, the question be-

came whether we could reliably predict 5-day

returns and whether that would improve the ef-

ficacy of our trading algorithm.

Results

The figures below showcase the plots of the

predicted versus actual values as well as a his-

togram of the linear regression errors.

Figure 2: Predicted versus actual values of unregular-

ized linear regression model.
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Figure 3: Histogram of error values of unregularized lin-

ear regression model

The overall train mse was 2.187 E-04. The

test mse was 1.47 E-04. In analyzing the beta

values of the linear regression, we noticed that

exponential Moving Averages are generally bet-

ter predictors than simple moving averages in

terms of higher absolute values of betas. One of

a 5 day, 10 day, 12 day, and 100 day indicators

were statistically significant at the five percent

level. Thus we also noticed that recent trends

are most significant, though longer term trends

are not irrelevant. Finally, we noticed that be-

cause of the change of sign between EMA 10,

12, 20 indicator variable beta values, there is an

importance to recent crosses, which validates the

inclusion of categorical crossover variables in our

feature selection. These beta values are summa-

rized with their p-values in the chart below.

Figure 4: Beta values of unregularized linear model and

their significance values.

The overall trading strategy based on the lin-

ear regression model price predictions performed

quite well. Below is a chart of the portfolio

growth based on the linear regression model com-

pared to a naive strategy. Over the course of

2017-2018, the portfolio grew to 1.3x using the

linear regression model return predictions.

Figure 5: Portfolio over 2017-2018 using unregularized

linear model predictions.

Next, for the lasso model, we decided that it

may be interesting to train in order to get rid

of some of the overfitting of a linear regression.

This would be accomplished by automatically se-

lecting only more important features. The ad-

vantages of this model would be that it is less

likely to overfit and is less prone to noise, which

we believe there is a lot of in the pricing data.

The disadvantages are that it does not solve the

complexity issue and can reduce the expressive-

ness that we may need in explaining returns. The

lasso model predicted versus actual distribution

as well as error histogram are displayed below.

Figure 6: Predicted vs actual values of the lasso regres-

sion model.
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Figure 7: Lasso regression model histogram of errors.

It turns out that though the mse were rela-

tively similar to the unregularized linear model,

with a train MSE of 2.281 E-04 and a test MSE:

1.353 E-04, the overall strategy based on the re-

turn predictions performed worse over the course

of our test period. The portfolio growth com-

pared to the naive strategy are displayed below.

Figure 8: Portfolio over 2017-2018 using lasso model

predictions.

Finally, for the 5-day return predictions we

noticed 5-day returns are generally about 2-

3x larger than 1 day returns, and, thus, a

roughly 6.5x increase in mean squared error

(MSE: 9.47E-04) indicates that the predictions

are about equivalent to 1-day predictions. The

portfolio performed as shown in the figure be-

low. The 5-day return portfolio did not perform

as well as our 1-day return portfolio, with merely

a 1.2x growth factor as compared to the earlier

1.3x growth factor over this test set period.

Figure 9: Portfolio over 2017-2018 using 5-day linear

regression return predictions.

Interestingly, the daily returns of this portfo-

lio vs. the naive portfolio are fairly comparable

(0.04% vs. 0.02%) but the 5-day returns are no-

tably better (0.22% vs. 0.07%).

RNN Model

Recurrent Neural Network (RNN) model is

considered to be one of the most powerful mod-

els that can make accurate prediction on fu-

ture stock prices. Especially Long Short Term

Memory (LSTM) model has its configuration

that incorporates historical information to cap-

ture the data pattern. Furthermore, most of re-

search concluded that Neural Network structure

has outperformed simple linear regression in sub-

stantial margins, although they didn’t explicitly

explain how specific hyper-parameters were se-

lected. We also choose to build LSTM architec-

ture to investigate whether it can drive up the

profitability of our trend-following strategy.

In this project, our RNN architecture consists

of 3 layers of LSTM, and one fully-connected

layer at the end. Each layer has 128 hidden units

with the linear activation in the last step, as the

prediction is a regression problem. The input

features include six exponential moving averages

(10, 15, 20, 50, 100 days lookback window), six

simple moving averages (10, 15, 20, 50, 100 days

lookback window) as well as the MACD. To fas-

ten the covergence of optimization algorithm, we

also normalize each input feature by transform-

ing them to be a standardized Z-score. The de-
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tails of LSTM architecture are illustrated below.

