
Bayesian Modeling in the Social Sciences:
an introduction to Markov-Chain Monte Carlo

Simon Jackman1

1Department of Political Science, Stanford University, Stanford, CA 94305-6044. e-
mail: jackman@stanford.edu

http://jackman.stanford.edu

1

1 Philosophical Preliminaries

1.1 End of the Holy War?

• The biggest philosophical debate within statistics is to do with the nature
of probability. Two camps are frequentists and subjectivists.

• Each side has a distinctive view about statistical inference: are we
characterizing states of the world, or states of mind? Objectivist vs
subjectivist.

• Bayesians are subjectivists, but most introductions to statistics en-
countered in the social sciences are presented from the frequentist
perspective.

• Markov chain Monte Carlo methods have a Bayesian foundation; but
have also heralded a new ‘‘pragmatism’’. Bayesian methods are now
being widely used by people with little interest in the long ‘‘holy war’’
between frequentists and subjectivists.

• MCMC allows us to do (subjectivist) Bayesian statistics if we want, but for
the most part, MCMC is a means to an end, a clever way to get parameter
estimates and uncertainty assessments.

1.2 What is Probability?

The mathematical definition is uncontroversial:

...there is no problem about probability: it is simply a non-negative,
additive set function, whose maximum value is unity

Kyburg and Smokler (1980, 3), quoted in Barnett (1982, 72)

and Kolmogorov himself ruled out any questions regarding the interpretation
of probabilities:

The theory of probability, as a mathematical discipline, can and
should be developed from axioms in exactly the same way as
Geometry and Algebra. This means that after we have defined the
elements to be studied and their basic relations, and have stated
the axioms by which these relations are to be governed, all further

2

exposition must be based exclusively on these axioms, independent
of the usual concrete meaning of these elements and their relations

Kolmogorov (1956, 1), quoted in Barnett (1982, 71)

Subjective versus objective interpretations of probability:

• Objective: probability is a characteristic of a process, defined as the
long-run or limiting frequency of an event, A. That is, let m be the number
of occurrences of A, and let n be the number of experiments. Then

Pr(A) = lim
n→∞

m
n

i.e., the limit of a relative frequency, the definition of probability proposed
by Denis Poisson in 1837 (Leamer, 1978, 25).

von Mises (1957):

...we may say at once that, up to the present time [1928], no one
has succeeded in developing a complete theory of probability
without, sooner or later, introducing probability by means of the
relative frequencies in long sequences. (p70)
The rational concept of probability, which is the only basis of
probability calculus, applies only to problems in which either
the same event repeats itself again and again, or a great number
of uniform elements are involved at the same time... [In] order
to apply the theory of probability we must have a practically
unlimited sequence of observations.

p11, quoted in Barnett (1982, 75-76)

• ‘‘objective probability’’ describes a feature of the coin being flipped, the
die being rolled, or the cards being dealt, etc.

• but what about cases where where are studying non-standardized, non-
repetitive behavior?

– What is the probability that a discovered sonata is the work of
Beethoven?

– What is the probability that Andrew Jackson was the eighth president
of the United States? (Leamer, 1978, 25)

3

– What is the probability that the Democrats win the House of
Representatives in November 2000?

– What is the probability that I am from New Zealand?

– What is the probability of nuclear war in the next five years? (Lee,
1989, 3)

The frequentist notion of probability struggles with these questions.
Leamer (1978, 27):

I just do not see how a frequentist can make meaningful
probability statements at all. He can talk about classes of events
and their respective physical, possibly objective frequencies. But
if we reserve the adjective ‘‘probability’’ for set functions that
both obey the [Kolmogorov] probability axioms and also indicate
the likelihood of uncertain events, a frequentist statement that
two times out of ten we will pull a red ball from the urn is no
more a probability statement than the statement that 20% of
the balls are red or that the red balls make up 20% of the mass
of the balls. Only under certain subjective circumstances can
we allow the frequency of .2 to be translated into the statement
‘‘The probability of drawing a red ball from the urn is .2’’

A more radical position is taken by di Finetti:

My thesis ... is simply this:

PROBABILITY DOES NOT EXIST

The abandonment of superstitious beliefs about...Fairies and
Witches was an essential step along the road to scientific
thinking. Probability, too, if regarded as something endowed
with some kind of objective existence, is not less a misleading
misconception, an illusory attempt to exteriorize or materialize
our true probabilistic beliefs.
In investigating the reasonableness of our own modes of thought
and behaviour under uncertainty, all we require, and all that we
are reasonably entitled to, is consistency among these beliefs,
and their reasonable relation to any kind of relevant objective
data (‘‘relevant’’ in as much as subjectively deemed to be so).
This is Probability Theory.

4

di Finetti (1974, x), quoted in Barnett (1982, 68)

• this subjective notion of probability is championed by almost all
Bayesians (although Bayes himself was ambiguous on the question):
a ‘‘degree of confidence’’ (James Bernoulli, 1713) or ‘‘degree of belief’’.

• Laplace in his Philosophical Essay on Probabilities (1820): for a
hypothesis h and evidence or data e, there is a measurable numerical
degree of certainty which ‘‘should be entertained in the truth of h in the
light of e’’ (Howson and Urbach, 1993, 52).

• but not just any beliefs! Under what conditions can subjective beliefs be
considered probabilities?

• when degrees of certainty are located in the closed unit interval, they
have the interpretation of probabilities

• these degrees of belief also adhere to the laws of probability, if someone
is behaving rationally.

• the Ramsey-de Finetti Theorem: let p1, p2, . . . be a set of betting quotients
on hypotheses h1, h2, If the pi do not satisfy the probability axioms,
then there is a betting strategy and a set of of Si of stakes such that
whoever follows this betting strategy will lose a finite sum whatever the
truth values of the hypotheses turn out to be (Howson and Urbach, 1993,
79).

n.b., p = k
1+k where k is the odds on h you believe to be fair.

i.e., if one was using ‘‘degrees of belief’’ as a basis on which to place
bets on the truth of sequence of hypothesis, then one would lose money
if those ‘‘degrees of belief’’ did not conform to the laws of probability
(Kolmogorov’s axioms). A reasonably straightforward proof appears in
Howson and Urbach (1993, 79-86).

• in particular, how one updates beliefs about hypotheses in the light of
evidence has to obey laws about conditional probability (Bayes’ Rule,
see below).

Controversy arises because objectivity is widely believed to be a critical
component of scientific inquiry:

5

Most modern statisticians will hardly consider the conclusions they
arrive at (like the statements made by art critics...) as being of
a ‘‘subjective’’ nature, i.e., depending on their mood, their taste,
... [that where one] does not find a significant result, whereas his
colleague does, ... [this] is due to differences in their metabolism....
[On an extreme subjectivist view of probability] the statistician...gets
a result like that of an ancient priest, whose statements the layman,
unable to reproduce the statistician’s order of preferences, has to
accept without a possibility of criticism. Statistics, in as much as it
would remain a science at all, would become a ‘‘sacred and secret’’
science.

van Dantzig (1957) quoted in Barnett (1982, 95)

6

1.3 Critiques of Classical Statistical Practice

Frequentist inference doesn’t permit us to make the conclusions we are
used to thinking that it does.

1.3.1 Confidence Intervals

Lee (1989, vii):

When I first learned a little statistics, I felt confused... Not because
the mathematics was difficult...but because I found it difficult to
follow the logic by which inferences were arrived from data.... the
statement that a 95% confidence interval for an unknown parameter
ran from -2 to +2 sounded as if the parameter lay in that interval with
95% probability and yet I was warned that all I could say was that
if I carried out similar procedures time after time then the unknown
parameters would lie in the confidence intervals I constructed 95%
of the time.

Barnett (1982, 182):

if we ... find that x̄ = 29.8, how are we to answer the question
‘‘how close is 29.8 to l’’? This is a most pertinent question to ask ---
some might claim that it is the supreme consideration. Within the
classic approach we must rest on any transferred properties of the
long-term behavior of the procedure itself...

But not everyone is satisfied by this attitude. Some critics suggest
it is misconceived! Suppose from data we obtain a 95 per cent
confidence interval for l as 29.5 < l < 30.2. It is suggested that it
is of little value to someone need to act in this situation to know that
the ‘‘95 per cent confidence’’ attaches not to the specific statement
made, but to what proportion of such similarly based statements
will be correct in the long run. Such an interpretation may justify the
statistician in his professional activities at large, (in the long run his
advice is correct on 95 per cent of occasions), but what of the present
situation? A statistically naive client will almost inevitably attach
the 95 per cent to the statement 29.5 < l < 30.2; the statistician
himself can hardly avoid doing so implicitly when he puts the
information to any practical use! Any probability interpretation of

7

such an attitude must be expressed in non-frequency terms, for
example as a statement of subjective probability.

For example, a random sample survey of American adults may
indicate that mean income in the United States is $35,000. Assuming
(rather implausibly) that income is normally distributed, we could
estimate a 90% confidence interval for our sample mean, perhaps
[$15,000, $55,000] for a modestly sized sample. Using conventional
frequentist inference we can conclude that intervals like the one
calculated would cover the true (population) mean income 90%
of the time for repeated applications of the sampling procedure.
The ‘‘repeated sampling’’ inference tells us neither whether the
population mean lies within the estimated interval nor even with
what probability the mean lies in the interval.... The only available
conclusion concerns the long-run behavior... (Western and Jackman,
1994, 413)

But what about non-repeatable data? That is, there is no data-generation
process (DGP) creating data sets for us, just a single set of data. e.g.,
comparative politics. How can we apply frequentist procedures?

Western and Jackman (1994) considered this problem. There is ‘‘uncer-
tainty’’, but not of the objective, frequentists kind: rather, the researcher’s
(subjective) uncertainty about the process under study. Classically-trained
students of comparative politics struggle with this: e.g.,

• In an analysis of advanced industrial democracies, Lange and Garrett
(1987, 268) report that they ‘‘adhere to traditional standards [i.e.,
significance tests] while remaining unsure of their applicability’’

• Gorin’s (1980, 153) comparative study of inequality ‘‘cannot utilize
probability theory to ascertain the level of [statistical] significance’’ for
want of ‘‘random samples’’; he goes on to note that asterisks in his
results indicate a ‘‘.05 level of significance’’

At this point, some comparativists invoke the notion of a ‘‘superpopula-
tion’’, from which the observed histories of specific countries are just one
possible realization.

While this assumption avoids a deterministic theory of the data
process, it is highly speculative compared to positive knowledge

8

about a sampling procedure or, in Fisher’s uncompromising phrase,
‘‘the physical act of randomization’’... Even more troubling, however,
is the conclusion that conventional inference allows in this instance.
Take the example of a confidence interval for a mean where we can
conclude that under repeated realizations (which are acknowledged
to be impossible), the interval would cover the true mean 90% of
the time. We have no way of knowing whether the current interval is
one of the fortunate 90% and no possibility of further replications
(Western and Jackman, 1994, 414).

• The fiction of repeated sampling is somehow held out by frequentists
as objective; seems ludicrous in the case of comparative politics
and arguments that make use of ‘‘superpopulations’’ (somehow not
subjective?)

• From a Bayesian perspective, frequentists are making recourse to
imaginary data, and then calling their results objective (e.g., Jeffreys,
1961)!

• p values also have this property; Lee (1989, vii):

It sounded as if the statement that a null hypothesis was rejected
at the 5% level meant that there was only a 5% chance of that
hypothesis being true, and yet the books warned me this was
not a permissable interpretation.

• See Howson and Urbach (1993, ch9) for a thorough critique of conven-
tional significance testing.

1.3.2 Specification Searches

• Leamer’s critique of conventional econometric practice in Specification
Searches 1978 and in numerous articles with provocative titles (e.g.,
‘‘Let’s Take the Con out of Econometrics’’, 1983).

• ad hockery abounds in the study of non-experimental data (subtitle
to Specification Searches is ‘‘Ad Hoc Inference with Nonexperimental
Data’’).

• searching over many different configurations of independent variables,
in order to come up with plausible results.

9

• results are then presented as if they were generated objectively, without
any prejudices/hunches/biases as how the results should turn

• ‘‘the data are speaking for themselves’’, ‘‘the data are conveying their
message...’’ etc; as if the researcher had nothing to do with it

• one-tailed tests, or arbitrary selection of critical value (i.e., rejection
region) for statistical tests.

• message: prior beliefs enter into data analysis all the time --- it is
inevitably a subjective enterprise --- so why pretend otherwise? Why not
incoporate prior beliefs formally (i.e., use the Bayesian approach)?

10

2 Bayes’ Rule

Most simply,

Pr(H|E) =
Pr(E&H)

Pr(E)
=

Pr(E|H)Pr(H)

Pr(E)

or in (subjective) words, the degree of belief in proposition H given evidence
E is equal to the joint probability of H and E divided by the probability of E.

• Pr(H) is the prior degree of belief in H

• Pr(H|E) is the posterior degree of belief in H, in the sense of what ‘‘after
looking at the evidence (E)’’

Bayes’ Rule is an accounting identity that follows from the probability
axioms. Mathematically, it is as uncontroversial as the probability axiom on
which it rests.

Turns on the axiom relating joint and conditional probabilities:

Pr(A|B) =
Pr(A&B)

Pr(B)

or
Pr(A|B)Pr(B) = Pr(A&B),

where Pr(B) 6= 0.

Thus Bayes’ Rule is sometimes called the rule of inverse probability, since
it shows how a conditional probability B given A can be turned into or inverted
into a conditional probability A given B (Leamer, 1978, 39).

Consider the case when A is not a single event, but a set of n mutually
exclusive and exhaustive events, (An) (Lee, 1989, 9):

Pr(B) =
∑

n

Pr(B|An)Pr(An)

and
Pr(An|B)Pr(B) = Pr(An&B) = Pr(An)Pr(B|An)

and if Pr(B) 6= 0 then

Pr(An|B) ∝ Pr(An)Pr(B|An)

=
Pr(An)Pr(B|An)

Pr(B)

=
Pr(An)Pr(B|An)∑
m Pr(Am)Pr(B|Am)

11

The first line is one of the more popular ways of stating Bayes’ Rule: we
shall see that is equivalent to the statement

a posterior is proportional to the prior times the likelihood

Recall that a likelihood can be defined as follows: when the joint probability
density function (pdf) fn(y|h)of the data is regarded as a function of a parameter
h it is called the likelihood function.

This is handy: for Bayesians, the likelihood function summarizes the
information in the data about h, and allows the Bayesian to move from prior
beliefs to posterior beliefs:

p(h|y) =
p(h) p(y|h)

p(y)
(h ∈ H) (1)

where

p(y) =

∫
H

p(y, h)dh

=

∫
H

p(h)p(y|h)dh

Since p(y|h) is (proportional to) the likelihood for the data, we can ignore the
denominator and re-write equation (1) as

p(h|y) ∝ p(h)p(y|h)

∝ prior× likelihood

It is also possible to interpret this as a weighted average: at each point in
the parameter space, the posterior p(h|y) is an average of the likelihood and
the prior, but a weighted average, since the posterior is normalized to behave
like a probability density (i.e., integrate to 1).

2.1 An Example

In the United Kingdom in 1975, a referendum was to be held as to
whether the UK should stay part of the EC. At the recent general election, the
proportion supporting Labour (L) was 52%, while the proportion supporting
the Conservatives (C) was 48% (ignoring the other parties and non-voters).
Many polls indicated that 55% of Labour supporters and 85% of Conservative

12

supporters intended to vote ‘‘Yes’’ (Y) in the EC referendum, and the remainder
intended to vote ‘‘No’’ (N).

Suppose we meet someone and she says is that she intends to vote ‘‘Yes’’
in the referendum. What should we conclude about her partisan support?
Applying Bayes’ Rule:

Pr(L|Y) =
Pr(Y |L)P(L)

Pr(Y |L)Pr(L) + Pr(Y |C)Pr(C)

=
.55× .52

(.55× .52) + (.85× .48)
≈ .41

2.2 Conjugacy

A prior distribution is said to be naturally conjugate with respect to a
likelihood if it gives rise to a posterior distribution having the same parametric
form as the prior.

• in practice, assumptions about the likelihood’s functional form (binomial,
normal, Poisson, etc) usually structure the choice of functional form for
the prior.

• this is done by exploiting mathematical relations among probability
distributions (usually in the exponential family)

• remember: posterior is proportional to a prior times a likelihood

• life is easier is the posterior that results has a known functional form

• e.g., Uniform prior and Binomial Likelihood → Beta posterior, because
U(0,1) = Beta(1,1).

