The expected utility representation

Def: A person’s preferences over the lotteries in $\Delta(X)$ (where X is a set of outcomes) can be represented by an *expected utility function* if there exists a function $u : X \rightarrow \mathbb{R}$ such that for any $p, q \in \Delta(X)$,

$$p \succ q \iff EU(p) \equiv \sum_{i=1}^{n} p_i u(x_i) > \sum_{i=1}^{n} q_i u(x_i) \equiv EU(q).$$

Axioms that imply EU-representable preferences

Consider a set of outcomes X, and lotteries $\Delta(X)$.

A1 (completeness): For any $p, q \in \Delta(X)$, if $p \succ q$ then not $q \succ p$.

A2 (neg. transitivity): For any $p, q, r \in \Delta(X)$, if $p \succ q$, then either $p \succ r$ or $r \succ q$. (Recall that neg trans implies trans.)

A3 (“Archimedian”, or continuity): For $p, q, r \in \Delta(X)$ s.t. that $p \succ q \succ r$, $\exists \alpha, \beta \in (0, 1)$ s.t. $(\alpha p, (1 - \alpha)r) \succ q \succ (\beta p, (1 - \beta)r)$.

A4 (substitution, or “independence”): For any $p, q, r \in \Delta(X)$, if $p \succ q$, then for $\alpha \in (0, 1)$, $(\alpha p, (1 - \alpha)r) \succ (\alpha q + (1 - \alpha)r)$.

Th: A dmkr prefers \succ on $\Delta(X)$ can be represented by an expected utility function iff they satisfy A1, A2, A3, and A4.

Compound lotteries

Objects like $(\alpha p, (1 - \alpha)r)$ are *compound lotteries* – the lottery you get when you have an α chance of getting the lottery p, and a $1 - \alpha$ chance of getting the lottery r.

The Allais paradox, an example of a common violation of A4

You have a choose between two gambles:

$G_1 = \$1m$, $G_2 = (.01 \text{ on } \$0, .89 \text{ on } \$1m, .10 \text{ on } \$5m)$,
and then between two more,

\[G_3 = (.89 \text{ on } 0, .11 \text{ on } 1m), \quad G_4 = (.9 \text{ on } 0, .1 \text{ on } 5m) \].

People often express the preferences \(G_1 \succ G_2 \) and \(G_4 \succ G_3 \). But this violates the substitution axiom, as show by

\[
\begin{array}{ccc}
\text{probability} & \text{probability} \\
\hline
.01 & .10 & .89 & \text{vs.} & .01 & .10 & .89 \\
G_1 & 1m & 1m & 1m & G_3 & 1m & 1m & 0m \\
G_2 & 0m & 5m & 1m & G_4 & 0m & 5m & 0m \\
\end{array}
\]

Now we show that you can’t represent these expressed preferences with an EU function (which we already know must be the case from the Theorem above):

Let \(X = \{0, 1m, 5m\} \). Let \(u(5m) = 1, \ u(0) = 0, \) and keep \(u(1m) \) “free.” (Why can we do this without losing any generality?)

\(G_1 \succ G_2 \) implies \(u(1m) > .01 \cdot 0 + .89 \cdot u(1m) + .10 \cdot 1 \), but this implies

\[u(1m) > .89u(1m) + .1 \]

or

\[.11u(1m) > .1 \]

And \(G_3 \prec G_4 \) implies

\[.89u(0) + .11u(1m) < .9u(0) + .1u(5m) \]

\[.11u(1m) < .1 \]

But this is a contradiction, so there is no eu function that can represent these preferences.

Utility functions over continuous sets of outcomes and risk attitudes
Definition: A person is risk averse if she strictly prefers to receive the expected value of a lottery for sure to the lottery itself. Formally, if for numerical outcomes \(x \) and \(y \), she has
\[
\alpha x + (1 - \alpha)y \succ (\alpha x, (1 - \alpha)y)
\]
for all \(\alpha \in (0, 1) \).

Two concepts of risk attitude

1) Absolute risk attitude: The idea just presented, curvature of a utility function defined on a continuous, numerical set of outcomes.

2) Relative risk attitude: “Rumsfeld is more risk acceptant than Powell.” Here, idea is that A is more risk acceptant (averse) than B if A will take (reject) gambles that B would reject (accept). This does not presume any underlying metric in outcomes.

Definition of a normal form game

A normal form game is

1. A set of players \(I = \{1, 2, \ldots, n\} \).
2. A set of strategies available to each player \(i \), \(S_i \).
3. A utility function \(u_i : S_1 \times S_2 \times \ldots \times S_n \to \mathbb{R} \) for each player \(i \).

Formally, we will often write \(\Gamma = \langle I, S_i, u_i \rangle \).

Payoff notation

In general, \(u_i(s_i, s_j) \) is the utility number for player 1 assigned when 1 chooses strategy \(s_i \in S_1 \) and player 2 chooses \(s_j \in S_2 \).