Figure 10: The architecture of 3-layer LSTM

In the modeling process, we trained the model

by using all available data prior to 2016 and used

the validation set to perform regularization. As

illustrated in the figure above, one of our regu-

larization techniques is dropping out 50% of pa-

rameters between hidden layers. In addition, we

also used early stopping when the training loss

increases and doesn’t seem to converge to lower

loss.

The last essential step is tuning paramaters

and hyperparameters to improve the model per-

formance. We used grid search method to con-

struct multiple sets of variables and chose the

most optimal set. The grid contains different

values of 4 hyperparameters (learning rate, num-

ber of epochs, number of hidden units, and batch

size) and 1 parameter (lookback window over the

past 1, 5, 10, 15, and 25 days). Using this ap-

proach, we obtained the optimal lookback win-

dow and hyperparameters as following:

Learning rate: 0.0001

Number of epochs: 50

Number of hidden units: 128 units

Batch size: 32

Lookback window: 10 days

Results

We visualized the results of LSTM model in-

cluding the correlation between actual returns

and predicted returns, the histogram of errors,

and the plot of portfolio value over time. First,

the plot of correlation shows that the predicted

returns are not centered at a certain point but

rather more spread out, in contrast to those from

linear regression. This suggests that LSTM’s

prediction doesn’t follow a particular pattern

and tends to be more randomly made, as illus-

trated in the plots below.

Figure 11: Correlation of actual next day’s returns and

predicted next day’s returns

Figure 12: Correlation of actual next 5-day’s returns

and predicted next 5-day’s returns

We also observed that the prediction on next

5-day’s returns is more random than the one of

next day’s return. We suspected that the pre-

diction on further period might be less accurate.

After looking at the histogram of errors, we can

conclude that the further prediction is indeed

less accurate. The histogram of errors for the

next 5-day’s return appears to be more variant.
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Figure 13: Histogram of errors for prediction on next

day’s returns

Figure 14: Histogram of errors for prediction on next

5-day’s returns

Despite less accurate prediction, the portfo-

lio constructed by trading based on next 5-day’s

returns turns out to be more profitable than the

one of next day’s returns. However, as illustrated

in the plots below, over 426 trading days on the

test set, leveraging LSTM models in our trading

strategy doesn’t produce significant alpha.

Figure 15: Portfolio value over 2017-18 using LSTM

model prediction on next day’s returns

Figure 16: Portfolio value over 2017-18 using LSTM

model prediction on next 5-day’s returns

Although the results are not compelling, this

is not surprising to use. There is in fact a

common conclusion from many deep learning re-

search that complex models as LSTM or other

types of RNN would outperform simple regres-

sion only if the size of training data is very large

(approximately in 105 scale). However, the size

of our dataset is only in 103 − 104. Hence, it

doesn’t allow LSTM model to capture the trend

of data and perform well as it is supposed to be.

Neural Net Model

We also employ a supervised learning algo-

rithm: the fully connected neural network. The

goal is to perform regression: the output variable

is the daily return which is a numerical continu-

ous variable.

We wish to better understand the general re-

lation between the return and the 26 input data

features fed to the neural network. The input

features consist of six exponential moving aver-

ages (with 5, 10, 15, 20, 50, 100 days lookback

window respectively), six simple moving aver-

ages (with 5, 10, 15, 20, 50, 100 days lookback

window respectively), the MACD (moving aver-

age convergence divergence) and the respective

crossover data (categorical variables) for each of

these parameters. We normalize the continuous

features by dividing the numerical value of the

feature by the respective settle price on that day

and subtracting by 1.

The architecture of the neural network is one
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input layer with 26 input units as described

above, two hidden layers with the ReLU (rec-

tified linear units) activation functions and one

output layer. The number of hidden units we

have used in our model are 50 and 20 respec-

tively.These were selected arbitrarily. Since, the

neural network is fully connected, the number

of parameters which the network must learn are

2320 (26 × 50 + 50 × 20 + 20 × 1 ignoring bias

units). The hyper-parameters in the neural net-

work model are the learning rate and the conver-

gence error.