• e.g., Beta prior and Binomial Likelihood→ Beta posterior

• e.g., Normal prior and Normal likelihood→ Normal posterior

• distributional assumptions and conjugacy less of a consideration with
‘‘modern Bayes’’ (computational power allows us to approximate distri-
butions). e.g., Figure 2.4 in Gelman et al. (1995, 41).

13

2.3 Pooling Analogy

• Conjugate priors also have the property of being interpretable as
additional data.

• ‘‘pooling’’ an useful analogy for thinking about Bayesian inference:
updating prior beliefs with data is equivalent to pooling one set of data
with another.

2.4 Inference for a Proportion

How does the ‘‘Bayesian mantra’’

a posterior is proportional to the prior times the likelihood

apply in the case of a estimating a proportion?

• Data: y successes in n trials.

• Parameter: h, probability of success.

• Prior: ignorance regarding a probability/proportion is easy to represent
mathematically:

f (h) = Uniform(0, 1)

i.e., flat over the feasible region of the parameter space.

Digression on the Beta distribution:

1. a uniform distribution on (0,1) is a special case of a Beta distribution,
specifically, a Beta (1,1) distribution.

2. More geneally, the Beta distribution is a pdf with support on the
unit interval, and so is frequently used for modeling probabilities or
proportions:

f (h; α, b) = C(α+b)
C(α),C(b)h

α-1(1 - h)b-1

0 < h < 1, α > 0, b > 0.

3. The parameters of a Beta prior for a probability/proportions can be
interpreted as ‘‘prior number of observations’’: α + b - 2 = number
of ‘‘prior observations’’, and α/(α + b) is the prior mean on h: e.g.,
Table 2.1 (Gelman et al., 1995, 41).

14

4. Thus a Uniform(0,1) = Beta(1,1) prior on h is equivalent to zero
previous observations.

5. Elementary calculus reveals that the mode of a Beta(α, b) density is
at

α - 1
α + b - 2

6. The variance of a Beta distribution is
αb

(α + b)2(α + b + 1)

• Likelihood: if each of the n trials is independent, the likelihood is said to
be exchangeable, and the likelihood is simply the joint probability of the
data given h. In this case, we obtain the binomial likelihood function

f (y|h) = Binomial(y|n, h) =

(
n
y

)
hy(1 - h)n-y

The maximum likelihood estimate of h is

ĥMLE =
y
n

• Posterior with non-informative (uniform) prior: applying Bayes’ Rule:

f (h|y) ∝ f (y|h)f (h)

∝ hy(1 - h)n-y

since (1)
(n

y

)
is not a function of h and (2) the prior is a constant over the

support of the likelihood function.

How can we turn the expression for the posterior into a probability density
function (i.e., make it integrate to 1)? We require a constant c such that∫ 1

0
f (h|y) dh =

∫ 1

0
c hy(1 - h)n-y dh = 1

i.e.,

c =
C(y + 1 + n - y + 1)

C(y + 1) C(n - y + 1)

where C() is the gamma function. A well-known result in statistics is that this
yields a Beta distribution:

f (h|y) = c hy(1 - h)n-y ≡ Beta(y + 1, n - y + 1),

or equivalently, the posterior for h is the Beta distribution

h|y ∼ Beta(y + 1, n - y + 1)

15

2.4.1 Other Types of Prior for h

See Gelman et al. (1995, 35ff): in general, if we have

1. a prior of the form Beta(α, b)

2. a binomial likelihood, i.e., f (y|h) ∝ hy(1 - h)n-y

then the posterior is

f (h|y) = Beta(α + y, b + n - y)

2.4.2 Example: male-female birth rates

From Gelman et al. (1995, 39ff): What is the sex ratio among births with
placenta previa (‘‘an unusual condition of pregnancy in which the placenta is
implanted very low in the uterus, obstructing a normal vaginal delivery’’). An
early study in Germany found that of a total of 980 births, 437 were female.
So the MLE of h = 437/980 ≈ .446.

Research Question: How much support does this study provide for the
claim that the proportion of female births in the population of placenta previa
births is less than 0.485, the proportion of female births in the general
population? i.e., h < .485?

Using the assumption of a uniform prior (ignorance) as to the rate of female
births h, we obtain the posterior f (h|y = 437, n = 980) = Beta(438, 544),
which is proportional to the likelihood.

Other priors yield other answers; see Figures 1 and 2. Code to produce
these graphs appears in A.1.

2.4.3 Simulation from Posterior

We can repeatedly sample from the posterior to obtain arbitrarily precise
approximations to the quantities of interest: e.g.,

• median of f (h|y), and quantiles of interest

• logit(h) ≡ ln[h/(1 - h)] (say, if we were relating h to a set of covariates via
a regression-type model, with normal errors; the logit transform makes
the large-n normal approximation to the binomial work better).

• male-to-female sex ratio, u = (1 - h)/h, and its distribution (see picture).

16

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 1
beta = 1

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 0.97
beta = 1.03

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 2.425
beta = 2.575

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 9.7
beta = 10.3

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 48.5
beta = 51.5

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 97
beta = 103

Figure 1: Posteriors for h, the probability of a female birth given placenta previa, under a
variety of conjugate prior distributions. This figure graphically replicates the contents of
Table 2.1 in Gelman et al. (1995, 41). The dotted lines are the priors, parameterized by the
indicated values of α and b, in this case chosen such that h has a prior mean of .485, but
with varying degrees of precision. The shaded areas are 95% posterior intervals for h, and
the solid line indicates the location of the MLE.

17

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 1
beta = 3

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 2
beta = 6

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 4
beta = 12

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 8
beta = 24

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 15
beta = 45

0.0 0.2 0.4 0.6 0.8 1.0

alpha = 50
beta = 150

Figure 2: Posteriors for h, the probability of a female birth given placenta previa, under
a variety of conjugate prior distributions. The dotted lines are the priors, parameterized
by the indicated values of α and b, in this case chosen such that h has a prior mean of
α/(α + b) = .25, but with varying degrees of precision. The shaded areas are 95% posterior
intervals for h, and the solid line indicates the location of the MLE.

18

2.5 Inference for the Mean

• Data: y = (y1, y2, . . . , yn)
′. That is,

yi ∼ N(h, r2),∀ i = 1, . . . , n.

• Consider r2 fixed.

• Prior for h: h ∼ N(l0, s2
0), or

f (h) ∝ exp

(
-
(h - l0)

2

2s2
0

)
• Likelihood:

f (y|h, r2) =
n∏

i=1

u(yi|h, r2)

=
n∏

i=1

1√
2pr2

exp

(
-
(yi - h)2

2r2

)
= (2pr2)-n/2 exp

(
-
∑n

i=1(yi - h)2

2r2

)
∝ exp

(
-
∑n

i=1(yi - h)2

2r2

)
• Posterior: applying Bayes’ Rule

f (h|y) ∝ f (h)f (y|h)

= f (h)
n∏

i=1

f (yi|h)

∝ exp

(
-
(h - l0)

2

2s2
0

) n∏
i=1

exp

(
-(yi - h)2

2r2

)
∝ exp

(
-
1
2

[
(h - l0)

2

s2
0

+

∑n
i=1(yi - h)2

r2

])
.

i.e., we are again pooling the prior information about h with the sample
information about h.

19

The posterior can be re-arranged to yield

h|y ∼ N(ln, s2
n)

where

ln =

1
s2

0
l0 + n

r2 ȳ
1
s2

0
+ n

r2

, i.e., a precision-weighted average

and
1
s2

n
= 1

s2
0

+ n
r2

total precision = prior precision + data precision

• precision = 1/variance. As variance gets large, precision gets smaller.

• posterior precision = prior precision + data precision

• since precision can’t be negative, we always ‘‘learning’’ with normal prior
and normal data.

• posterior mean is a precision-weighted average of the prior mean l0 and
the sample mean ȳ =

∑
y/n.

• prior ignorance about h can be expressed by making the prior precision
small, or equivalently, by making prior variance s2

0 large.

• Thus,

as s0 →∞ with n fixed, (i.e., the prior variance/precision increases/decreases)

or
as n→∞ with s0 fixed, (i.e., we get more and more data)

then
f (h|y) ≈ N(ȳ, r2/n).

i.e., the data dominate the posterior.

• setting s2
0 equal to the (known) variance r2 is equivalent to giving the

prior distribution the same weight as one extra observation with the
value l0.

20

2.6 Inference for the Mean and Variance, Normal data

From Gelman et al. (1995, 71ff):

• Data: y = (y1, . . . , yn)
′. yi ∼ N(l, r2),∀ i.

• n.b., two parameters to carry through the analysis; l and r2; require
priors for both, i.e., f (l, r2)

• conjugacy means that a convenient form for the prior is the product form

f (l, r2) = f (l|r2)f (r2)

where

l|r2 ∼ N(l0, r2
0/j0)

r2 ∼ Inv-v2(m0, r2
0)

• the joint prior density f (l, r2) is given by the convolution of these two
densities is known as a ‘‘Normal-inverse-chi-squared’’ density, with four
parameters:

1. the prior location of l, l0

2. a variance parameter, tapping our uncertainty in the prior location of
l, r2

0/j0

3. the degrees of freedom of r2, tapped via m0

4. the scale of r2, tapped via r2
0

• normal data, and so the likelihood is

f (y|l, r2) =
n∏

i=1

u(yi|l, r2)

=
n∏

i=1

1√
2pr2

exp

(
-(yi - l)2

2r2

)
= (2pr2)-n/2 exp

(
-
∑n

i=1(yi - l)2

2r2

)
• using Bayes’ Rule, we multiply the joint prior and a Normal likelihood

to obtain the joint posterior that is also a ‘‘Normal-inverse-chi-squared’’

21

density, with four parameters:

ln =
j0

j0 + n
l0 +

n
j0 + n

ȳ

jn = j0 + n

mn = m0 + n

mnr2
n = m0r2

0 + (n - 1)s2 +
j0

j0 + n
(ȳ - l0)

2

where

1. ln is a weighted average of the prior mean and the sample mean,
with weights determined by the relative precisions,

2. mn is the prior degrees of freedom plus the sample size

3. mnr2
n is the posterior sum of squares, combining the prior sum of

squares, the sample sum of squares, and the additional uncertainty
tapped by the difference between the sample mean and the prior
mean.

• the conditional posterior f (l|r2, y):

l|r2, y ∼ N(ln, r2/jn)

= N
(j0

r2 l0 + n
r2 ȳ

j0
r2 + n

r2

,
1

j0
r2 + n

r2

)
• the marginal posterior f (r2|y) is Inverse-v2:

r2|y ∼ Inverse-v2(mn, r2
n)

• method of composition: sampling from the two distributions sequentially
can be used to build up an arbitrarily precise approximation to the joint
distribution. See Figure 3.2 in Gelman et al. (1995, 75). i.e.,

1. sample r2* from Inv-v2(mn, r2
n)

2. sample l* from N(ln, r2*/jn)

and store results over many repetitions of this process.

• in this case, we can integrate r2 out of the joint posterior to obtain a
marginal posterior density for l that is a t distribution, with location
parameter ln, scale parameter r2

n/jn, and degrees of freedom mn.

22

2.7 Bayesian Inference for a Regression, Normal data

• Data: y ∼ N(Xb, r2I).

• Prior: p(b, r2) = p(b|r2)p(r2):

p(b|r2) ≡ N(b̄0, r2B0) (2)

r2 ∼ Inverse-v2(v0, S0) (3)

• Non-informative prior: p(b, r2) ∝ 1/r2. i.e., a uniform prior on (b, ln r2).

• Likelihood:

f (y|b, r2) ∝
(
r2)-n/2

exp

{
-

1
2r2

n∑
i=1

(yi - xib)2

}
(4)

• Marginal Posterior for b:

p(b|r2, y, X) ≡ N(b̄, r2B)

where

b̄ = (prior precision + data precision)-1

× (prior precision× b̄0 + data precision× b̂MLE)

=
(

B-1
0 + X′X

)-1 (
B-1

0 b̄0 + X′X(X′X)-1X′y
)

=
(

B-1
0 + X′X

)-1 (
B-1

0 b̄0 + X′y
)
,

and

B = (prior precision + data precision)-1 =
(

B-1
0 + X′X

)-1
i.e., the posterior mean is a precision-matrix-weighted average of the
prior b̄0 and the estimate we would get from the data (bMLE = (X′X)-1X′y),
where the matrix weights are the prior precision B-1

0 and the data precision
X′X.

n.b., precision is the inverse of variance.

• Marginal Posterior for r2:

p(r2|XY) ≡ Inverse-v2(v0 + n, S0 + S)

where S = y′My with M = I - X(X′X)-1X′.

23

• Correspondence with familiar least squares results: note that as the
prior mean on b goes to 0 and B ‘‘gets large’’, we obtain the MLE. We also
obtain the MLE of r2 when v0 = 0 and S0 = 0.

In fact, the MLE results exactly with the non-informative prior.

• Posterior is exactly that we would obtain if we pooled one set of data
with another. Useful to remind us that we are averaging prior information
with data.

• This particular form for the prior has the property that it induces a Normal
marginal posterior for b. The posterior has two properties worth noting:

1. the posterior precision/variance is strictly greater/smaller than the
prior precision/variance.

2. the posterior is unimodal --- doesn’t allow for the possibility that after
getting data at odds with a prior, we could well wind up ‘‘confused’’
or ‘‘uncertain’’. See For an alternative prior for regression models
that allows this possibility, see Leamer (1978, 79).

24

beta

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 3: Bayesian Updating for a Mean, Normal Prior and Data. The dotted lines indicate the
(symmetric) prior and data, a N(-3,1) density and a N(3,1) density. The resulting posterior is
a compromise between the two, N(0, 1/2).

25

3 Simulation Methods

Bayesianism has obviously come a long way. It used to be that you
could tell a Bayesian by his tendency to hold meetings in isolated
parts of Spain and his obsession with coherence, self-interrogation
and other manifestations of paranoia. Things have changed...

Clifford (1993, 53)

Claim:

‘‘everyone’’ likes likelihood functions!

where
‘‘everyone’’ = {most frequentists, Bayesians}

• for Bayesians, likelihoods are how we use the data to move from prior to
posterior.

• with vague or diffuse priors, likelihoods will dominate the posterior

• but sometimes likelihoods are unwieldy, difficult, or even impossible to
compute, let alone maximize with respect to parameters.

Maximizing likelihoods is often easier said than done:

• missing data

• the likelihood is complex, having lots of parameters or a computationally
intractable functional form (e.g., multinomial probit model, time series
models for qualitative data).

• maximization is slow or difficult

• we know that no unique maximum exists, or that maxima are located on
the edge of the parameter space (e.g., finite mixture models),

• even when the MLE can be calculated, the asymptotic properties of
MLEs may not ‘‘kick in’’ in samples that are considered ‘‘large’’ --- direct
inspection of the log-likelihood or log-posterior may be better than relying
on the MLE point estimate and the estimated asymptotic standard error
(e.g., correlation coefficients; bimodal distributions on parameters).

26

• in explicitly Bayesian models, the joint posterior for all the parameters is
sometimes very difficult to compute.

Pedigree of MCMC methods:

EM (Dempster, Laird and Rubin, 1977)
↓

Data Augmentation (Tanner and Wong, 1987)
↓

Markov Chain Monte Carlo
{

Gibbs Sampling
Metropolis-Hastings

Underlying ideas have been around for a long time:

• relaxation methods in solving systems of linear equations.

• Monte Carlo sampling

• averaging over nuisance parameters

MCMC methods comes to the social sciences via:

• physics and chemistry (e.g., Metropolis et al., 1953)

• image reconstruction (e.g., Geman and Geman, 1984)

• statistical mainstream (e.g., Gelfand and Smith, 1990)

27

3.1 Imputation/Augmentation

...rather than performing a complicated maximization or simula-
tion, one augments the observed data with ‘‘stuff’’ (latent data)
which simplifies the calculation and subsequently performs a
series of simple maximizations or simulations. This ‘‘stuff’’ can
be ‘‘missing’’ data or parameter values. The principle of data
augmentation can then be stated as follows: Augment the ob-
served data Y with latent data Z so that the augmented posterior
distribution p(h|Y, Z) is ‘‘simple’’. Make use of this simplicity in max-
imizing/marginalizing/calculating/sampling the observed posterior
p(h|Y)

(Tanner, 1996, 38, emphasis added).

