
Fourier Analysis 
 

 Fourier analysis follows from Fourier’s theorem, which states that every function 

can be completely expressed as a sum of sines and cosines of various amplitudes and 

frequencies.  This is a pretty impressive assertion – no matter what the shape of a 

function, and how little it looks like a sine wave, it can be rewritten as a sum of sines and 

cosines. The Fourier series tells you the amplitude and frequency of the sines and 

cosines that you should add up to recreate your original function.  

 Before getting into the details of Fourier series, it may help to briefly review the 

terms associated with a sine wave with the figure below.  

  

  

 

 

 

 

 

 

 

 

 A cosine wave is just a sine wave shifted in phase by 90
o 
(φ=90

o
).   

 

  

 

 

 

 

 

 

 

 

 

 

 Cosine functions are even functions while sine wave are odd functions.  An even 

function is symmetric with respect to the y-axis, meaning that its graph remains 

unchanged after reflection about the y-axis. On the other hand, an odd function is 

symmetric with respect to the origin, meaning that its graph remains unchanged after 

rotation of 180 degrees about the origin.  

 In the language of linear algebra, Fourier’s theorem states that sine waves and 

cosine wave create a complete basis set that spans all possible functions. Sines and 

cosines are in fact independent (and also orthogonal) -- there is no way to add up cosine 

waves to create a sine wave. 

 A nice example of Fourier’s Theorem is the creation of a square wave by 

summing the appropriate component sine waves.  Like a sine or a cosine wave, a square 
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wave is a periodic function. Unlike those other functions, a square wave has sharp 

corners at 90
o 
angles (see figure below). 

 

                        SQUARE WAVE 

     

 

  

 

 

 

 

 

 

 

 How could we create a square wave out of sines and cosines? In the figure below, 

the top panels represents a waveform and the bottom panel represents the sine waves that 

are added together to form the waveform. Each column contains one more component 

sine wave than the previous panel. As you can see, as you add up more sine waves, the 

resulting waveform starts to look more and more like a square wave. An infinite sum of 

the appropriately chosen sine waves would lead to a perfect square wave.  
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 How did I know which sine wave should be summed to create the square wave?  

The Fourier series is used to figure out which sine and cosine waves should be summed, 

at what amplitude, to create a periodic waveform of interest. This is the Fourier series for 

a square wave: 
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 Notice that only sines, and not cosines, contribute to creating the square wave.  

That’s because the square wave that I’ve drawn is an odd function, just like a sine wave. 

If we shifted the square wave by 90
o
, we would have summed cosines to create it instead. 

 Once we know the Fourier series for a square wave, the square wave can easily be 

expressed in the frequency domain. This involves plotting the amplitude or the power 

spectrum.  The amplitude spectrum is just the amplitude of the sine/cosine at each 



frequency, while the power spectrum is the square of the amplitude spectrum. Based on 

the equation for the square wave above, the amplitude is 1 for frequency of 1 (ω=1), 1/3 

for frequency of 3 (ω=3), and so on. The amplitude/power is zero at even frequencies for 

this square wave example. 

 

 
 

 The figure below is another simple example of plotting the same signal in both the 

time domain and frequency domain. The sine waves represented by the top two rows are 

summed to create the waveform in the bottom row.  The right column shows how much 

power is in each frequency (“power spectrum”). Notice that the power is zero at most 

frequencies.  This is because the waveforms in this example are composed of either 1 or 2 

sine waves, so most frequencies are not contributing any power to the signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The extension of a Fourier series for a non-periodic function is known as the 

Fourier transform. When calculating the Fourier transform, rather than decomposing a 

signal in terms of sines and cosines, people often use complex exponentials. They can be 

a little easier to interpret, although they are mathematically equivalent.  A complex 

exponential is defined as Ae
iφ

, where i
2
=-1 (i is the “imaginary” number), A is the 

amplitude, and φ is the phase. A waveform can be decomposed in terms of complex 

exponentials rather than sines and cosines because of Euler’s Theorem, which highlights 

the surprisingly close relationship between a complex exponential and sines/cosines. 

 

 EULER’S THEOREM: 
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 The Fourier transform allows you to write any function (f(t)) as the integral (sum) 

across frequencies of complex exponentials of different amplitudes and phases (F(ω)). 

f(t) is often called the “time domain” representation while F(ω) is called the “frequency 

domain representation.”  The key thing to understand about Fourier transforms is that 

these two representations are different ways of expressing the same information.  The 

formula for a Fourier transform is below: 
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 When you use a computer to take a Fourier transform of a function f(t), the 

computer will return the complex number F(ω), which you should think of as a vector in 

the complex plane, as plotted below.  The complex plane is a 2-D plane with real 

numbers along the x-axis and imaginary numbers along the y-axis.  
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 The easiest way to interpret F(ω) is by calculating the amplitude (A) and the 

phase (φ) at each frequency.  The amplitude (or “magnitude”) tells you how much signal 

there is at a given frequency, whereas the phase tells you the delay of the signal at a given 

frequency.  Based on the geometric interpretation of a complex exponential, you can 

calculate the amplitude and phase of the complex exponential using some high school 

trigonometry. For a complex exponential )()()( ωωω ibaF += , 

 1)  The amplitude, which is the length of the vector, can be calculated using the 

Pythagorean theorem: 
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 2)  The phase ( )(ωF∠ ), which is the angle of the vector from the x-axis, can be 

calculated based on the arctangent – the angle whose tangent is 
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 Once you know the complex exponential F(ω), you can transform back into the 

time domain by calculating the inverse Fourier transform, and recover the original 

function f(t). 

 Below, you can see the Fourier Transform for a sine wave and a phase-shifted 

sine wave. Notice that the amplitude is identical for these two conditions, but the phase is 

different, reflecting the fact that the two signals are simply phase shifted (i.e. spatially 

offset) versions of each other. 

 
 

  

 So, why would you want to take a Fourier transform?  Fourier analysis can be 

very useful for two main reasons. 

1. Many calculations are simpler in the frequency domain than the time domain.   

• For example: filtering (convolving) becomes trivial in the frequency 

domain. We’ll talk about this next chapter. 

2. Many neural processes can be described more effectively in the frequency 

domain. 

• For example: The cochlea transforms a time domain signal (the 

sound’s waveform) into a frequency domain signal. The strength of the 

response in the auditory nerve fiber tuned to a particular frequency 

reflects the amplitude of the sound’s waveform at that frequency.  In 

other words, the auditory system takes a Fourier transform of the 

incoming signal, decomposing the sound into amplitudes as a function 

of frequency. 
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• Many brain regions have oscillations of a particular frequency that can 

be easily characterized with Fourier analysis.   

 