In the neural network model, we have used all

the data for all the assets before 2016 as train-

ing data. Since, the model trains simultaneously

for all 42 commodities in the dataset that we

have considered, it implicitly assumes that the

relation is similar for all the different commodi-

ties. This might not necessarily be true. Data

from 2016 to 2017 is taken as the validation data.

This validation dataset is used for stopping our

training. The stopping criterion is when the loss

difference over the validation set decreases below

the convergence error, we stop training the neu-

ral network. All data after 2017 is used as test

data.

The first difficulty in the implementation of

this model was the implicit assumption that all

commodities have a similar input - output rela-

tion as discussed above. The second difficulty

comes from the fact that the neural net model

uses random initialization of the parameters and

uses an iterative process (gradient descent) to

find the minimum of the cost function. The

stochastic nature of the model gives us different

results on running the model. In the figures be-

low, the same neural network was run thrice on

the same data, but the neural network returned

different values. The blue line shows the value of

the portfolio is the neural network was used and

it has been compared to the orange line which is

the naive strategy where the all the commodities

have been bought equally.

Figure 17: Different Results given by Neural Net Model

due to Stochastic Nature of Neural Nets

To ensure that the model was training and

running correctly, we have plotted the loss value

as a function of the epochs. This is shown in the

figure below. Since is the loss is monotonously

decreasing as a function of the epochs, the neural

net is indeed training correctly.

Figure 18: Loss as a function of epochs

Comparison with Linear Regression

We removed the ReLU non-linear activation

layer and worked only with linear layers in the

neural network. A fully connected neural net-

work without any non-linear layers reduces to

a simple linear regression. However, the linear

regression results above used a package which

solves the normal equation whereas the neural

network uses an iterative simple gradient descent

to do the same. Solving the normal equation

gives the same result every time however, simple

gradient descent being an iterative procedure,

the neural network without any anon-linear ac-

tivation still does not yield the same result. The

figure below on the left shows the final linear re-

gression output whereas the figure on the right

shows the final neural network output without

any non-linear activation. As we see, both the

linear regression and neural network do better
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than the naive strategy and both their outputs

are close.

Figure 19: Comparison of Linear Regression and Neural

Network without Activation

We also observe the following when we com-

pare a neural network to the linear regression:

• The neural network has been given vali-

dation data and the model stops training

based on the validation loss, however, the

linear regression can theoretically overfit

the past data.

• Sometimes the neural network (without

non-linear activation) performs better than

linear regression but sometimes worse. The

mean squared error for linear regression

and neural network (without non-linear ac-

tivation) is almost equal.

• However, with ReLU activation, it per-

forms worse because of the nature of the

data and the nature of ReLU. almost equal.

Further, we also note that the linear regression

has been trained for different commodities in-

dividually whereas the neural network has been

trained at once for all the commodities. Hence,

the model obtained from neural network can be

easily generalized to other asset classes and other

commodities very easily.

Results

To show the results of the neural network, we

have used one of neural network models that we

trained for 5000 epochs. The correlation of the

actual returns versus the predicted results for the

test set (after 2017) has been shown below.

Figure 20: Correlation: predicted and actual returns

On observing the correlation plot, we see that

there is a cluster of points around zero. This

cluster of points is where the actual returns and

the predicted returns were both close to zero.

However, we also observe outliers which are away

from these cluster of points. The outliers can be

classified as ”good” or ”bad”. The good outliers

are where both the actual and predicted returns

are high. These ”good” outliers enhance the per-

formance of the model as they generate the cor-

rect long or short trend signal during portfolio

optimization. However, the ”bad” outliers are

when the predicted returns are high but the ac-

tual returns are not. These ”bad” outliers are

responsible for making bad and wrong bets due

to incorrect trend signals they generate. They

decrease the overall performance of the model.

In the model, if the number of ”good” outliers

is more than the number of ”bad” outliers, the

model generates alpha. In this neural net model,

we report the correlation to be positive. The his-

togram of errors is yet another important visual-

ization of the model’s performance. It is shown

in the figure below.

Figure 21: Histogram of Errors from Neural Net Model
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Using the histogram of errors, we see that the

errors are slightly less than zero, which means

that the model slightly underestimates the val-

ues of the returns. Further, since the histogram

is very narrow, the overall variance in the errors

of the neural network model is very low.