Critical notion is the posterior identity:

p(h|Y) =

∫
Z

p(h|Y, Z) p(Z|Y) dZ (5)

where Y is observed data, Z is latent data, and the integration is over Z, the
sample space of Z.

Without too much violence to the ideas/math, we can replace the term
‘‘posterior’’ with ‘‘likelihood’’

The various techniques to be discussed vary in how they exploit this
identity:

• EM uses the expected sufficient statistics of Z|Y to form an imputation
(typically just the mode or mean, and variance);

• MCEM (Monte Carlo EM) or MCMC (Markov chain Monte Carlo) uses Monte
Carlo integration (averaging over many random draws from p(Z|Y).

28

3.2 Monte Carlo and other simulation methods

Consider evaluating the expression

J(y) =

∫
f (y|x) g(x) dx = E[f (y|x)],

i.e., the expected value of some function of y, conditional on x. Note that f (y)
could be an identity, in which case J(y) is just the conditional expectation
E(y|x).

If g(x) is a probability density from which we can generate random samples,
then J(y) can be approximated by Monte Carlo integration: i.e.,

Ĵ(y) =
1
n

n∑
i=1

f (y|xi),

where x1, . . . , xn
iid∼ g(x) are samples from the density of x. Moreover,

lim
n→∞

Ĵ(y) = J(y) (Geweke, 1989)

3.2.1 Computing marginal posterior densities

A Bayesian analysis often results in multi-dimensional joint posterior
densities, when substantive interest may focus on a set of parameters.

A common example: the Normal regression model yields the joint posterior
(Gelman et al., 1995, 236-7):

p(b, r2|y) ∼ Normal-Inverse-v2,

but we want

p(b|r2, y) =

∫
p(b, r2|y)p(r2|y)dr2.

1. Sample r2(t)|y from its Inverse-v2 distribution:

r2(t)|y ∼ Inv - v2(n - k, s2)

2. Sample b(t)|r2(t), y from its (conditional) multivariate Normal distribution:

b(t) ∼ N(b̂, r2(t)Vb)

3. Repeat steps 1 and 2 many times: i.e., t = 1, 2, . . .

29

3.2.2 Functions of Parameters

Interest will sometimes focus on some function of the model parameters,
generically h(h). For example:

If each extra dollar of incumbent expenditures yields a b1 increase
in incumbent vote share, how many dollars must a challenger spend
so as to offset the increase?

b1 - mb2 = 0 ⇐⇒ m = -
b1

b2

How to conduct inference on m (a ratio of two Normals)?
The two steps in the previous section yield b(t)|r2(t), y. Then calculate

m(t) = -
b(t)

1

b(t)
2

.

The sampled m(t) can then be inspected and summarized for inference
purposes (mean, median, standard deviation, quantiles, proportion lying
above/below zero, density plots, histograms, etc).

Remark: this procedure is sometimes referred to as a parametric bootstrap.

3.2.3 Techniques for Sampling

Two techniques for sampling, very important in MCMC methods:

• importance sampling

• rejection sampling

The development of quite general algorithms for adaptive rejection sam-
pling (Gilks, 1996) has helped spur the developement of a general-purpose
software for Markov chain Monte Carlo (see section 9).

30

4 EM

A technique for obtaining MLEs ‘‘more simply’’, originally pioneered in the
context of missing data (e.g., Little and Rubin, 1987) Define

Q(h(t), h) =

∫
ln p(h|Yobs, Ymis)f (Ymis|Yobs, h(t))dYmis,

where

• ln p(h|Yobs, Ymis) is the log-likelihood or log-posterior density for the
complete data,

• f (Ymis|Yobs, h(t)) is the predictive density of Ymis (missing ‘‘stuff’’), given
the observed data and the current value of the parameters (h, w).

• the integration is over the sample space of Ymis.

• E step: use the current iteration’s parameter estimates to generate
imputations for the missing ‘‘stuff’’; this amounts to evaluating this
Q function: i.e., computing the expectation of the complete-data log-
likelihood, averaging over uncertainty as to the missing data.

• M step: maximize the Q function with respect to h, yielding updated
parameter estimates h(t+1), such that

Q(h(t+1), h(t)) ≥ Q(h(t), h(t))

i.e., the log of the incomplete-data likelihood or mode of the log-posterior
increases.

With the new parameter values, the algorithm returns to the E step,
iterating until convergence in the parameters and/or the likelihood.

Remark: EM does not simply treat the missing data as (additional)
parameters in the complete-data log-likelihood. Such an approach yields
estimates that do not share MLE’s optimal asymptotic properties, save for the
trivial case of where the proportion of data that is missing data asymptotically
declines to zero Little and Rubin (1983).

Convergence Properties: See Dempster, Laird and Rubin (1977) and Wu
(1983). Theorem 7.1 of Little and Rubin (1987):

31

Every (generalized) EM algorithm increases l(h|Yobs)at each iteration,
i.e.,

lnL(h(i+1)|Yobs) ≥ lnL(h(i)|Yobs)

with equality if and only if

Q(h(i+1)|h(i)) = Q(h(i)|h(i)).

This theorem can be used to show that l(h|Yobs) is nondecreasing on each
iteration of a GEM algorithm, and is strictly increasing on any iteration such
that Q increases. Further, a MLE of h is a fixed point of a GEM algorithm.

Remark: A GEM algorithm simply increases the Q function at each iteration,
while an EM algorithm maximizes the Q function with respect to h.

How does EM exploit the posterior identity?:

f (Y|h) = f (Yobs, Ymis|h)

= f (Yobs|h) f (Ymis|Yobs, h)

The log-likelihood implied by this factorization is

L(h|Y) = L(h|Yobs, Ymis)

= L(h|Yobs) + ln f (Ymis|Yobs, h)

In maximizing this log-likelihood, we’d take the expectations over the missing
data, conditional on Yobs and the current estimate of h (Little and Rubin, 1987,
134).

32

4.1 Example: Probit model for binary data

Model: Consider a probit model for a binary outcome, yi ∈ {0, 1}, i =
1, . . . , n. We relate the observed binary outcome to covariates via latent
regression function

y*
i = xib + ei, (6)

where

• xi is a row vector of observations on k independent variables,

• b is a column vector of parameters to be estimated,

• y*
i ∈ R is a latent dependent variable, observed only in terms of its sign,

i.e.,

yi =

{
0, if y*

i < 0
1, if y*

i ≥ 0

• ei N(0, 1),∀ i = 1, . . . , n.

• Equation (6) is a standard-looking regression save for the complication
that we observe only the sign of the dependent variable, y*.

• Treat the y* as missing data.

• E step: Use the current estimate of b and other model assumptions to
make an imputation for each y*

i

• M step: Conditional on the y*
i choose b so as to maximize the complete-

data log-likelihood, updating our estimate of b.

Details:

• The Q function for the probit model is

Q(b, b(t)) =

∫
y*

ln p(b|X, y, y*) p(y*|b(t), X, y) dy*

or the expected value of the complete-data log-likelihood, where the ex-
pectation is with respect to the latent dependent variable y*, conditional
on the current estimate of b, b(t) and the observed data X and y.

33

• Complete-data log-likelihood:

ln p(b|X, y, y*) = -
n
2

ln(2p) -
1
2

n∑
i=1

[(
y*

i - xib
)2
]

given that r2 = 1, by assumption.

• Substituting into the Q function

Q(b, b(t)) = -
n
2

ln(2p) -
1
2

n∑
i=1

[(
E[(y*

i - xib)|yi, xi, b(t)]
)2
]

= -
n
2

ln(2p) -
1
2

n∑
i=1

[
V [(y*

i - xib)|yi, xi, b(t)] + E[(y*
i - xib)|yi, xi, b(t)]2

]
,

= -
n
2

ln(2p) -
1
2

n∑
i=1

[
V(y*

i |yi, xi, b(t)) + [E(y*
i |yi, xi, b(t)) - xib]2

]
.

• The updated estimate of b, b(t+1), is given by maximizing Q(b, b(t)) with
respect to b. The variance and expectation terms do not involve b (just
b(t)), and so

b(t+1) = arg min
b

1
2

n∑
i=1

[
E(y*

i |yi, xi, b(t)) - xib
]2

= (X′X)-1X′E(y*|y, X, b(t)).

i.e., the updated estimate of b is obtained by running a least-squares
regression of the imputed values for y* on the covariates X.

• The imputation for y* is

E(y*
i |yi, xi, b(t)) ≡ y*(t)

i = E[(xib + ei)|yi, xi, b(t)] = xib
(t) + Mi,

where

Mi = Eb(t)(ei|yi, xi, b(t)) =

{
-ui/Ui if yi = 0,
ui/(1 - Ui) if yi = 1,

and where ui = u(-xib(t)) is the Normal probability density function, and
Ui = U(-xib(t)) is the Normal cumulative distribution function, evaluated
at -xib(t) (e.g., Johnson, Kotz and Balakrishnan, 1994, 156).

34

• Convergence of the EM algorithm can be monitored by noting the
difference between Q(b(t+1), b(t)) and Q(b(t), b(t)).

• Inference: EM does not generate standard errors as a mater of course.
The standard errors we obtain from the least squares regression of y* on
X are not the standard errors of the MLEs (the least squares regression is
heteroscedastic).

i.e., still require second derivatives of the likelihood function.

Data: I implemented this algorithm for a probit model, using a random
subset of 3,000 observations from Nagler’s (1994) data on voter turnout, from
the 1984 Current Population Survey; predictor variables are education, age,
the number of days registraton closes before the election, whether or not
a gubernatorial election took place in the respondent’s state, and whether
the respondent lives in the South. Starting values were drawn from an OLS
regression of the observed binary dependent variable on the covariates, and
after 30 iterations of the EM algorithm the log-likelihood was increasing by
steps of less than 10-9.

Figure 4 shows the iterative history of the EM algorithm for the log-
likelihood, two parameters, and the estimated value of the latent dependent
variable for the 1,000th observation. The algorithm converges quite quickly
in this case, and after a few iterations has done most of its work, moving away
from the OLS starting values towards the maximum likelihood estimates.

Computation: See section A.2.

35

Iteration

Lo
g-

Li
ke

lih
oo

d

0 5 10 15 20 25 30

-1
69

0
-1

68
0

-1
67

0

Iteration

ed
uc

0 5 10 15 20 25 30

0.
10

0.
12

0.
14

Iteration

ag
e

0 5 10 15 20 25 30

0.
05

0
0.

05
5

0.
06

0
0.

06
5

Iteration

ys
ta

r1
00

0

0 5 10 15 20 25 30

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

Figure 4: Iterative History of EM algorithm, Probit Model of Voter Turnout.

36

Iteration

q1

0 5 10 15 20 25 30

-4
32

0
-4

28
0

-4
24

0

Iteration

q2

0 5 10 15 20 25 30

-4
25

5
-4

24
5

-4
23

5

Iteration

qd
iff

0 5 10 15 20 25 30

0
20

40
60

80

Iteration

bp
b

0 5 10 15 20 25 30

2.
5

3.
5

4.
5

5.
5

Figure 5: Convergence Diagnostics, EM Algorithm for probit model.

37

4.2 Example: Linear Regression with AR(1) disturbances

Model:

yt = Xtb + ut,

ut = q ut-1 + et, et ∼ N(0, r2),∀ t = 2, . . . , T .

Given the normality of et, the log-likelihood is

lnL(b, q, r2 | y, X) =
-T
2

ln(2p) -
T
2

ln r +
1
2

ln(1 - q2) -
u*′

u*

2r2 , (7)

where
u* = y* - X*b,

and

y* =


√

1 - q2 y1

y2 - q y1
...

yT - q yT -1

 , X* =


√

1 - q2 x1

x2 - q x1
...

xT - q xT -1


are the familiar Prais-Winsten transformations for the first observation Prais
and Winsten (1954).

• consider q as ‘‘missing stuff’’ (here, a parameter), or the white-noise
disturbances u* as missing ‘‘data’’ stuff --- unobserved by the analyst, at
least initially.

• log-likelihood in (7) can’t be calculated, let alone maximized with u and
q ‘‘missing’’.

Posterior identity:

p(b, r2 | y, X) =

∫ 1

-1
p(b, r2 | y, X, q) p(q |b, r2, y, X) dq, (8)

where the limits of integration over q follow from the assumption of
stationarity.

Applying EM:

• E step: make an imputation for q conditional on the data and the current
estimate of b (r2 isn’t necessary for this step).

38

• M step: find estimates of b and r2 that maximize the log-likelihood in (7)
conditional on the imputation for q.

Slow motion:

• At the end of iteration i, estimates of b and r2 are b(i) and r2 (i),
respectively.

• Given ut = qut-1 + et and et ∼ N(0, r2),∀ t, the log-predictive density (or
log-likelihood) for q(i+1) is

p(q(i+1) | y, X, b(i), r2 (i)) = -
T - 1

2

(
ln(2p) + ln r2 (i)

)
-

T∑
t=2

(u(i)
t - q(i+1)u(i)

t-1)
2

2r2 (i) ,

where u(i)
t = yt - xtb(i).

• The value of q(i+1) that maximizes this log-predictive density is

q(i+1) =

∑T
t=2 u(i)

t u(i)
t-1∑T

t=2

(
u(i)

t-1

)2 , (9)

This is just the coefficient from the regression of u(i)
t on u(i)

t-1 (without a
constant).

• M step. Find b and r2 that maximize lnL(b, r2 | y, X, q(i+1)):

1. b(i+1) ← regression of y* (i+1) on X* (i+1), where q(i+1) is used in
forming the transformed variables;

2. r2 (i+1) = (e* ′

(i+1)e
*
(i+1))/T , where e*

(i+1) = y* (i+1) - X* (i+1)b(i+1).

• Iterate this algorithm until convergence in the log-likelihood or the
parameters; a la Cochrane and Orcutt (1949).

• Data: monthly approval ratings for Reagan (T = 96).

• Covariates: inflation rate, unemployment level, change in the S&P 500
stock index, and a dummy for the drop in Reagan’s approval associated
with the Iran-Contra scandal.

• starting values from OLS, q = 0.

• Computation: See section A.3.

39

Iteration

Lo
g-

Li
ke

lih
oo

d

2 4 6 8 10

-2
56

.8
0

-2
56

.7
9

Iteration

in
fl

2 4 6 8 10-0
.0

08
0

-0
.0

07
4

Iteration

un
em

p

2 4 6 8 10

-1
.4

8
-1

.4
4

-1
.4

0

Iteration

rh
o

2 4 6 8 10

0.
85

2
0.

85
6

0.
86

0

Iteration

si
gm

a2

2 4 6 8 10

12
.1

56
12

.1
62

Figure 6: Iterative History of EM Algorithm, Regression Analysis of Reagan Approval, with
AR(1) disturbances.

40

4.3 Example: right-censored failure time data

Tanner (1996, 67) presents a simple example where right-censoring is the
source of the missing data in a failure time study.

• Data: See Figure 7.

• Model: log ti = b0 + b1
1000

xi+273.2 + ui, ui ∼ N(0, r2),∀ i = 1, . . . , n.

• Failure times are unobserved (right-censored) in the cases where the
motorette had not failed at the end of some known time period, ci.

• It is clear that simply deleting the censored observations will lead to
invalid estimates of the effect of the experimental control on failure time.

• Log-likelihood:

l(b0, b1, r | t, v, Z) = -
N
2

(ln 2p+ln r2)-
m∑

i=1

(ti - b0 - b1vi)
2

2r2 -
N∑

i=m+1

(Zi - b0 - b1vi)
2

2r2

(10)
where Zi is the unobserved log-failure time for case i > m.Note that
this expression of the log-likelihood differs from standard treatments
of right-censoring. The usual formulation (e.g., King (1989, 208--10);
Greene (1993, 732)) replaces the term containing Zi in (10) with

N∑
i=m+1

ln

[
1 - U

(
ci - b0 - b1vi

r

)]
.

and proceeds with direct MLE. i.e., direct MLE is unproblematic here; the
censoring example is chosen for illustration only.

• given the presence of the Zi terms, this log-likelihood can not be
evaluated.

• E step, imputations for the missing failure times: we know that Zi > ci,
and so an imputation for Zi is reasonably straightforward to obtain.
Applying a standard result on the truncated normal (Maddala (1983, 65);
Johnson, Kotz and Kemp (1992, 156)) to this setting yields

E(Zi | b0, b1, vi, r, Zi > ci) = b0 + b1vi + k

(
(ci - b0 - b1vi)

r

)

41

where k(x) = u(x)
1-U(x), where u(·) and U(·) are density and cumulative

distribution function of the standard normal distribution, respectively
(k(·) is often referred to as the inverse Mills ratio).

