Scrubbers

- What is the political issue that has to be decided?
 - The 1972 EPA performance standard for new sources (NSPS) was 1.2 lbs. of sulfur dioxide per million BTU (SO2 → acid rain)
 - ISSUE: how to achieve standard (not set it)
- Given technological constraints, what are alternatives?
 - Low sulfur coal
 - Mandated scrubbers (for new sources)

- In contrast, shift to low sulfur coal reduces emissions 80-90% with no down time

Scrubbers

- How would a policy expert think about this problem?
 - Balance two or more objectives
 - Cleaner air
 - Lowest cost
 - Given technologies available
 - In sum, a public interest perspective
- The following graph shows the problem

Approximation of public policy perspective
scrubbers

• Why is this not a no brainer?
 – Geography
 – Nature of production-economic origin of preferences
 – Distribution and other characteristics of interests
• The answer on a public interest model would be western coal
 – Cleaner and cheaper
• However interests look like this—

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>East</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>Intensive</td>
<td>Non-intensive</td>
</tr>
<tr>
<td>States/districts</td>
<td>Five states/66 d W.Va Ky, Ill., Ind, Penn</td>
<td>Two states/3 d Mont., Wyo</td>
</tr>
</tbody>
</table>

scrubbers

• What interests care about this issue?
• What are they likely to do if anything?
 – Remember notes on who becomes active from DST
• Note we have shifted from
 – Public interest or policy approach where we used aggregate costs and benefits to
 – Group level costs and benefits or pluralistic perspective

scrubbers

• This brings us to a prediction
 – Public policy or interest—western coal
 – Pluralism of interests—scrubbers
• What role do the environmental interests play in your prediction?
Two theories of government decision-making

Preferences (interests) \(\rightarrow\) GOVERNMENT \(\rightarrow\) Policy (any constraints on economic or social activity)

Structured pluralism perspective

Public policy perspective

The scrubbers case suggests that decision-making within the black box is driven at least as much by input-side, constituency-specific distributive concerns as by output-side, nation-as-a-whole efficiency concerns.

Distinctions that have emerged

- Efficiency
 - Aggregate welfare
- Public policy analysis
 - What is in the “public interest?”
- Normative analysis
 - What ought to be?
- Distribution
 - Who gets what?
- Interest group analysis
 - Who wins among competing private interests?
- Positive analysis
 - What is?

Progress report

- What determines whether interests will become active on a given issue?
 - Interest group analysis
 - [Wilson/Lowi “nature of politics”]
 - The PD / collective action problem \((p > c/b)\)
 - The interest group spreadsheet

- What determines whether and how policy will change?
 - Collective choice analysis within institutions
 - Voting theory

- What determines whether activity will have an impact?
 - Knowledge about political actors’ concerns
 - Strategies for conveying information and other valued resources

Wilson/Lowi typology and examples

If the proposed policy is adopted, how does the policy change the distribution of costs and benefits?

<table>
<thead>
<tr>
<th>Costs</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated</td>
<td>Dispersed</td>
</tr>
<tr>
<td>Interest group politics</td>
<td>Entrepreneurial politics</td>
</tr>
<tr>
<td>telecommunications</td>
<td>loophole closing</td>
</tr>
<tr>
<td>Client politics</td>
<td>Majoritarian politics</td>
</tr>
<tr>
<td>rivers and harbors</td>
<td>welfare (increases)</td>
</tr>
</tbody>
</table>

4/27/2001

OSB-120
The Prisoners' Dilemma, etc. Advice & Overview

- Don't memorize the payoffs
- Do grasp the substantive problem
 - Cooperation is valuable...
 - ... but it is hard to achieve.
- What makes cooperation valuable?
 - Greater social benefits (aggregate payoffs) when it occurs than when it doesn't occur
 - Recent, recurring, personal examples?
- What makes cooperation hard to achieve?
 - The incentive to free-ride, defect, not cooperate, not contribute...
 - Concepts: dominant strategy, equilibrium

Example, generalization, and interpretations

| Prisoner 2
Cooperate	Defect	
Cooperate	(1, 1)	(-1, 2)
(b-c, b-c)	(-c, b)	

Interpretation of payoffs:

- 2 = Temptation
- 1 = Reward
- 0 = Punishment
- -1 = Sucker

Condition: T > R > P > S

\[b - c = 1 = \text{net benefits from cooperation} \]

\[c = 1 = \text{cost of cooperation} \]

\[b = 2 = \text{benefit from other (sucker's) cooperation} \]

\[0 = \text{benefits from no action} \]

Condition: \(b > c > 0 \)

Extension to n-players: 4 diners

- Tab Rule:
 - Split the tab equally
- After the main course:
 - Everybody is full but not stuffed; waiter offers assortment of $4 desserts.
- Benefits:
 - For each satisfied-but-not-stuffed-diner, the benefit of a dessert is only $2.
- Choice:
 - Each must choose either to have dessert (Yes) or not to have dessert (No).
- Questions:
 - (1) What are the payoffs? (2) What is the dominant strategy? (3) What is the equilibrium? (4) Is it socially optimal?

Some ways to ameliorate the dilemma

- The players themselves
 - Internal moral rules, codes of conduct, norms...
 - Communication
 - Repetition
 - if the probability of continuation is "sufficiently high" then cooperation becomes an equilibrium
- External solutions
 - Privately agreed upon 3rd party monitoring
 - Contract law & its enforcement by courts
 - International organizations (e.g., GATT, WTO)
- These are all either embellishments of -- or not covered within -- the one-shot PD considered above.
More on repetition

- Consider the 2-person PD with generic payoffs
 - Slide #6: \((b-c, b-c), (c, b), (b, -c), (0, 0)\)
- Suppose that after each play of the game, players play another round with probability \(p\).
 - Substance:
 - the greater is \(p\), the greater is your time horizon
 - \(p\) is a measure of patience
- Suppose you know the other player is playing TFT
- Then cooperation is the optimal strategy and only if
 \[p > \frac{c}{b} \]

- These terms cannot be measured perfectly
- Think of the likelihood of collective action in various situations:
 - individual level: Will a group form?
 - group level: Will a coalition of interest groups form?
- Relative values of the terms, or a marginal change in any one term, affect(s) the likelihood of overcoming the collective action problem.