We report the mean squared error of the neu-

ral network model on the training set to be

2.329E-04 and the MSE on the test set to be

1.358E-04. The R2 for this model turns out to

be -0.01.

The final portfolio for the neural network that

we trained in comparison to the naive strategy is

shown in the figure below. It can clearly be seen

that the neural network does almost as well as

the naive strategy.

Figure 22: Final Saved Portfolio from the Neural Net

Model compared to the Naive Strategy

Summary and Comparison

In most machine learning models, the mean

squared error is a metric of performance. The

table comparing the mean squared error of all

the models, we worked on, is given below:

Models MSE train set MSE test set

Linear 2.187 E-04 1.47 RE-04

Lasso 2.281 E-04 1.353 E-04

Neural Net 2.329 E-04 1.358 E-04

LSTM 1.34 E-03 3.05 E-03

However, when machine learning is applied to

trend following, mean squared error can no

longer be a metric. The reason for this is trend

following looks for signals given by the model to

long or short. When the model predicts the val-

ues close to the mean, the mean squared error is

essentially very low but the portfolio optimizer

does not generate any signal to long or short.

The predicted outliers which increase the mean

squared error significantly also generate trend

signals which then trade. AS described in the

previous section, if the outliers are ”good”, then

the model does well. However, if the outliers are

”bad”, the model does not do well.

Portfolio Construction

Portfolio Optimizer

Each alpha model discussed in the previ-

ous discussion takes in a certain feature vector,

which varies slightly from model to model, and

outputs expected returns for different assets. Re-

gardless of whether the output returns are daily

or weekly, a portfolio optimizer is necessary in or-

der to convert those expected returns to a trade-

able portfolio.

We perform a standard portfolio optimization

at each time step during simulation. It takes in a

vector of current holdings h, a vector of expected

returns r, a desired variance v, a transaction cost

ratio b, and a covariance matrix C to find the op-

timal set of trades x:

maximize wT (x + h)− b
(
1T |x|

)
subject to 1T |x| ≤ 1.0

and (x + h)TC(x + h) ≤ v

The optimization consists of an objective and

two constraints. The objective function is simply

a return maximization after transaction costs.

The first constraint is a restriction on how heav-

ily the portfolio can be leveraged. In this case,

we do not allow leveraging of the portfolio. The

portfolio can be long or short, or any combina-

tion thereof, such that the total position does

not sum to more than the portfolio value. Lastly
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the expected variance, based on the covariance

matrix, is constrained to be below the desired

variance. There is no constraint on position size,

as any meaningful constraint would also severely

limit the expressiveness of the portfolio due to

the small size of the universe.

The inputs to the optimizer were mostly

straightforward. During simulation, the current

holdings were tracked, and the expected returns

came from the alpha model. The desired vari-

ance can be set to any value, but was usually set

to 4×10−5 for daily returns or 2×10−4 for weekly

returns, roughly equivalent to the “market” vari-

ance. In most simulations, the transaction cost

ratio was set to 0.0 and so it did not factor into

the trade calculation. The covariance matrix was

calculated based on returns from the validation

dataset (data from the year immediately prior to

the test data).

The covariance matrix first used a simple co-

variance calculation over the entire time period.

However, after initial testing showed that it fairly

poorly predicted the resulting variance, a shrunk

version of the matrix was tested. Generally, co-

variance matrix shrinkage pulls the most extreme

coefficients towards more central values, system-

atically reducing estimation error. Ledoit and

Wolf of the University of Zurich developed a

namesake algorithm for shrinking matrices that

“can result in sizeable improvements over the

sample covariance matrix and also over linear

shrinkage.” 1 Using the scikit-learn implementa-

tion of the Ledoit-Wolf shrinkage, the optimizer

was able to more closely match the desired vari-

ance, and so this shrunk matrix was used for

calculations.

Stop Loss

One element of many trend following strate-

gies is an exit after experiencing a loss, mirror-

ing the adage to cut short one’s losses. While

we generally expect the models to be able to in-

fer further loss based on recent performance, we

also experimented with including a stop-loss step

after the optimization step.

The stop-loss was implemented by forcing clo-

sure of positions of any assets that moved in the

opposite direction of the position more than a

certain value since that asset was first purchased.