• M step: run a least squares regression of the complete vector of log-
failure times (ti, Z(t)

i), on vi and a constant to obtain b(t+1) (the M step). A
slight correction to the least squares estimate is required to obtain r2

(t+1)
(see Tanner (1996, 42)).

• Iterations continue until convergence in the log-likelihood in (10) or in
the parameters.

• Applying the EM algorithm to the data in Tanner (1996, Table 4.1) yielded
the iterative history for b0, b1, r2, and the log-likelihood shown in Figure
4.3. Starting values for b and r came from a least squares regression on
the complete data, ignoring the censoring.

• Code appears in A.4

4.4 Remarks

Many applications of the EM algorithm:

• missing data Little and Rubin (1987)

• mixture models -- in time series context, the so-called Hamilton (1990)
model.

• unobserved state vector (Kalman filter) -- Watson & Engle (1983);
Shumway & Stoffer (1982).

Weakness: no standard errors ‘‘built-in’’ as in (quasi-) Newton methods,
which use/approximate 2nd derivatives of the log-likelihood function. Various
solutions proposed in the literature, including bootstrapping.

42

v

t

2.1 2.2 2.3

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

Figure 7: Censored Failure Time Data. Right-censored failure times are plotted with an open
square. The solid line shows the fit from the EM algorithm; the dotted line is the naive least
squares estimate.

43

In
te

rc
ep

t

5 10 15 20 25

-6
.0

-5
.8

-5
.6

-5
.4

S
lo

pe

5 10 15 20 25

4.
0

4.
1

4.
2

4.
3

si
gm

a

5 10 15 20 25

0.
20

0.
22

0.
24

0.
26

Iterations

Lo
g-

Li
ke

lih
oo

d

5 10 15 20 25

-1
5.

0
-1

4.
0

-1
3.

0

Figure 8: Iterative History, EM algorithm with censored failure time data from Figure 7
(Tanner, 1996, 67). The EM algorithm converges relatively quickly in this example, since the
amount of missing information is small relative to the observed data. The consequences of
censoring are easily discerned by comparing the starting values of the intercept and slope
parameters with their estimated values given an imputation for the censored values. For
instance, the effect of the independent variable is underestimated by ignoring the censoring.

44

4.5 Monte Carlo Implementation of the E-Step

Given

Q(h, h(i)) =

∫
Z

log p(h|Y , Z)p(Z|h(i), Y)dZ

• E step (Monte Carlo):

1. Draw z1, . . . zm
iid∼ p(Z|h(i), Y)

2. Let Q̂(i+1)(h, h(i)) = 1
m

∑m
j=1 log p(h|Y , zj).

• M step: Q̂ is maximized to obtain h(i+1).

• sampling (and averaging) from the conditional distribution for the missing
data, rather than making an imputation based on the sufficient statistics.
Why?

• how big should m be? Relatively small when h(i) is far from the true value,
but larger when getting closer (Tanner, 1996, 80-81).

• Unlike EM, successive iterations won’t converge on the MLE; after a while,
the algorithm will be sampling in the neighborhood of the maximum.
Apparently random fluctuations in the log-likelihood suggest being at a
maximum. Suggestions in the statistics literature as to how to diagnose
convergence and how large to make m.

Remark: Rubin (1987) terms the zj multiple imputations.

Example: Chan and Ledolter (1995) use this MCEM (Monte Carlo EM)
algorithm to estimate a time series model for count data. They also present
some results on how this algorithm converges to a neighborhood of the MLE
or the mode of a posterior distribution.

45

4.6 Data Augmentation

From Tanner (1996, ch5):
Data augmentation closely resembles EM, except that one samples

repeatedly from the both densities in the posterior identity,

p(h | Y) =

∫
Z

p(h | Y , Z) p(Z | Y) dZ,

Through sampling the data augmentation explores the entire likelihood (or
a distribution proportional to the likelihood) or posterior density.

1. Imputation Step. Sample m times from the current approximation to the
predictive distribution for Z,

P(Z | Y) =

∫
W

p(i)(Z |w, Y) p(w|Y)dw,

where w ∈ W is a parameter(s) characterizing the dependence of the
augmented data, Z, on the observed data Y . Denote the sample
z1, . . . , zm. More specifically:

(a) Given p(i)(h | Y), sample a value of h, h*.

(b) Sample zj from p(Z | h*, Y), with h* from the preceding step.

Repeat these preceding two steps m times, i.e., j = 1, . . . , m. Rubin
(1987) calls the zj multiple imputations.

2. Posterior Step. Update the current approximation to p(h | Y) to be the
average (or mixture) of augmented posteriors of h, given the augmented
data from step (1)

p(i+1)(h | Y) =
1
m

m∑
j=1

p(h | zj, Y),

and return to the imputation step.

To sample from the mixture of augmented posteriors, Tanner (1996, 92)
recommends sampling h* from a randomly selected component of the
mixture.

• The integration in the posterior identity is performed via ‘‘brute force’’
Monte Carlo methods.

46

• With m large enough, approximations of posterior densities are ‘‘exact’’
or ‘‘near-exact’’.

• With m = 1, have chained data augmentation, which is actually the
simplest kind of Gibbs sampling.

47

5 Gibbs Sampling

• A multivariate extension of chained data augmentation

• Gather all random quantities --- ‘‘stuff’’ (parameters, latent data, missing
data) --- into h, and sample from the conditional distribution for each
component of h.

• A fully stochastic generalization of the techniques encountered so far

Consider h = (h1, h2, . . . , hd). Iteration i of the Gibbs sampler starts with
h(i) = (h(i)

1 , h(i)
2 , . . . , h(i)

d) and makes the transition to h(i+1) via the following
scheme:

a. Sample h(i+1)
1 from p(h1 | h(i)

2 , h(i)
3 , . . . , h(i)

d , Y).
b. Sample h(i+1)

2 from p(h2 | h(i+1)
1 , h(i)

3 , . . . , h(i)
d , Y).

... ...
d. Sample h(i+1)

d from p(hd | h(i+1)
1 , h(i+1)

2 , . . . , h(i+1)
d-1 , Y).

• The full joint posterior density for all of h has been broken down in to
a series of conditional densities, thereby circumventing the ‘‘curse of
[high] dimensionality’’.

• The sequence of vectors produced by this scheme, h(0), h(1), . . . , h(t), . . .,
are a Markov chain.

• Under a fairly wide set of conditions,

1. h(t) converges in distribution to p(h1, h2, . . . , hd | Y), as t → ∞; i.e.,
the joint posterior distribution of the parameters is the stationary
distribution of the Markov chain generated by successive iterations
of the Gibbs sampler.

2. Averaging over a functional of the output of the Markov chain
produces a quantity that converges (almost surely) to the functional
of the posterior density p(h | Y) (this the Monte Carlo part of MCMC):
i.e.,

1
t

t∑
i=1

f (h(i))
a.s
-→ E(f (h)).

48

5.1 Historical Remarks

• ‘‘Gibbs’’ = J. Willard Gibbs (1839-1903), with whom we associate ‘‘Gibbs
free energy’’ and many other quantities and concepts in statistical
mechanics and statistical chemistry.

• ‘‘Gibbs distributions’’ (pdfs over Markov random fields).

• Besag (1974) -- given h laid out as a lattice, the joint distribution of the
elements of h is uniquely determined by the d conditional distributions.

• Many resonances here for Bayesians, well aware of the relationships
among marginal and conditional densities.

• Image-reconstruction Geman and Geman (1984); lattice of pixels. Still a
very active area of application.

• Comparision with other methods; see Table 1.

49

Pr
oc

ed
ur

e
O

ut
pu

t
In

fe
re

nc
e

M
LE

:o
pt

im
iz

at
io

n
of

lik
el

ih
oo

d
fu

nc
ti

on
L

(h
|y

)
∝

f(
y|

h
).

po
in

te
st

im
at

e:
ĥ

M
LE

va
r(

h)
≈

-[∂
2
L

(h
|y

)

∂
h
∂

h
′

∣ ∣ ∣ ∣ ĥ
M

LE

] -1

EM
:L

et
Q

(h
,h

(t
))

=

∫ ln
[p

(h
|Z

,Y
)]

p(
Z
|h

(t
) ,

Y
)

dZ
,

1.
E

st
ep

:C
om

pu
te

Z(t
)
=

E(
Z|

h
(t

) ,
Y
)

2.
M

st
ep

:h
(t

+
1)

=
ar

g
m

ax h
ln

[p
(h
|Z

(t
) ,

Y
)]

po
in

te
st

im
at

e:
ĥ

M
LE

as
fo

rM
LE

.

M
CM

C:
Le

th
=

(h
1
,.

..
,h

J)
′ .

1.
S

am
pl

e
h

(t
+

1)
1

fr
om

p(
h

1
|h

(t
)

2
,h

(t
)

3
,.

..
,h

(t
)

J
,Y

).

2.
S

am
pl

e
h

(t
+

1)
2

fr
om

p(
h

2
|h

(t
+

1)
1

,h
(t

)
3

,.
..

,h
(t

)
J

,Y
).

. . .
..

.

J.
S

am
pl

e
h

(t
+

1)
J

fr
om

p(
h

J
|h

(t
+

1)
1

,h
(t

+
1)

2
,.

..
,h

(t
+

1)
J-

1
,Y

).

sa
m

pl
ed

va
lu

es
:

h
(1

) ,
..

.,
h

(n
) ,

..
.,

h
(T

)

ca
lc

ul
at

e
co

nf
id

en
ce

in
te

rv
al

s
fr

om
ob

se
rv

ed
qu

an
ti

le
s

of
sa

m
pl

ed
h

(n
) ,

..
.,

h
(T

) .

Ta
bl

e
1:

S
um

m
ar

y
of

Al
te

rn
at

iv
e

M
et

ho
ds

of
S

ta
tis

tic
al

Es
tim

at
io

n
an

d
In

fe
re

nc
e.

50

5.2 Example: Probit model for binary data

From Albert and Chib (1993):

• Model: y*
i = xib + ei, ei ∼ N(0, 1) ∀ i = 1, . . . , n

yi = 0 ⇒ y*
i < 0

yi = 1 ⇒ y*
i ≥ 0

• Prior distributions: b ∼ N(bprior, Bprior).

• Conditional distributions:

y*
i |(yi = 0, xi, b) ∼ N(xib, 1)I(y*

i < 0) (trunc. Normal) (11)

y*
i |(yi = 1, xi, b) ∼ N(xib, 1)I(y*

i ≥ 0) (trunc. Normal) (12)

b|y*, X, y ∼ N(b̃, B̃), (13)

where

b̃ = (B-1
prior + X′X)-1(B-1

priorbprior + X′y*)

B̃ = (B-1
prior + X′X)-1

n.b., with a diffuse prior b̃ = (X′X)-1X′y* and B̃ = (X′X)-1 (the least
squares regression estimates).

• Starting values for b from least squares regression of binary dependent
variable y on X.

• Gibbs sampler, for iteration t:

1. Sample y*(t)
i from respective truncated Normals in (11) and (12)

2. Sample b(t) from multivariate Normal in (13)

• Results: See Figure 9 and Table 2.

• Computational details. See A.5 for an implementation in Splus. Figure 9
is produced by the code in A.6.

51

Ite
ra

tio
n

llh

0
20

00
40

00
60

00
80

00
10

00
0

-1690-1680-1670

-1
68

5
-1

68
0

-1
67

5
-1

67
0

-1
66

5

0.00.050.100.15

llh

density

Ite
ra

tio
n

educ

0
20

00
40

00
60

00
80

00
10

00
0

-1.0-0.50.00.5

-0
.5

0.
0

0.
5

1.
0

0.00.51.01.5

ed
uc

density

Ite
ra

tio
n

age

0
20

00
40

00
60

00
80

00
10

00
0

0.040.060.08

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
10

0102030405060

ag
e

density

Ite
ra

tio
n

ystar1000

0
20

00
40

00
60

00
80

00
10

00
0

1.21.62.0

1.
6

1.
8

2.
0

2.
2

01234

ys
ta

r1
00

0

density

Fi
gu

re
9:

O
ut

pu
t

of
G

ib
bs

sa
m

pl
er

,
pr

ob
it

ex
am

pl
e.

Th
e

le
ft

ha
nd

pa
ne

ls
sh

ow
th

e
it

er
at

iv
e

hi
st

or
y

of
th

e
G

ib
bs

sa
m

pl
er

fo
r

th
e

de
si

gn
at

ed
qu

an
ti

ti
es

,w
it

h
th

e
do

tt
ed

lin
es

in
di

ca
ti

ng
th

e
lo

ca
ti

on
of

th
e

M
LE

,a
nd

th
e

th
ic

ke
rg

re
y

lin
e

in
di

ca
ti

ng
a

m
ov

in
g

av
er

ag
e

(e
st

im
at

ed
by

lo
es

s)
.

Th
e

ri
gh

t
ha

nd
pa

ne
ls

sh
ow

th
e

po
st

er
io

r
de

ns
it

y
of

ea
ch

qu
an

ti
ty

as
a

hi
st

og
ra

m
,

us
in

g
th

e
la

st
5,

00
0

it
er

at
io

ns
of

th
e

G
ib

bs
sa

m
pl

er
,w

it
h

do
tt

ed
lin

es
in

di
ca

ti
ng

th
e

as
ym

pt
ot

ic
N

or
m

al
de

ns
it

y
im

pl
ie

d
by

th
e

M
LE

s;
th

e
ti

ck
m

ar
ks

on
th

e
ho

ri
zo

nt
al

ax
is

in
di

ca
te

th
e

5t
h,

50
th

an
d

95
th

pe
rc

en
ti

le
s

of
th

e
G

ib
bs

sa
m

pl
es

.

52

MLE MCMC

Intercept -2.32 -2.34
(.56) -

[-3.24, -1.40] [-3.26, -1.43]

Education .096 .11
(.22) -

[-.26, .45] [-.25, .46]

Education2 .021 .020
(.022) -

[-.015, .057] [-.016, .056]

Age .067 .067
(.008) -

[.054, .079] [.054, .079]

Age2 -.00047 -.00047
(.00008) -

[-.00061, -.00034] [-.00061, -.00034]

South -.094 -.095
(.061) -

[-.19, .007] [-.19, .006]

Gubernatorial Election .065 .064
(.066) -

[-.044, .17] [-.046, .17]

Closing Day -.021 -.020
(.020) -

[-.053, .012] [-.053, .012]

Education .0063 .0061
× Closing Day (.0081) -

[-.0071, .020] [-.0073, .020]

Education2 -.00061 -.00059
× Closing Day (.00082) -

[-.0020, .00074] [-.0020, .00076]

Table 2: Comparison of MLEs and Gibbs sampler output, probit model of voter turnout.
Standard errors appear in parentheses for the MLEs. For the Gibbs sampler output, the mean
of the last 5,000 samples is reported as the point estimate, no standard error is reported, and
a 90% confidence interval is reported in brackets; the 90% confidence interval implied by the
MLEs point estimate and standard error (assuming asymptotic Normality) is also reported in
brackets.

53

5.3 Diagnosing Convergence

• MCMC algorithms will get to the desired posterior density for a very wide
class of models, even though it may take a long time to get there.

• Determining how long is ‘‘sufficiently long’’ in particular settings is an
ongoing topic of research (e.g., Rosenthal, 1995; Polson, 1996; Roberts,
1996).

• (Tierney, 1997, 397) notes that ‘‘universally useful, reliable [convergence]
diagnostics do not exist, and cannot exist’’, given the problem-specific
Markov chains generated by MCMC.

• (Cowles and Carlin, 1996) provide a comprehensive review of 13
diagnostics.

• Difficulty is that MCMC algorithms produce samples from distributions,
rather than the value of a function being optimized (refer to Table 1,
above):

Worse yet, the Markov nature of the algorithm means that
members of this sample will generally be correlated with each
other, slowing the algorithm in its attempt to sample from
the entire stationary [posterior] distribution and muddying
the determination of appropriate Monte Carlo variances for
estimates of model characteristics based on the output. ...such
high correlations, both within the output for a single model
parameter (autocorrelations) and across parameters (cross-
correlations) are not uncommon, caused, for example, by a poor
choice of parameterization or perhaps overparameterization.
The latter situation can of course lead to ‘‘ridges’’ in the posterior
or likelihood surface, long the bane of familiar statistical
optimization algorithms (Cowles and Carlin, 1996, 883-4).