What if the number of players is more than 2? Then \(u_i(s_1, s_2, s_3, \ldots) \) is the utility payoff player 1 gets when she chooses \(s_1 \) and player 2 chooses \(s_2 \in S_2 \), etc. For example, \(u_1(F, F, F, P, F, P) \) means what in a six player SoN game?

For convenience, we will often write (for \(n > 2 \) player games) \(u_i(s_i, s_{-i}) \) for player \(i \)'s payoff, where \(s_i \) is the strategy \(i \) is choosing and \(s_{-i} \) is the list of strategies that everyone else is choosing. \((-i \) here means something like “not person \(i \”). Thus in the example in the last paragraph, \(s_i = F \) and \(s_{-i} = (F, F, P, F, P) \).

Payoffs given beliefs about what other player may choose

We can extend the notation for utility payoffs for outcomes to represent a player’s expected utility for choosing a given strategy \(s_i \) given that the player has some belief about what the other is likely to do.
Consider a two player game in which 1’s strategies are $S = \{s_1, s_2, s_3, \ldots, s_m\}$ and 2’s strategies are $T = \{t_1, t_2, \ldots, t_n\}$.

Then 1’s belief about player 2’s likely play is a probability distribution on T, thus an element $\tau \in \Delta(T)$. Written out, $\tau = (\tau_1, \tau_2, \ldots, \tau_n)$, where $\tau_i = Pr(2 \text{ plays } t_i)$.

For the general case where 1 plays some strategy $s_i \in S$,

$$u_1(s_i, \tau) = \sum_{j=1}^{n} \tau_j u_1(s_i, t_j).$$

Definition of a best reply

Defn: s_i is a best reply given belief τ for player 1 if she has $u_1(s_i, \tau) \geq u_1(s_j, \tau)$ for all strategies $s_j \in S_1$.

Defn: The set of best replies for player 1 is $BR_1(\tau) = \{s_i : s_i \text{ is a best reply given } \tau\}$.

(Note that the “:” in the last definition reads “such that.”)

Never a best reply

First concept of a bad strategy that a rational player could rule out:

Defn: $s_i \in S$ is never a best reply if there does not exist $\tau \in \Delta(T)$ s.t. $u(s_i, \tau) \geq u(s, \tau)$ for all $s \in S$.

(Note: Now we are talking about two player games and I am using S for 1’s strategy set and T for 2’s strategy set.)

Question: Is it true in general that if a strategy s_i gives better payoffs than another strategy s_j for every possible strategy choice by player 2, then it is does better for any belief $\tau \in \Delta(T)$? Yes.

Claim: For two strategies (acts) s_i and s_j, $u(s_i, \tau) > u(s_j, \tau)$ for all $\tau \in \Delta(T)$ iff $u(s_i, t) > u(s_j, t)$ for all $t \in T$.

The idea of mixed strategies

Suppose we give players the option of choosing a probability distribution on the set of available pure strategies.

If 1’s set of pure strategies (actions, acts) is $S = \{s_1, s_2, \ldots, s_m\}$, then $\Delta(S)$ is the set of
mixed strategies.

This is exactly parallel to the idea of \(\tau = (\tau_1, \tau_2, \ldots) \), except there we were talking about \(\tau \) as player 1’s beliefs about 2’s likely play, and here we are talking about \(\sigma \) as 1’s actual strategy.

If player 1 has \(m \) available strategies in an \(m \times n \) normal form game, we write

\[\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_m), \]

where \(\sigma_i \) is the probability that player 1 choose strategy \(s_i \in S \).

Expected payoff given a mixed strategy \(\sigma \) and a belief \(\tau \)

Defn: A person’s eu for the mixed strategy \(\sigma \in \Delta(S) \), given beliefs about the other’s play \(\tau \in \Delta(T) \), is

\[
u(\sigma, \tau) = \sum_{i=1}^{m} \sigma_i u(s_i, \tau) = \sum_{i=1}^{m} \sigma_i \sum_{j=1}^{n} \tau_j u(s_i, t_j).
\]

Strongly dominated strategies

A second concept of what a “bad strategy” would be for a rational player in a game situation:

Defn: \(\sigma \in \Delta(S) \) is strongly dominated by \(\sigma' \in \Delta(S) \) if \(u(\sigma', t) > u(\sigma, t) \) for all \(t \in T \).

In words, strategy \(\sigma \) gives a worse expected payoff for player 1 than does strategy \(\sigma' \) no matter what player 2 chooses.

Equivalence of the two concepts in 2 person games

Thm: If there are 2 players, then \(\sigma \in \Delta(S) \) is never a best reply iff there exists \(\sigma' \in \Delta(S) \) s.t. \(\sigma \) is strongly dominated by \(\sigma' \).

In words, if there is no set of beliefs for which a strategy is optimal (a best reply), then there must exist some other strategy that is better than it in all possible circumstances regarding the other player’s play.