Ultimately the stop-loss was ineffective in im-

proving the performance of the portfolio. At

high loss tolerance, the stop-loss almost doesn’t

change the performance at all. At low loss toler-

ance, the stop-loss forces the closure of too many

positions and significantly reduces portfolio per-

formance. The plots of portfolio over time in the

figure below demonstrate this behavior on the

test data.

Figure 23: Plots of Portfolio Value over Time for Linear

Regression Portfolio with Stop Loss (No SL, 15%, 10%,

5%)

While a stop-loss can be effective in cutting

losses, there are a few reasons it doesn’t in this

case. As previously stated, the positions the

portfolio takes already account for expected mo-

tion. It also seems that most of the losses in-

curred in the portfolio were fairly large bets that

resulted in a large single-day loss, rather than

accumulating loss over time. The funds removed

by the stop-loss were not otherwise invested, so

that could also limit performance. This is also

sure to cause more value to be lost to trading

costs, but that is a lesser concern.

1Ledoit, Olivier, and Michael Wolf. Honey, I Shrunk the Sample Covariance Matrix. The Journal of Portfolio

Management, Institutional Investor Journals Umbrella, 31 July 2004, jpm.iijournals.com/content/30/4/110.
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Risk Management Philosophy

The main risk management tool in this strat-

egy is the use of the covariance matrix in the

optimizer to restrict excessive fluctuation of the

portfolio value in expectation. We measure risk

with variance, and show an ability to reasonably

limit the variance of the portfolio. Should we

prefer a less risky portfolio, we can tune this pa-

rameter to effectively reduce the risk of the port-

folio.

We attempt to control for big losses by us-

ing a stop loss but it had too great an effect on

the portfolio’s performance to be truly useful in

constructing the portfolio. Big losses generally

occur when the optimizer makes a big bet on one

asset and is wrong. Some measures that can be

taken to prevent this are forcing position limits.

However, as previously mentioned, the small uni-

verse makes it difficult to both limit the size of

the portfolio positions and have a portfolio ex-

pressive enough to capture the detected alpha.

It would be our hope that with many assets, the

portfolio might be less reliant on large bets and

less sensitive to individual asset movements.

Since the portfolio is not consistently net

short or net long, this also eliminates a consid-

erable amount of systemic risk. The main risk

would be that in a sharp downturn, the portfo-

lio would attempt to go short, which could be

disastrous depending on the execution strategy

as most market participants would also be look-

ing to go short or close long positions. This is a

fairly considerable risk in the strategy, that we

were largely unable to model due to data and

simulation limitations.

Portfolio Results

Baseline Strategy

Since our goal is to improve upon traditional

trend following method, we construct a bench-

mark portfolio, calling it our baseline strategy,

by using traditional trend following’s crossover

strategy. The baseline strategy is traded base

on crossover between EMA 50 (50-day exponen-

tial moving average) and the daily price. As per

convention, we also set stop losses to limit the

amount of risk we are willing to take as well.

Specifically, we set the stop loss at 4% and limit

sell and 6%.

Comparison of Results from Different

Models

With the baseline strategy defined above, we

compare the portfolio results from different mod-

els shown in the figure below.

Figure 24: Comparison of the portfolio over time for

different models

It is noteworthy that linear regression per-

forms the best in terms of the annualized profit

and portfolio result, even better than the more

complicated models like Neural Network and

LSTM. Even though the financial market is ex-

tremely complicated and doesn’t seem to be eas-

ily explained by a linear regression, the result

is not surprising to us. Given that we have ac-

cess to free data on Quandl, the quantity of data

points we have is limited. In our best data set,

we would have approximately 14,000 data points

of daily price of the futures contracts. However,

there are some commodities where we only have

approximately 1,300 data points. Lack of data

to train complicated model could be the main

reason why they under perform in this setting.

In addition to portfolio profit, we also con-
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sider other metrics as well. Specifically, we look

at the Sharpe ratio and maximum drawdown

of each model. Comparison of our models are

shown in the table below.

We can see that the baseline strategy was able to

achieve the highest Sharpe ratio, despite posting

average annual return of only 3.815%. In the as-

pect of risk-adjusted return, our baseline strat-

egy perform the best. However, the ability to

achieve higher profit of the baseline strategy is

still questionable. This is simply because high

leverage in market with less volume like futures

markets means higher price impact with all the

trades we make. That’s why we might not be

able to achieve 15.66% return while retaining the

same Sharpe ratio by just leveraging our baseline

strategy 5 times.