• Graphical inspection of the output of an MCMC algorithm is critically
important in assessing problems with convergence.

• High within-chain autocorrelations are obvious from a trace plot.

• Multi-modal posterior distributions are also obvious.

54

• Slow mixing and multi-modal posteriors are not fatal in and of themselves
--- the theoretical results guaranteeing convergence to the posterior
distribution apply to a wide range of circumstances --- but the MCMC
algorithm may have to be run for a very long period in order to reassure
oneself that the algorithm is exploring all regions of the parameter space
with positive posterior probability.

5.3.1 Geweke diagnostic

• Geweke’s (1992) observation that for some function of a scalar output
of the MCMC algorithm, say g(h), the spectral density of the time series
{g(h(t))} can be used to estimate the asymptotic variance of an estimate
of the average of the time series.

• This permits comparison of averages from two (or more) stages of the
Markov chain (say ‘‘early’’ with nA iterations and ‘‘late’’ based on the last
nB iterations), which yield estimates ḡ(h)A and ḡ(h)B.

• The difference of these means divided by the asymptotic standard error
of the difference tends to a standard normal distribution as n → ∞
(holding nA/n and nB/n constant and nA + nB < n).

• Cowles and Carlin (1996, 866) discuss the strengths and weaknesses of
this diagnostic. In particular, it is unclear how large nA and nB should be,
relative to n, although Geweke suggested nA = .1n and nB = .5n.

5.3.2 Parallel Gibbs Samplers

• Gelman and Rubin (1992) recommend starting the Gibbs sampler with
overdispersed starting points

• By overdispersed it is meant that the variance among the different
starting points should be greater than that thought to exist in the target
distribution.

• This is especially useful when working with a posterior distribution
reasonably thought to be multi-modal.

• i.e., run several Gibbs samplers in parallel.

55

• Given output from parallel MCMC algorithms, a simple test statistic can
be formed by comparing the within-sequence and between-sequence
variation in each scalar component of h Gelman and Rubin (1992).

• If the chains have converged on the same posterior density, then the
between-sequence variation should be small relative to the within-
sequence variation.

• Formally, consider an estimate of the marginal posterior variance of some
scalar estimand of interest w; i.e.,

v̂ar+(w|y) =
n - 1

n
W +

1
n

B,

where W is the (average) within-chain variance and B is the between-
chain variance, for some scalar of interest w, conditional on observed
data y.

• As n → ∞ (i.e., the MCMC algorithm is run for longer periods), the
contribution of the between-chain variation gets smaller, since it picks up
weight 1/n in contributing to v̂ar+(w|y). Simultaneously, the within-chain
variance increasingly dominates this term with additional iterations.

• Gelman and Rubin propose the following statistic as a convergence
diagnostic: √

R̂ =

√
v̂ar+(w|y)

W
.

This quantity declines to 1 as n → ∞, and can be interpreted as the
‘‘potential scale reduction’’ that might result from continuing to run the
MCMC algorithm.

• Given streams of output from parallel Gibbs samplers, this statistic can
be calculated after a pre-specified number of iterations; Gelman et al.

(1995, 332) suggest that values of
√

R̂ below 1.2 are ‘‘acceptable’’, but
any determination of convergence will vary from data set to data set.

• This is one of the more simple versions of the Gelman and Rubin
convergence diagnostic; more complicated versions and generalizations
appear in the statistical literature (e.g., Brooks and Gelman, 1998).

• tradeoff between using finite CPU for multiple chains vs one longer chain.

56

• I implemented the parallel Gibbs samplers recommendation for the probit
turnout example; see Figures 10 and 11.

• Computation: see A.7. Figure 10 is produced by the program in
section A.8. Two different implementations using WinBUGS are shown in
sections A.9 and A.10.

57

south

go
ve

le
c

-0.3 -0.1 0.1

-0
.1

0.
1

0.
3

1

2

3

4

intercept

cl
os

in
g

-4 -3 -2 -1

-0
.0

8
-0

.0
2

0.
04

1

2

3

4

south

go
ve

le
c

-0.3 -0.1 0.1

-0
.1

0.
1

0.
3

intercept

cl
os

in
g

-4 -3 -2 -1

-0
.0

8
-0

.0
2

0.
04

Figure 10: Output of Gibbs sampler, turnout probit model. Four chains were run in parallel,
starting from widely dispersed starting values. The bottom two plots show the traces of the
chains for the first 50 iterations, in two-dimesional subsets of the parameter space. The
ellipses indicate likelihood contours (50%, 80%, 90%, 95%), and the square indicates the
MLE.

58

Last iteration in segment

S
hr

in
k

fa
ct

or

0 500 1000 1500 2000

1
1.

1
1.

2

median

97.5%

(Intercept)

Last iteration in segment

S
hr

in
k

fa
ct

or

0 500 1000 1500 2000

1
1.

2
1.

4

median

97.5%

south

Last iteration in segment

S
hr

in
k

fa
ct

or

0 500 1000 1500 2000

1
1.

1

median

97.5%

govelec

Last iteration in segment

S
hr

in
k

fa
ct

or

0 500 1000 1500 2000

1
1.

1
1.

2

median

97.5%

closing

Last iteration in segment

S
hr

in
k

fa
ct

or

0 500 1000 1500 2000

1
1.

05

median

97.5%

mu

Last iteration in segment

S
hr

in
k

fa
ct

or

0 500 1000 1500 2000

1
1.

1
1.

2

median

97.5%

llh

Probit Model of Turnout
Gelman & Rubin Shrink Factors

Figure 11: Gelman and Rubin Shrink Factors, Probit Example. The Gelman and Rubin test
statistic is calculated over the course of the iterations, and plotted as a trace plot. The shrink
factors all quickly fall towards 1 for the indicated quantities, suggesting that the MCMC
algorithm has converged on the posterior density.

59

5.4 Example: Linear Regression with AR(1) disturbances

From Chib (1993):

• Model:

yt = Xtb + ut,

ut = qut-1 + et, |q| < 1,

et ∼ N(0, r2) ∀ t

• h = (b, r2, q)

• priors (possibly informative):

b | r2 ∼ N(b0, r2A-1
0), (14)

r-2 ∼ C(
v0

2
,
d0

2
),

q ∝ N(q0, R-1
0) Iq∈(-1,1),

i.e., a normal inverse-gamma prior for (b, r-2) and a truncated Normal
prior on q so as to ensure stationarity (I is an indicator function).

• Gibbs sampler:

1. sample b(i+1) from p(b | r2
(i), q(i), y, X), a multivariate Normal,

2. sample r2
(i+1) from p(r2 | b(i+1), q(i), y, X), an inverse Gamma,

3. sample q(i+1) from p(q | b(i+1), r2
(i+1), y, X), a truncated Normal.

• Slow motion:

1. With q(i), create transformed data y*(i) and X*(i); e.g, y*(i)
t = yt -q(i)yt-1.

2. Given that the white-noise disturbance is normal, textbook results
on the Bayesian analysis of the linear regression model apply:

b(i+1) | r2
(i), q(i), y, X ∼ N(b̃(i+1), r2

(i)Ã
-1
(i+1)), (15)

where
b̃(i+1) = (A0 + X*′(i)X*(i))-1(A0b0 + X*′(i)y*(i)) (16)

and
Ã(i+1) = (A0 + X*′(i)X*(i)). (17)

Sampling b(i+1) from this k-variate normal distribution is easy.

60

3.

r-2
(i+1) | y, X, b(i+1), q(i) ∼ C

(
T - 1 + v0 + k

2
,
d0 + Q(i+1)

b + d(i+1)
b

2

)
(18)

where

Q(i+1)
b = (b(i+1) - b0)

′A0(b
(i+1) - b0)

d(i+1)
b = (y*(i) - X*(i)b(i+1))′(y*(i) - X*(i)b(i+1))

= e*′(i+1)e*(i+1).

Sampling from the gamma distribution in (18) and inverting yields
a draw from the current approximation to the marginal posterior
density of r2.

4.

f
(

q(i+1) | b(i+1), r2
(i+1), y, X

)
∝ N(q̃, R̃-1)I

(
q(i+1) ∈ (-1, 1)

)
, (19)

where

q̃ = R̃-1

(
R0q0 + r-2

(i+1)

T∑
t=2

u(i+1)
t u(i+1)

t-1

)
,

R̃ =

(
R0 + r-2

(i+1)

T∑
t=2

(u(i+1)
t)2

)
, and

u(i+1)
t = yt - xib

(i+1).

Draws from the normal density that lie outside the (-1,1) interval are
rejected, and the iterations continue with a draw within the interval.
A useful check on the plausibility of the stationarity assumption is to
note the proportion of draws that fail to meet this constraint.

61

Application: Reagan approval data

• diffuse priors for each regression coefficient: b ∼ N(0, 1000)

• diffuse priors for r2 ∼ Inverse-C(.05, .05)

• uniform prior on stationary interval [-1,1] for q

• Results in Figure 12 and Table 3.

• Computation: section A.11 contains the implementation using Splus,
while the much simpler WinBUGS implementation appears in sec-
tion A.12.

MLE MCMC

Intercept 63.92 59.28
(10.72) -

[46.29, 81.55] [27.62, 80.45]

Inflation -.0064 .11
(.63) -

[-1.04, 1.03] [-1.11, 1.44]

Unemployment -1.38 -.72
(1.31) -

[-3.53, .77] [-3.24, 2.53]

q .86 .91
(.053) -

[.77, .95] [.81, .99]

r2 12.15 12.86
(1.75) -

[9.27, 15.03] [10.11, 16.49]

Table 3: Comparison of MLEs and Gibbs sampler output, regression model of Reagan approval
with AR(1) disturbances. The median of the Gibbs sampler output (the last 4,000 of 5,000
samples) is reported as the MCMC point estimate. For the MLEs, standard errors are reported
in parentheses; no standard errors are reported for the MCMC output. The 5th and 95th
percentiles of the Gibbs samples are reported in square brackets; the 95% confidence interval
implied by the MLE point estimate and standard error (assuming asymptotic Normality) is
reported in square brackets for the MLEs.

62

Ite
ra

tio
n

llh

0
10

00
20

00
30

00
40

00
50

00

-270-260

-2
70

-2
65

-2
60

0.00.15

llh

density

Ite
ra

tio
n

infl

0
10

00
20

00
30

00
40

00
50

00

-202

-2
0

2

0.00.30.6

in
fl

density

Ite
ra

tio
n

unemp

0
10

00
20

00
30

00
40

00
50

00

-6-226

-6
-4

-2
0

2
4

6

0.00.150.30

un
em

p

density
Ite

ra
tio

n

rho

0
10

00
20

00
30

00
40

00
50

00

0.750.90

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

02468
rh

o
density

Ite
ra

tio
n

sigma2

0
10

00
20

00
30

00
40

00
50

00

101520

10
15

20

0.00.15

si
gm

a2

density

Fi
gu

re
12

:
G

ib
bs

S
am

pl
er

O
ut

pu
t

fo
r

R
eg

re
ss

io
n

M
od

el
of

R
ea

ga
n

Ap
pr

ov
al

w
it

h
AR

(1
)

di
st

ur
ba

nc
es

.
Tr

ac
e

pl
ot

s
ap

pe
ar

in
th

e
le

ft
-h

an
d

pa
ne

ls
;h

is
to

gr
am

s
us

in
g

th
e

la
st

4,
00

0
it

er
at

io
ns

ap
pe

ar
in

th
e

ri
gh

t-
ha

nd
pa

ne
ls

.S
ee

Fi
gu

re
9

fo
rf

ur
th

er
de

ta
ils

.

63

5.5 Right-Censored Failure Times

For the uncensored failure times:

ti|ci = 0 ∼ N(b0 + b1vi, r2)

but for the censored failure times:

ti|ci = 1 ∼ N(b0 + b1vi, r2)I(Ci,∞)

where the I(Ci,∞) indicates left-truncation (i.e., we reject any draw from the
given normal distribution below the censoring point Ci).

Diffuse priors:

b ∼ N
([

0
0

]
,

[
1000 0

0 1000

])
r-2 ∼ C(.001, .001)

The conditional distributions need to implement the Gibbs sampler are
very easy to implement in this instance. Conditional on sampled imputations
for the censored failure times, we have essentially a standard Bayesian
regression analysis, with a multivariate Normal posterior for b|r2, and a
inverse-v2 posterior for r2.

Computation: WinBUGS code appears in section A.13. This example
shows how convergence can be very slow for poor parameterizations: the
independent univariate normal priors on the slope and the intercept parameter
dramatically reduce the ability of the Gibbs sampler to traverse the parameter
space; see Figures 13 and 14.

64

Iteration

b1

0 1000 2000 3000 4000 5000

-7
-5

-3

b1

de
ns

ity

-7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5

0.
0

0.
4

Iteration

b2

0 1000 2000 3000 4000 5000

3.
0

4.
0

5.
0

b2

de
ns

ity

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

0.
0

0.
5

1.
0

1.
5

Iteration

si
gm

a

0 1000 2000 3000 4000 5000

0.
2

0.
4

0.
6

sigma

de
ns

ity
0.2 0.3 0.4 0.5 0.6 0.7

0
2

4
6

8

Iteration

t1
8

0 1000 2000 3000 4000 5000

4.
0

4.
5

5.
0

t18

de
ns

ity

4.0 4.2 4.4 4.6 4.8 5.0 5.2

0.
0

1.
0

Iteration

t3
3

0 1000 2000 3000 4000 5000

3.
2

3.
6

4.
0

4.
4

t33

de
ns

ity

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

0.
0

1.
0

2.
0

Iteration

t4
4

0 1000 2000 3000 4000 5000

2.
8

3.
2

3.
6

4.
0

t44

de
ns

ity

2.8 3.0 3.2 3.4 3.6 3.8 4.0

0.
0

1.
0

2.
0

3.
0

Iteration

llh

0 1000 2000 3000 4000 5000

-2
2

-1
8

-1
4

llh

de
ns

ity

-22 -20 -18 -16 -14

0.
0

0.
2

0.
4

0.
6

Figure 13: Summary of Gibbs sampler output, right-censored failure time data. Five thousand
iterations were generated, with the density plots on the right-hand side of the page generated
using the last 2,500 Gibbs samples.

65

Iteration

b1

0 20000 40000 60000 80000 100000

-1
0

-6
-4

b1

de
ns

ity

-8 -7 -6 -5 -4

0.
0

0.
2

0.
4

Iteration

b2

0 20000 40000 60000 80000 100000

3
4

5
6

b2

de
ns

ity

3.5 4.0 4.5 5.0

0.
0

0.
4

0.
8

Iteration

si
gm

a

0 20000 40000 60000 80000 100000

0.
2

0.
6

1.
0

sigma

de
ns

ity
0.2 0.3 0.4 0.5 0.6

0
2

4
6

8

Iteration

t1
8

0 20000 40000 60000 80000 100000

4.
0

5.
0

6.
0

t18

de
ns

ity

4.0 4.5 5.0 5.5 6.0

0.
0

0.
5

1.
0

1.
5

Iteration

t3
3

0 20000 40000 60000 80000 100000

3.
5

4.
5

t33

de
ns

ity

3.5 4.0 4.5 5.0

0.
0

1.
0

2.
0

Iteration

t4
4

0 20000 40000 60000 80000 100000

3.
0

4.
0

t44

de
ns

ity

3.0 3.5 4.0 4.5

0.
0

1.
0

2.
0

Iteration

llh

0 20000 40000 60000 80000 100000

-2
6

-2
2

-1
8

-1
4

llh

de
ns

ity

-24 -22 -20 -18 -16 -14

0.
0

0.
2

0.
4

Figure 14: Summary of Gibbs sampler output, right-censored failure time data. Fifty thousand
iterations were generated, with the density plots on the right-hand side of the page generated
using the last 5,000 Gibbs samples. This longer run from the Gibbs sampler removes
the apparent bi-modality in the marginal posteriors for the slope and intercept parameters
apparent in the shorter-run (Figure 13).

66

1-500 2001-2500

3001-3500 4001-4500

Intercept

S
lo

pe

Figure 15: Two-dimensional trace plot, right-censored failure time data. Failing to treat the
intercept and slope parameters as a block --- that is, updating them separately rather than
jointly --- means the sampler can only traverse their joint parameter space slowly, due to the
extremely high level of correlation between the parameters.

67

6 Imputations for Missing Data via MCMC

• As noted previously, an expansive notion of what constitues ‘‘missing
data’’ drives EM and MCMC as tools for estimation (and inference).

• EM gives us ‘‘plug-in’’ expected values for whatever it is we happen to be
treating as missing data.

• MCMC gives us a sample of ‘‘plug-in’’ values --- what Rubin (1987) refers
to as multiple imputations. In this way MCMC allows us to average over
our uncertainty in the model’s other random quantities when we make
inferences about any particular random quantity (be it a missing data
point, or a parameter).

• Bottom line: really no distinction between a missing data point and a
parameter.

• WinBUGS makes no distinction in a stochastic node. If we have the
statement

y[i] ~ dnorm(mu[i],tau)

but for some i, yi is missing, then WinBUGS simply samples from N(li, s-2),
to generate the current iteration’s realization of yi.

Indeed, all of the yi could be missing, if, say, yi was some kind of latent
variable, as in a probit model.

• A demonstration of this feature of WinBUGS appears in the ‘‘Rats’’
example.

• Missing values of covariates can be handled easily, espiecally if the X
variable is categorical.

6.1 Example: missing bivariate Normal data

A hypothetical data set with a long history in statistics appears below in
Table 4.

Assume that these data X = (x1, x2)
′ are drawn from a bivariate Normal

distribution with mean l1 = l2 = 0, but with an unknown variance-covariance
matrix R. There are just four complete pairs of observations, two with a

68

1 1 -1 -1 2 2 -2 -2 NA NA NA NA

1 -1 1 -1 NA NA NA NA 2 2 -2 -2

Table 4: Twelve Observations from a Bivariate Normal Distribution.

correlation of 1, and two with a correlation of -1. Ignoring the missing data ---
that is, using listwise deletion --- the MLE of the correlation q is 0.

Listwise deletion is also inefficient in that the partially observed observa-
tions contain information regarding the variance terms r2

1 and r2
2; if the goal

of the analysis was to learn about the correlation between x1 and x2, then the
loss of the missing data is important, since the variances contribute to the
estimate of q.

The Gibbs sampler can be used to deal with the missing data problem
and the problem of estimating R, and in turn, q. The random quantities here
are the missing data, denoted z, and R. The Gibbs sampler can be used to
learn about the joint distribution of these quantities by iterating the following
scheme:

1. Sample from the conditional distribution for the missing data:

(a) if xi2 is observed but xi1 is not, sample x(t+1)
i1 from

f (xi1|xi2, R(t)) ≡ N

(
q(t)r

(t)
1

r(t)
2

xi2, r2 (t)
1

(
1 - q2 (t)

))
(20)

(b) if xi1 is observed but xi2 is not, sample x(t+1)
i2 from

f (xi2|xi1, R(t)) ≡ N

(
q(t)r

(t)
2

r(t)
1

xi1, r2 (t)
2

(
(1 - q2 (t)

))
(21)

2. Sample R(t) from its conditional distribution, which (under a non-
informative prior) is an inverse-Wishart distribution with scale matrix
S = X*′

X* and degrees of freedom n = 12, where X* is the observed data
augmented by z(t). Details on how to sample from an inverse-Wishart
appear in many texts; see, for instance, Gelman et al. (1995, 480).

At each iteration t,

q(t) =
r(t)

12√
r2 (t)

1 r2 (t)
2

69

Analytic results establish that the posterior for q is bimodal, with modes
close to -1 and 1. Recovering this posterior by simulation methods requires a
reasonably large number of iterations. See Figure 16.

Computation: WinBUGS can’t handle this kind of problem; there is currently
no support for dealing with missing data in a multivariate node. Given the
need for a large number of iterations and the lack of support in WinBUGS, I
coded this problem in C (see section A.14). Half a million Gibbs samples were
generated in 171 seconds (roughly 3,000 samples per second) on a 266MhZ
Pentium II running Linux.

70

-1
.0

-0
.5

0.
0

0.
5

1.
0

0.00.20.40.60.81.0

rh
o

density

Fi
gu

re
16

:
Po

st
er

io
r

de
ns

it
y

fo
r

q
,

es
ti

m
at

ed
by

50
0,

00
0

G
ib

bs
sa

m
pl

es
.

Th
e

so
lid

lin
e

is
th

e
ex

ac
t

an
al

yt
ic

po
st

er
io

r,
w

hi
ch

is
pr

op
or

ti
on

al
to

(1
-

q
2
)4.

5
/(

1.
25

-
q

2
)8

(T
an

ne
r,

19
96

,9
6)

;
th

e
ti

ck
m

ar
ks

ar
e

th
e

ob
se

rv
ed

de
ci

le
s

of
th

e
G

ib
bs

sa
m

pl
es

.
N

ot
e

th
at

th
e

M
LE

fo
r

q
is

0,
w

hi
ch

lie
s

in
a

re
gi

on
of

lo
w

po
st

er
io

rp
ro

ba
bi

lit
y

be
tw

ee
n

th
e

tw
o

m
od

es
,a

nd
so

is
es

pe
ci

al
ly

m
is

le
ad

in
g

in
th

is
in

st
an

ce
.

71

7 Mixture Models

• y = (y1, . . . , yN) has a density that is a mixture of M component densities.

• we don’t know which component any yi belongs to.

• might use regression structure unique to each component density:

f (yi|b, X, k) = k1f (yi|b1X) + k2f (yi|b2X) + . . . + kMf (yi|bMX),

where
∑M

i=1 ki = 1.

• might also condition on r2
m, m = 1, . . . , M.

• (unobserved/latent) indicators assigning data points to component
densities are missing data:

fim =

{
1 if the ith unit is from the mth component
0 otherwise

treat these as missing data and use EM or Gibbs sampling.

• hierarchical structure, in which the mixing proportions k structure the
latent indicators

f (fi|k) = Multinomial(1|k1, . . . , kM)

• the likelihood for a mixture of regression regimes is

L =
n∏

i=1

M∏
m=1

[kmf (yi|X, bm, r2
m)]fim (22)

• without constraints, MLE will generally fail (collapsing one of the
components onto a single data point, driving the particular r2

m → 0
and f (yi) → ∞); i.e., the likelihood is unbounded on the edge of the
parameter space.

• usual constraint is r2
m = r2,∀ m = 1, . . . , M, or an informative prior

(reflecting beliefs about the distinctiveness of the component distribu-
tions).

• A possible alternative to techniques for robust regression (dealing with
outliers).

72

• Also a possible alternative to the widely-used heteroskedastic pro-
bit/logit model, or other methods for picking up ‘‘varying parameters’’ or
non-constant marginal effects like GAMs or NNs.

• Political science examples include Gelman and King (1990).

• Mixture models have been applied in a large number of settings across
many disciplines, including economics Quandt and Ramsey (1973),
psychology, engineering and astronomy. Raftery (1996) investigates the
number of distinct ‘‘discs’’ in the Milky Way in an exposition of mixture
models and MCMC methods.

• ‘‘by-product’’ of estimating a mixture model is categorizing data points
into distinct clusters or regimes, mixture models bear important parallels
with clustering and discriminant analysis. Accordingly, mixture models
have been widely applied in biology, biochemistry, geology and geodesy;
Titterington, Smith and Makov (1985, ch2) provides a comphrensive list
of applications of mixture models, and is the definitive source on the
analysis of mixtures prior to the advent of MCMC methods.

73

7.1 Demonstration

From Raftery (1996, 177):
I randomly generated 100 observations from each of the following two-

component Normal mixtures

g(xi) =
1
2

N(0, 1) +
1
2

N(6, 4), (23)

and
g(xi) =

1
2

N(0, 1) +
1
2

N(2, 2). (24)

There are five parameters to be estimated here: two means (l1, l2), two variances (r2
1, r2

2),
and a mixing parameter (k, equal to .5 in both cases). The sample data and the population
mixtures are plotted in Figure 17. The component densities in (23) are much better separated
than those in (24), with fairly obvious consequences for the extent to which we can learn
about the parameters of each. The ‘‘indistinct’’ mixture in the bottom panel of Figure 17
displays no bi-modality and at a glance appears close to single normal distribution.

The estimation problems inherent in all normal mixture models causes difficulties even
with this simple example. The log-likelihood for this two-component normal mixturecauses
difficulties for optimization algorithms. Näive attempts to maximize the likelihood in (22)
quickly run into difficulties. Standard ‘‘tricks of the trade’’ (maximizing the log-likelihood
function with respect to the inverse logit transformation of the mixing parameter k) do not
appreciably improve the performance of unconstrained optimization routines. Algorithms
that allow the analyst to impose bounds on the parameter space1 return sensible results for
the more ‘‘distinct’’ mixture in equation (23), but continue to fail for the mixture with quite
indistinct components in equation (24), reporting solutions on the edge of the parameter
space (k→ 0, or k→ 1).

Application of EM to these two mixtures yields substantially better results. For the
‘‘distinct’’ mixture, EM performs quite well, even with the the two variance parameters left
unconstrained. A large number of different starting values result in the same set of parameter
estimates, reported in Table 5. These parameter estimates are identical to those obtained
from constrained optimization of the log-likelihood function, and appear reasonable. For the
‘‘indistinct’’ mixture, constained optimization of the log-likelihood function fails, while EM is
reasonably robust against choice of starting values,2 regularly producing the set of parameter
estimates reported in Table 5.

The mixtures implied by the parameter estimates are graphed in Figures 18 and 19. The
‘‘distinct’’ mixture is fit quite well (Figure 18), while the difficulty of statistically distinguishing
the components of the ‘‘indistinct’’ mixture is apparent in the bottom panel of Figure 19.
The estimate of the mixing parameter for the ‘‘indistinct’’ mixture, k̂ = .44, indicates that
roughly 56% of the data belong to the ‘‘right-hand’’ component, while the true figure is a

1For instance, the nlminb() function in SPLUS.
2Without any prior information or constraints labelling the component densities ‘‘high’’ or ‘‘low’’, the

EM results sometimes reverses the estimated component densities. This is common when the component
densities are not well separated. Restricting k to the half-unit interval remedies this, effectively ‘‘labelling’’ the
components as ‘‘more prevalent’’ (k > .5) and ‘‘less prevalent’’ (1 - k > .5).

74

x

de
ns

ity

-2 0 2 4 6 8 10 12

0.
0

0.
05

0.
10

0.
15

0.
20

x

de
ns

ity

-2 0 2 4

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 17: Two-component normal mixtures. The mixture in the top panel (equation 23) has
components that are quite distinct, compared to the mixture in the bottom panel (equation 24).
The component densities are marked by broken lines, and the sampled values (n=100) are
shown with the symbols at the bottom of each graph.

75

Table 5: Estimates of Two-Component Univariate Mixtures in Equations (23) and (24).

‘‘Distinct’’ Components, eqn (23) ‘‘Indistinct’’ Components, eqn (24)
Parameter Population EM Population EM
l1 0 -.08 0 -.09
l2 6 6.14 2 1.96
r2

1 1 .85 1 .67
r2

2 4 3.65 2 1.48
k .5 .51 .5 .44
n.b., N=100.

50-50 split. This rate of misclassification is not too serious, but remains one of the more
serious shortcoming of these estimates of the ‘‘indistinct’’ mixture model. The estimates of
the other parameters seem tolerable. Nonetheless, misclassificating observations is fairly
typical when analyzing data generated by mixtures with poorly separated components.

7.2 Gibbs sampling for mixture models

The EM algorithm works reasonably well for the two contrived examples considered above.
However, there is no guarantee of stable results when the dimensionality of the parameter
space increases, say, in the analysis of mixing regression regimes. In the examples just
presented just five parameters were estimates (two means, two variances, and a mixing
parameter). When working with mixtures of regression regimes, the number of parameters
can increase dramatically. For a mixture of bivariate regression regimes, there are seven
parameters (two intercepts, two slopes, two variances, and a mixture parameter), and in
general, with J components and K regressors (including an intercept) per regime there
possibly as many as J(K + 2) - 1 parameters to be estimated.

It is in these high-dimensional settings that the power of a Bayesian approach to mixtures
becomes apparent. As the number of parameters per mixture increases, the component
densities need to be increasingly better separated in order for EM to distinguish the states. It
is in these settings that ad hoc parameter constraints have been extensively employed. As I
claimed earlier, prior information of some kind is typically needed in order to learn about the
parameters of the component densities thought to underlie the data.

MCMC methods make the Bayesian analysis of higher-dimensional mixtures feasible, and
in most cases is relatively straightforward to implement. Gibbs sampling mixture models
usually amounts to little more than ‘‘stochastic EM", but sampling the parameters as well as
the missing data from probability distributions. However, with MCMC methods, the moments
of these sampling distributions are generated using Bayes’ Rule, thereby merging sample
information with the researcher’s prior beliefs about the mixture parameters.

The two-component univariate normal mixture model considered above is a well-studied
case, and expressions for the marginal posterior distributions needed to implement the Gibbs
sampler are straightforward to derive and program. The model parameters consist of means
(lj), variances (r2

j), and mixture parameters (kj,
∑J

j=1 kj = 1). Prior distributions for these

76

x

de
ns

ity

-2 0 2 4 6 8 10 12

0.
0

0.
05

0.
10

0.
15

0.
20

x

P
ro

ba
bi

lit
y

of
 b

ei
ng

 in
 le

ft-
ha

nd
 c

om
po

ne
nt

 d
en

si
ty

-2 0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 18: Population and estimated mixture densities and estimated classification
probabilities from the EM algorithm, for the ‘‘distinct’’ mixture. In the top panel, the
estimated mixture density is represented with a dashed line. The bottom panel also
highlights that the component densities are well-separated, showing that the data cleave
neatly into either component, with little ambiguity as to which component generated which
observation.

77

x

de
ns

ity

-2 0 2 4

0.
0

0.
05

0.
10

0.
15

0.
20

0.
25

x

P
ro

ba
bi

lit
y

of
 b

ei
ng

 in
 le

ft-
ha

nd
 c

om
po

ne
nt

 d
en

si
ty

-2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 19: Population and estimated mixture densities, and estimated classification
probabilities from the EM algorithm, for the ‘‘indistinct’’ mixture. The estimated mixture is
represented with a dashed line. The large proportion of classification probabilities close to
.5 (bottom panel) is typical in poorly-separated mixtures.

78

parameters that are flexible and yield tractable posterior distributions are

lj ∼ N
(
lj0, s2

j

)
r2

j ∼
vjs2

j

v2
vj

k′ = (k1, . . . , kJ)

∼ Dirichlet(a1, . . . , aJ).

Given these priors and the data, each iteration of the Gibbs sampler consists of a draw from
each of the following posterior distributions,

lj ∼ N

(
s2

j

∑
fij=1 xi + r2

j lj0

s2
j Nj + r2

j

,
s2

j r2
j

s2
j Nj + r2

j

)
, (25)

where Nj =
∑N

i=1 fij;

r2
j =

vjs2
j + SSj

v2
vj+Nj

, (26)

where SSj =
∑

fij=1(xi - lj)
2 and v2

vj+Nj
is a draw from a v2 distribution with vj + Nj degrees of

freedom;
fij ∼ Bernoulli(zij), (27)

where

zij =
kjf (xi|lj, r2

j)∑J
t=1 ktf (xi|lt, r2

t)
, (28)

f (·|lt, r2
t) is the Normal density with mean lt and variance r2

t , and

k ∼ Dirichlet(a1 + N1, . . . aJ + NJ). (29)

For mixtures of regression regimes, the Gibbs sampler is a generalization of the scheme
just outlined, replacing the prior and posterior distributions over the component densities
mean parameters with priors and posteriors over J regime-specific vectors of regression
coefficients, b′

j = (b1j, . . . , bkj), j = 1, . . . , J. If priors for the regime-specific regression
coefficients take the form

bj ∼ N
(
bj0, Rbj0

)
, (30)

then standard results on the Bayesian analysis of the linear model the posterior is

bj ∼ N
(

b*
j , R*

bj0

)
(31)

where
b*

j =
[
r-2

j X′
jXj + R-1

bj0

]-1 [
r-2

j X′
jyj + R-1

bj0
bj0

]
, (32)

R*
bj0

=
[
r-2

j X′
jXj + R-1

bj0

]
, (33)

and Xj and yj are the original data X and y, respectively, weighted by the binary indicators fij.
For instance, the ith element of yj equals yi if and only if fij = 1 and 0 otherwise, and likewise

79

for the ith row of Xj. The Gibbs sampler for univariate mixtures described above can be
applied by simply substituting the sampling of the mean parameters with the sampling from
the k-variate posterior for bj given in equation (31). Also, the sample error sum of squares for
the jth component density, SSj, is redefined as SSj = e′

jej, where ej = yj - Xjbj.