In addition, it is quite interesting to see re-

sults where maximum drawdown of all models

are very low. This could potentially be because

our test-set is a very typical year in terms of

price movement. The year 2017-2018 don’t have

any tail events that could be a challenge for our

models.

Execution Discussion

If we were to trade this strategy, we would

be likely to use the baseline model as opposed

to any of the regressive models. In general, it

did better at identifying alpha and had a lower

Sharpe ratio, but also at significantly lower re-

turns. During execution, however, we would not

be able to observe and trade at the same price,

which was assumed in the model. The additional

complications that come with real-world trading

are a spread and, if investing a large amount,

potentially moving the market with trades.

To meet these challenges would require ad-

ditional analysis on some more extensive data.

The first would be intraday prices, so that the

effectiveness of the model could be tested when

entry is not immediate. Should that succeed,

more data on spread information and transac-

tion costs could give more insight on whether

entry is still justified, or at what point entry is

justified if different from the original model.

Further down the line, it could be necessary

to model the order book in order to truly model

the impact of our execution strategy. But at

small sums, since trend following at its core sug-

gests entering as soon as a trend is detected, ex-

ecution would probably be a much less pressing

question answered by market orders at the time

of trend detection.

Retrospective Discussion

After having read Trend Following with

Managed Futures written by Greyserman and

Kaminski, our group decided to create a new

trend-following strategy that leverages a data-

driven approach to provide us actionable in-

sights. However, the project presented a wide

variety of challenges that prevented the strate-

gies from being as successful as we would have

liked. The project was definitely abound with

learning opportunities, and our work suggests a

few different directions we could take moving for-

ward.

Model returns based on past prices, the meat

of our project, unsurprisingly provided the most

challenges, but also taught us the most. The

challenge largely lied in the fickle nature of fi-

nancial data. A machine learning model is only

as good as its training data, and frequently the
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training data did not paint a clear enough pic-

ture of what observations suggest large upcom-

ing returns. However, using multiple different

ML algorithms was a great learning experience.

As different models become more prevalent in

the field of quantitative finance, knowledge of

how they work becomes ever more important,

and this was a very solid first step.

If we were to continue with the project, we

would hope to do two things: find a more ex-

pressive dataset, and do a deeper dive of why

the baseline was better at detecting alpha. Our

dataset was useful for providing daily prices but

that is not the only information useful in trend

following; moreover, in a fairly small universe

it is hard to sufficiently diversify. This might

change the scope of the project, but might give

us more interesting and more successful results.

A deeper dive into why the baseline worked

while our models did not would probably start

with a look at our models. Overall, they were

not very good at finding a correlation between

past and future performance, as most of the fig-

ures of predicted vs. actual returns would bear

out. Success generally was largely due to correct

prediction on a few outlying data points, largely

by chance.

One avenue that was not explored was con-

sidering movement of the same asset but with

a different contract expiry in the feature vector.

Given the correlation between contracts of the

same underlying commodity, this could be use-

ful for predicting movements. This might then

start to resemble a pairs trading approach, which

could also be a valid approach to trading fu-

tures but deviates from the trend following back-

ground.

If we were to move forward, we might think

of the problem in a different way: can we pre-

dict when the asset prices will move up, down,

or stay constant? Rather than trying to pre-

dict the returns in a regression-style algorithm,

we could instead classify data points with any

of a number of labels based on returns. As the

number of labels approaches infinity it would re-

semble a regression, but at a small number of

labels (likely 3-5) it might be possible to create

a machine learning strategy that, like the base-

line, does not attempt to predict numeric returns

but instead attempts to predict sign or size of

return more abstractly. This would then require

its own, more novel optimizer, or a simple strat-

egy of ”trade the most extreme labels equally”

could also be used. The hope would be that us-

ing classification could reveal the same insights

as the baseline crosses-only model.

Overall, the project provided plenty of chal-

lenges from both a theoretical and technologi-

cal perspective. Our models only achieved mod-

erate success, but the experience was valuable

and their shortcomings gave us insight into what

strategies are effective in quantitative finance.

While a successful approach might look different

from the work we have done, it was an interesting

experience that served as a great introduction to

the field.
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