7.3 Example: District-Level Effects in a Simulation Model of Electoral
System.

Gelman and King (1990) use a mixture model to estimate properties of electoral systems,
in the first application of MCMC methods in a political science setting. The model is a
hierarchical mixture model, where a three-component normal mixture is fit to a vector of
observations of Democratic district-level vote shares. The model is hierarchical in the sense
that the parameters of the component densities normal are dependent on hyperparameters
tapping longer-run features of the electoral system (e.g., the level of over-time variability in
election results observed under a given set of district boundaries).

In election t, each district-level result uit = logit(vit), vit ∈ [0, 1], is partitioned as follows:
an effect specific to each district (ci, where i indexes the N districts), a jurisdiction-wide effect
(dt, constant over all districts, but variable from election-to-election), and random error. If
the two systematic components are assumed to be independent, and the error components
have identical and independent normal distributions, then the implied model for district-level
results uit is:

uit ∼ N(αit, r2), αit = ci + dt, (34)

where uit is the logit of a party’s proportion of the votes cast in district i, at election t.
This model is used to simulate hypothetical elections free of unrealistic and restrictive

assumptions such as uniform swing; i.e., uniform swing constrains ci = 0,∀ i. The
simulations consist of repeatedly drawing from the posterior for the model parameters, and
building a seats-votes curve with the aggegate seat shares and vote shares implied by each
simulation. Two important summary measures, bias and responsiveness are then ‘‘read off’’
from the resulting seats-votes curve.3 Each simulation consists of adding a given amount of
jurisdiction-wide swing (dt) to each district-level outcome, and averaging over uncertainty in
the district-specific effects (ci) by sampling from posterior distribution (the three-component
normal mixture).

As in the examples discussed above, we need to know how to assign the data through
the three component densities. An unobserved N by 3 matrix, s, contains this information,
where sij = 1 if and only if the ith data point is imputed to have been generated by the
jth component density. But the entire contents of s are missing data. Furthermore, even
with an imputation for s, the eight dimensional parameter vector h* and its likelihood are
still reasonably formidable. But conditional on the indicators in s, each component of the
normal mixture can be handled separately. And this is where the chained data augmentation
algorithm comes into play. Note that via the posterior identity, the posterior density of h can

3Generally, bias measures asymmetry in a seats-votes curve about the seats-votes duple (s, v) = (.5,.5),
but is usually operationalized as the height of the seats-votes curve above or below .5, conditional on v = .5.
Responsiveness measures elasticity in the seats-votes curve, or the rate at which changes in a party’s vote-share
translates into changes in its seat-share.

80

be factored as

P(h | u) =

∫
P(h | s, u) P(s | h, u) ds,

where the integration is over the space of s. The EM algorithm is used to get starting values
(h*) for the chained data augmentation algorithm, treating the s as missing data. The data
augmentation algorithm in this context consists of iterating on

1. sampling s* from P(s | h = h*, u), (multinomial sampling)

2. sampling h* from P(h | s = s*, u) (Normal, inverse v2, and Dirichlet sampling)

As in most mixture applications, informative priors on h are required. Gelman and King (1990,
279) and Jackman (1994, 354--55) provide details on specifying priors and the Bayesian
updating in this instance.

81

8 Other Applications

• hierarchical models (bio-statistics), ‘‘multi-level’’ models (education
and sociology), ‘‘random coefficients’’ (econometrics). Monster area
of application in bio-statistics. Recent political science examples:

– Western’s (1998) model of economic growth in a pooled cross-
sectional time series setting.

– King’s (1997) method for ecological inference is in large measure
a hierarchical model: King samples the precinct-level proportions
from posterior distributions resulting from the weighted average of
the ‘‘global’’ MLE fit and the precinct-specific data.

• latent dynamic structure in LDVs. e.g., time series of counts or binary
outcomes.

82

9 Software

BUGS (Spiegelhalter et al., 1997) is a very flexible package for Bayesian
inference Using Gibbs Sampling. WinBUGS is a much improved version.

• Availabe for free download from http://www.mrc-bsu.cam.ac.uk/bugs

• great for hierarchical models

• very simple syntax

• parser converts model and data to directed acyclic graphs (DAGs); figures
out which nodes of the graph are stochastic or deterministic; compiles
code for relationships among nodes in the DAG.

• Uses conjugacy wherever possible for updating stochastic nodes.

• Log-concavity and adaptive rejection sampling.

• Missing data handled ‘‘on-the-fly’’ for any stochastic node (e.g., depen-
dent variables).

http://www.mrc-bsu.cam.ac.uk/bugs

83

A Programs

Here I present the code used to generate many of the examples and graphs.
This code is also available from web site, http://jackman.stanford.edu/
mcmc.

A.1 Sensitivity of posterior to prior for a proportion (Splus)

##
pictures of different priors/posteriors for placenta previa birth-rate
data, Gelman et al, p41
##
simon jackman, dept of political science, stanford university
july 1999
##

n <- 980 # number of obs
y <- 437 # successes
theta.mle <- y/n # MLE

t.seq <- c(seq(.01,.40,by=.01), # grid of values for theta
seq(.4001,.6000,by=.0001),
seq(.61,.99,by=.01))

lhood <- choose(n,y) * t.seq^y * (1-t.seq)^(n-y) # likelihood over grid

postscript(file="placenta.mle.ps",h=3,w=6.5) # plot the likelihood function
par(mar=c(2.5,2.5,.1,.1))
plot(t.seq,lhood,type="l",xlab="",ylab="",cex=.5)
mtext("theta",side=1,line=2,cex=.5)
mtext("likelihood",side=2,line=2,cex=.5)

lims <- qbinom(p=c(.025,.975), # 95% ci around MLE
size=n,prob=theta.mle)/n

limseq <- seq(from=lims[1],to=lims[2],length=1000) # grid over 95% ci
flims <- choose(n,y) * limseq^y * (1-limseq)^(n-y)
polygon(x=c(limseq,rev(limseq)), # shade 95% highest l’hod

y=c(flims,rep(0,length(flims))),
col=4,border=F)

lines(x=rep(theta.mle,2),
y=c(par()$usr[3],
choose(n,y)*theta.mle^y *(1-theta.mle)^(n-y)),

lty=3)

abline(v=.485)
dev.off()

##
a function for sensitivity analysis, takes different prior vals as args
##
tempfunc <- function(n=980,y=437,alpha=1,beta=1){
xseq <- seq(.01,.99,by=.0001)

http://jackman.stanford.edu/mcmc
http://jackman.stanford.edu/mcmc

84

prior <- dbeta(xseq,alpha,beta) # prior
post <- dbeta(xseq,y+alpha,n-y+beta) # posterior
post.lims <- qbeta(c(.025,.975),y+alpha,n-y+beta)

limseq <- seq(from=post.lims[1],to=post.lims[2],by=.0001)
flim <- dbeta(limseq,y+alpha,n-y+beta)

plot(c(0,1), # set up plot region
c(0,max(c(prior,post))), # get vertical dimension ok
xaxs="i", # space saver
axes=F,
xlab="",ylab="",type="n")

axis(1,at=seq(0,1,by=.2)) # nice axis
polygon(x=c(limseq,rev(limseq)),

y=c(flim,rep(0,length(limseq))),
col=6,border=F) # posterior 95% region

lines(xseq,prior,lty=2) # prior
lines(xseq,post) # posterior
abline(v=theta.mle) # overlay MLE

label
text(x=.85,y=par()$usr[3] + .95*par()$usr[4],

paste("alpha = ",alpha,"\nbeta = ",beta),
cex=.85)

}

plots for 6 different sets of priors
postscript(file="placenta.sens1.ps",

horizontal=F,width=7,height=7.5)
par(mfrow=c(3,2))
par(mar=c(2,2,.5,.5))
tempfunc(alpha=1,beta=1)
tempfunc(alpha=.97,beta=1.03)
tempfunc(alpha=2.425,beta=2.575)
tempfunc(alpha=9.7,beta=10.3)
tempfunc(alpha=48.5,beta=51.5)
tempfunc(alpha=97,beta=103)
dev.off()

plots for an increasingly stringent prior at theta = .25
postscript(file="placenta.sens2.ps",horizontal=F,width=7,height=7.5)
par(mfrow=c(3,2))
par(mar=c(2,2,.5,.5))
tempfunc(alpha=1,beta=3)
tempfunc(alpha=2,beta=6)
tempfunc(alpha=4,beta=12)
tempfunc(alpha=8,beta=24)
tempfunc(alpha=15,beta=45)
tempfunc(alpha=50,beta=150)
dev.off()

85

A.2 EM for binary response (SPlus)

##
estimate a probit model using the EM algorithm
##
treat ystar as missing data
##
simon jackman, dept of political science, stanford university
october 1998
##

attach("/home/simon/docs/classes/200B/98/.Data")
options(object=1e+09,digits=12)

###
do EM within a function that takes a single argument, obj,
an object produced by running a regression via the lm command
e.g., obj <- lm(y~x,y=T,x=T)
##
tempfunc <- function(obj){
maxiter <- 30 # maximum number of EM iterations
k <- length(obj$coefficients)
bout <- matrix(NA,maxiter,k) # initialize output
llhout <- rep(NA,maxiter) # initialize output
q1out <- rep(NA,maxiter) # initialize output
q2out <- rep(NA,maxiter) # initialize output
bpbout <- rep(NA,maxiter) # initialize output
ystar1000 <- rep(NA,maxiter) # initialize output

x <- obj$x # covariates
y <- obj$y # (binary) dep var
zeros <- y==0 # index all my zeros
ones <- y==1 # index all my ones
print(table(zeros,ones))

run a regression for starting values
xpx <- crossprod(x) # do this just once
ixpx <- solve(xpx) # and store
xpy <- t(x)%*%y
b <- ixpx%*%xpy # ols for start values
mu <- x%*%b # start mu somewhere...predicted values from ols
bpb <- crossprod(b)
n <- length(y)
cat("regression coefficients (starting vals)\n")
print(b)

for (iter in 1:maxiter){ # EM iterations start here
cat(paste("Iteration",iter,"\n"))

E step, imputation for ystar and/or epsilon
ystar <- rep(NA,n) # initialize to NA vector
phi <- dnorm(-mu) # numerator of inverse Mills ratio
Phi <- pnorm(-mu) # denom of inverse Mills ratio
M <- rep(NA,n)
M[zeros] <- -phi[zeros]/Phi[zeros] # E(e|e<-mu), for y=0

86

M[ones] <- phi[ones]/(1-Phi[ones]) # E(e|e>-mu), for y=1
ystar <- mu + M # mu = X%*%beta
ystar1000[iter] <- ystar[1000] # keeping track of obs 1000

evaluate q function
q1 <- -n/2*log(2*pi) - sum(1 - M*mu)/2

M-step, just a regression
xpystar <- t(x)%*%ystar # cross-products of X and just-imputed ystar
b <- ixpx%*%xpystar # (X’X)^{-1} X’y^*
bpbold <- bpb
bpb <- crossprod(b)
cat("regression coefficients:\n")
print(b)

re-evaluate q function
(use old beta(t) for ystar and M, but beta(t+1) for mu)
mu.new <- x%*%b
q2 <- -n/2*log(2*pi) - sum(1- M*ystar + (ystar - mu.new)^2)/2
mu <- mu.new

evaluate incomplete-data (probit) log-likelihood
llh <- sum(log(pnorm(mu[ones]))) + sum(log(1-pnorm(mu[zeros])))

cat(paste(" log-likelihood =",llh,"\n"))
if(iter>1){
cat(paste(" change in llh =",llh-llhout[iter-1],"\n"))
cat(paste(" change in q =",q2-q1,"\n"))
cat(paste(" change in bpb =",bpb-bpbold,"\n"))

}

output values for tracing iterative history
bout[iter,] <- b
llhout[iter] <- llh
q1out[iter] <- q1
q2out[iter] <- q2
bpbout[iter] <- bpb

}

EM iterations terminated, compute information matrix for inference
#cat("Iterations terminated, computing covariance matrix of estimates\n")
#phi <- dnorm(-mu)
#Phi <- pnorm(-mu)
#info <- matrix(0,nrow=k,ncol=k)
#m <- (phi^2)/(Phi*(1-Phi))

#info <- wcp(x,m) # weighted cross-product function, see wcp.S

#cat("Information Matrix:\n")
#print(info)
#cat("inverse of information matrix:\n")
#vc <- solve(info)
#print(vc)

#cat("std errors:\n")

87

#se <- sqrt(diag(vc))
#print(se)

housekeeping, gathering objects for output
dimnames(bout) <- list(NULL,names(coef(obj)))
out <- list(b=bout,

#se=se,
llh=llhout,
ystar1000=ystar1000,

bpb=bpbout,
q1=q1out,

q2=q2out)
out

}
###
end function definition
##

run initial ols, for getting data in shape etc
small.lm <- lm(vote ~ educcat + educsq + age + agesq + south +

govelec + closing + educlose + educlos2,
data=nagler.small,
x=T,y=T)

this next GLM run gives us the (target) MLEs
small.glm <- glm(vote ~ educcat + educsq + age + agesq + south +

govelec + closing + educlose + educlos2,
data=nagler.small,
family=binomial(link=probit),
x=T,y=T)

emout <- tempfunc(small.lm) ## call the EM function

###
some plotting commands for convergence diagnostics
###
postscript("probitemconv.ps") ## dump to PostScript
par(mfrow=c(4,1)) ## 4 plots on the page
plot(1:length(emout$q1),emout$q1,

type="b",pch=15,xlab="Iteration",ylab="q1")
plot(1:length(emout$q2),emout$q2,

type="b",pch=15,xlab="Iteration",ylab="q2")
plot(1:length(emout$q2),emout$q2-emout$q1,

type="b",pch=15,xlab="Iteration",ylab="qdiff")
plot(1:length(emout$bpb),emout$bpb,

type="b",pch=15,xlab="Iteration",ylab="bpb")
dev.off() ## close PostScript file

###
plot iterative history of quantities of interest
###
postscript("probitem.ps")
par(mfrow=c(4,1))

plot(1:length(emout$llh),emout$llh, ## log-likelihood

88

type="b",
pch=15,
xlab="Iteration",
ylab="Log-Likelihood")

plot(1:length(emout$llh),emout$b[,"educcat"], ## educ coefficient
type="b",
pch=15,
xlab="Iteration",
ylab="educ")

plot(1:length(emout$llh),emout$b[,"age"], ## age coefficient
type="b",
pch=15,
xlab="Iteration",
ylab="age")

plot(1:length(emout$llh),emout$ystar1000, ## y^*_{1000}
type="b",
pch=15,
xlab="Iteration",
ylab="ystar1000")

dev.off()

A.3 EM for regression with AR(1) disturbances (Splus)

##
regression with AR(1) disturbances, using EM
##
simon jackman, dept of political science, stanford university
october 1998
##

##
a function for estimating rho given a regression object
##
myrho <- function(fit,print=F){
e <- resid(fit)
e1 <- mylag(e,1)
dw <- sum((e[-1]-e[-length(e)])^2)/crossprod(e) ## Greene, 3rd ed, p591
rho <- sum(e[-1]*e[-length(e)])/crossprod(e[-1]) ## Greene, 3rd ed, p600
if(print){
cat(paste("rho: ",rho,"\n"))
cat(paste("DW Statistic:",dw, "\n"))

}
rho

}

##
a function for doing lags properly
##
mylag <- function(x,lag=1){
if (is.matrix(x)){ # is x a matrix?
n <- dim(x)[1]
k <- dim(x)[2]
z <- rep(NA,k)
y <- x[1:(n-lag),]

89

for (i in 1:lag)
y <- rbind(z,y)

}
else # assume x is a vector
{
n <- length(x)
y <- c(rep(NA,lag),x[1:(n-lag)])

}
y

}

##
a function for transforming variables, by 1st diffs and rho
##
mystar <- function(x,rho){

xstar <- x-(rho*mylag(x,1))
is x a matrix?
if (is.matrix(x))
xstar[1,] <- sqrt(1-(rho^2))*x[1,] # PW transform

else
xstar[1] <- sqrt(1-(rho^2))*x[1] # PW transform

xstar
}

##
a function to do iterative Cochran-Orcutt (EM) for AR(1) errors
fit: a lm object, with X matrix and y vector
##
mycorcutt <- function(fit,maxiter=10){
x <- fit$x
y <- fit$y
n <- length(y)
k <- dim(x)[2]
b <- coef(fit)
u <- y - x%*%b # regression residuals

rho <- myrho(fit) # starting estimate of rho
cat(paste(rho,"\n"))
rhostar <- 0 # initialize rhostar

llhout <- rep(NA,maxiter) # initialize output
qout <- rep(NA,maxiter) # initialize output
bout <- matrix(NA,maxiter,k)
sigmaout <- rep(NA,maxiter)
rhoout <- rep(NA,maxiter)

tss <- crossprod(fit$y-mean(fit$y)) # total sum of squares
for (iter in 1:maxiter){ # start EM iterations
rhostar <- sum(u[-1]*u[-n])/sum(u[-1]^2) # estimate rho
ystar <- mystar(y,rhostar) # transform y
xstar <- mystar(x,rhostar) # transform x
temp <- lsfit(xstar,ystar,intercept=F) # GLS
b <- temp$coef # updated b
e <- temp$residuals # white noise residuals
epe <- crossprod(e) # sse on transformed data

90

sigma2 <- epe/n
u <- y - x%*%b # regression residuals

log-likelihood, Greene, p600
llh <- -n/2*(log(2*pi)+log(sigma2))

+ log(1-(rhostar^2))/2
- epe/(2*sigma2)

q function
q <- -n/2*(log(2*pi)+log(sigma2)) - epe/(2*sigma2)

output iterative history
llhout[iter] <- llh
qout[iter] <- q
bout[iter,] <- b
sigmaout[iter] <- sigma2
rhoout[iter] <- rhostar
yhat <- ystar - e
r2 <- crossprod(yhat-mean(yhat))/tss #r2
cat(paste("Iteration ",iter,

": rho = ",round(rhostar,4),
" llh = ",round(llh,8),
"\nq = ",round(q,8),
"\nssu = ",round(epe,4),
"\nr2 = ",round(r2,4),
"\n",sep=""))

if (iter!=1){
cat(paste("change in llh = ",

llh-llhout[iter-1],
"\n"))

cat(paste("change in q function = ",
q-qout[iter-1],
"\n\n"))

}
} # end EM loop

rho.x <- e[-1]
rho.y <- e[-n]
rho.u <- rho.y - rhostar*rho.x
rho.vc <- sum(rho.u^2)/sum(rho.x^2)
rho.se <- sqrt(rho.vc) # standard error on rho

out <- list(rho=rhoout, # package for output
rho.se=rho.se,
r2=r2,
llh=llhout,
b=bout,
sigma2=sigmaout,
maxiter=maxiter)

out
}
##
end function definitions
##

91

initial OLS regression
reagan.temp <- lm(app~infl+unemp,
data=reagan,
x=T,y=T)

call EM routine
ar1out <- mycorcutt(reagan.temp,maxiter=10)

show iterative history graphically
postscript("ar1em.ps") ## plotting commands
par(mfrow=c(5,1)) ## 5 plots to page

plot(1:ar1out$maxiter,ar1out$llh,
xlab="Iteration",
ylab="Log-Likelihood",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$b[,2],
xlab="Iteration",
ylab="infl",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$b[,3],
xlab="Iteration",
ylab="unemp",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$rho,
xlab="Iteration",
ylab="rho",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$sigma2,
xlab="Iteration",
ylab="sigma2",
type="b",pch=15)

dev.off()

A.4 EM for right-censored failure time

##
regression with AR(1) disturbances, using EM
##
simon jackman, dept of political science, stanford university
october 1998
##

##
a function for estimating rho given a regression object
##
myrho <- function(fit,print=F){
e <- resid(fit)
e1 <- mylag(e,1)
dw <- sum((e[-1]-e[-length(e)])^2)/crossprod(e) ## Greene, 3rd ed, p591

92

rho <- sum(e[-1]*e[-length(e)])/crossprod(e[-1]) ## Greene, 3rd ed, p600
if(print){
cat(paste("rho: ",rho,"\n"))
cat(paste("DW Statistic:",dw, "\n"))

}
rho

}

##
a function for doing lags properly
##
mylag <- function(x,lag=1){
if (is.matrix(x)){ # is x a matrix?
n <- dim(x)[1]
k <- dim(x)[2]
z <- rep(NA,k)
y <- x[1:(n-lag),]
for (i in 1:lag)

y <- rbind(z,y)
}
else # assume x is a vector
{

n <- length(x)
y <- c(rep(NA,lag),x[1:(n-lag)])

}
y

}

##
a function for transforming variables, by 1st diffs and rho
##
mystar <- function(x,rho){

xstar <- x-(rho*mylag(x,1))
is x a matrix?
if (is.matrix(x))

xstar[1,] <- sqrt(1-(rho^2))*x[1,] # PW transform
else

xstar[1] <- sqrt(1-(rho^2))*x[1] # PW transform
xstar

}

##
a function to do iterative Cochran-Orcutt (EM) for AR(1) errors
fit: a lm object, with X matrix and y vector
##
mycorcutt <- function(fit,maxiter=10){
x <- fit$x
y <- fit$y
n <- length(y)
k <- dim(x)[2]
b <- coef(fit)
u <- y - x%*%b # regression residuals

rho <- myrho(fit) # starting estimate of rho
cat(paste(rho,"\n"))

93

rhostar <- 0 # initialize rhostar

llhout <- rep(NA,maxiter) # initialize output
qout <- rep(NA,maxiter) # initialize output
bout <- matrix(NA,maxiter,k)
sigmaout <- rep(NA,maxiter)
rhoout <- rep(NA,maxiter)

tss <- crossprod(fit$y-mean(fit$y)) # total sum of squares
for (iter in 1:maxiter){ # start EM iterations
rhostar <- sum(u[-1]*u[-n])/sum(u[-1]^2) # estimate rho
ystar <- mystar(y,rhostar) # transform y
xstar <- mystar(x,rhostar) # transform x
temp <- lsfit(xstar,ystar,intercept=F) # GLS
b <- temp$coef # updated b
e <- temp$residuals # white noise residuals
epe <- crossprod(e) # sse on transformed data
sigma2 <- epe/n
u <- y - x%*%b # regression residuals

log-likelihood, Greene, p600
llh <- -n/2*(log(2*pi)+log(sigma2))

+ log(1-(rhostar^2))/2
- epe/(2*sigma2)

q function
q <- -n/2*(log(2*pi)+log(sigma2)) - epe/(2*sigma2)

output iterative history
llhout[iter] <- llh
qout[iter] <- q
bout[iter,] <- b
sigmaout[iter] <- sigma2
rhoout[iter] <- rhostar
yhat <- ystar - e
r2 <- crossprod(yhat-mean(yhat))/tss #r2
cat(paste("Iteration ",iter,

": rho = ",round(rhostar,4),
" llh = ",round(llh,8),
"\nq = ",round(q,8),
"\nssu = ",round(epe,4),
"\nr2 = ",round(r2,4),
"\n",sep=""))

if (iter!=1){
cat(paste("change in llh = ",

llh-llhout[iter-1],
"\n"))

cat(paste("change in q function = ",
q-qout[iter-1],
"\n\n"))

}
} # end EM loop

rho.x <- e[-1]
rho.y <- e[-n]

94

rho.u <- rho.y - rhostar*rho.x
rho.vc <- sum(rho.u^2)/sum(rho.x^2)
rho.se <- sqrt(rho.vc) # standard error on rho

out <- list(rho=rhoout, # package for output
rho.se=rho.se,
r2=r2,
llh=llhout,
b=bout,
sigma2=sigmaout,
maxiter=maxiter)

out
}
##
end function definitions
##

initial OLS regression
reagan.temp <- lm(app~infl+unemp,
data=reagan,
x=T,y=T)

call EM routine
ar1out <- mycorcutt(reagan.temp,maxiter=10)

show iterative history graphically
postscript("ar1em.ps") ## plotting commands
par(mfrow=c(5,1)) ## 5 plots to page

plot(1:ar1out$maxiter,ar1out$llh,
xlab="Iteration",
ylab="Log-Likelihood",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$b[,2],
xlab="Iteration",
ylab="infl",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$b[,3],
xlab="Iteration",
ylab="unemp",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$rho,
xlab="Iteration",
ylab="rho",
type="b",pch=15)

plot(1:ar1out$maxiter,ar1out$sigma2,
xlab="Iteration",
ylab="sigma2",
type="b",pch=15)

dev.off()

95

A.5 Gibbs sampler, probit model (Splus)

###
Gibbs sampler for probit model
##
Reference:
@Article{albertchib:jasa,
author = {Albert, James A. and Siddhartha Chib},
title = {Bayesian Analysis of Binary and Polychotomous
Response Data},
journal = jasa,
year = 1993,
volume = 88,
pages = {669--79}
##}
##
simon jackman, dept of political science, stanford univ
october 1998
##

a (pretty fast) function for sampling from truncated Normals
but see the inverse-uniform method in the parallel samplers version
of this code
rtmvnorm <- function(mu,y,n){
z <- rnorm(mu,sd=1,n=n) # sample unconditionally
repeat { # loop to meet constraints
fail1 <- (1:n)[z<0 & y==1] # index y==1 but z<0
fail2 <- (1:n)[z>0 & y==0] # index y==0 but z>0
fail <- c(fail1,fail2) # index all failures
n.more <- length(fail)
if (n.more==0) break # if no failures, bail out
z[fail] <- rnorm(mu[fail],sd=1,n=n.more) # else, re-sample failures

} # repeat until all ok
z

}

the Gibbs sampling function (diffuse priors)
probitgibbs <- function(obj,maxiter=1000){
x <- obj$x
y <- obj$y

xpx <- crossprod(x)
ixpx <- solve(xpx)
beta <- ixpx%*%crossprod(x,y) # starting value for beta
mu <- x%*%beta # E(y^*)

n <- length(y)
k <- length(beta)

ystar <- rep(NA,n) # initialize quantities
betaout <- matrix(NA,maxiter,k)
llhout <- rep(NA,maxiter)
ystarout <- rep(NA,maxiter)
muout <- rep(NA,maxiter)

96

comence Gibbs sampling
for (iter in 1:maxiter){
cat(paste("Gibbs sample number",iter," "))

ystar <- rtmvnorm(mu,y,n) # sample ystar (latent dep var)

bstar <- ixpx%*%t(x)%*%ystar # E(beta | X, y, y^*)
beta <- mvrnorm(n=1,bstar,ixpx) # sample beta

cat("beta:\n")
print(beta)
betaout[iter,] <- beta
ystarout[iter] <- ystar[1000] # monitor observation 1000
muout[iter] <- mu[1000]
mu <- x%*%beta # E(y^* | X, y, beta^{t+1})
Phi <- pnorm(mu) # Pr(y=1)
llhout[iter] <- sum(y*log(Phi) + (1-y)*(log(1-Phi))) #log-likelihood
cat(paste("llh:",llhout[iter],"\n"))

}

out <- list(b=betaout,ystar=ystarout,llh=llhout,mu=muout)
out

}
##
end function definitions
##

options(memory=1e+09)
probitgibbsout <- probitgibbs(small.lm,maxiter=5000)

dump output, to port between machines
temp <- list()
temp[[1]] <- cbind(c(1:5000),

probitgibbsout$b,
probitgibbsout$mu,probitgibbsout$llh)

dimnames(temp[[1]]) <- list(NULL,c("iter",
names(coef(small.glm)),
"mu","llh"))

data.dump("temp",
"probitgibbsout.dmp",
oldStyle=T)

A.6 Graphical summaries, Gibbs sampler output, probit model (Splus)

###
plot output of Gibbs sampler for probit model
##
simon jackman, dept of political science, stanford university
may 1999
###

97

options(object.size=1e+08)
options(memory=200E+06)

a function to do a specialized rug
myrug <- function(x,q=c(.05,.50,.95)){
xtick <- quantile(x,q) # get quantiles
ydim <- par()$usr[3:4]
yin <- ydim[1] + .12*ydim[2]
for (i in 1:length(q)){
lines(x=c(xtick[i],xtick[i]),

y=c(0,yin),
lwd=5)

}
invisible(NULL)

}

a function to do the actual plotting
tempfunc <- function(x,start,lab,mle=NULL,llh=NULL){
xtime <- 1:length(x)
if (!is.null(llh))
ylim <- c(min(x),llh)

else
ylim <- range(x)

plot(xtime,x, # trace plot
xlab="Iteration",
ylim=ylim,ylab=lab,type="l")

blah <- loess(x~xtime, span=1/10) # loess for smoothing
lines.default(x=xtime,y=blah$fitted.values,lwd=3,col=6)
if (!is.null(mle)){ # overlay MLE
abline(h=mle[1],lty=2)
abline(h=mle[1]+(mle[2]*qnorm(.95)),lty=2) # overlap MLE CIs
abline(h=mle[1]+(mle[2]*qnorm(.05)),lty=2)

}
if (!is.null(llh)) # or overlay llh
abline(h=llh,lty=2)

density (histogram) plot
x <- x[start:length(x)] # rest of function works with start:n
temp <- hist(x, # histogram

nclass=50, # 50 bins
prob=T, # as a density
ylab="density",
xlab=lab,
plot=T) # plot

cat("calculated histogram stuff\n")

if (!is.null(mle)){ # overlay MLE
cat("MLE:\n")
print(mle)
mleseq <- seq(from=min(x),to=max(x),length=100)
fmle <- dnorm(mleseq,mean=mle[1],sd=mle[2])
maxy <- max(maxy,max(fmle))
lines(mleseq,fmle,lty=2) # MLE implied Normal density

}

98

#if (!is.null(llh)) # this code useful when max(MLE)>max(hist)
xlim <- c(min(temp$breaks),llh)
#else
xlim <- range(temp$breaks)
plot(range(temp$breaks),range(temp$counts),
type="n",
ylim=c(0,maxy),
xlim=xlim,xlab=lab,ylab="density")

myrug(x) # do rug to show quantiles
if(!is.null(llh))
abline(v=llh,lty=2) # show llh, for llh plots

}
###
end function definitions
###

postscript(file="probitgibbs.ps",
horizontal=T) # landscape

ps.options.send(black.and.white="false") # this helps for most printers
par(mfrow=c(4,2),mar=c(4,4,1,2)) # 8 panels, squeezed onto page

get MLEs and standard errors
mle <- summary.glm(small.glm)$coefficients[,1:2]

call plotting function for various quantities
tempfunc(temp[,"llh"],5001,lab="llh",llh=deviance(small.glm)/-2)
tempfunc(temp[,"educcat"],5001,lab="educ",mle=mle[2,])
tempfunc(temp[,"age"],5001,lab="age",mle=mle[4,])

get MLE of ystar[1000] and its standard error
mle <- predict(small.glm,newdata=small.glm$x[1000,],se.fit=T)

tempfunc(temp[,"mu"],5001,lab="ystar1000",mle=c(mlefit,mlese.fit))

dev.off()
rm(tempfunc)

A.7 Parallel Gibbs samplers, probit model (Splus)

###
estimate Gibbs sampler for probit model, but run "p" Gibbs samplers
in parallel
##
dump output in S format suitable for CODA (see CODA manual)
a list, with matrix components (one for for each chain).
##
Reference:
@Article{albertchib:jasa,
author = {Albert, James A. and Siddhartha Chib},
title = {Bayesian Analysis of Binary and Polychotomous
Response Data},

99

journal = jasa,
year = 1993,
volume = 88,
pages = {669--79}
##}
##
simon jackman, dept of political science, stanford university
november 6, 1998 (denver airport...!)
##

a function for sampling ystar | beta, X, y
uses inverse-uniform trick
from Gelfand et al (JASA 1990, p977), Devroye (1986), Greene (1997, 179)
rtnorm <- function(mu,y,n){
u <- runif(n=n) # generate a uniform
arg <- pnorm(-mu) # Phi(-xb)
p <- rep(NA,n)
p[y==0] <- (u*arg)[y==0]
p[y==1] <- (arg + u*(1-arg))[y==1]
z <- mu + qnorm(p) # qnorm is inverse-Phi
z[z==Inf] <- 50.0 # protection from silly start vals
z[z==-Inf] <- -50.0 # ditto
z

}

a function for sampling from the multivariate normal
Ripley, _Stochastic Simulation_, p87; also see
Venables & Ripley _MASS_. This no longer necessary in Splus5
mvrnorm <- function(n = 1, mu, Sigma){
p <- length(mu)
if(!all.equal(dim(Sigma), c(p,p)))
stop("incompatible arguments")

eS <- eigen(Sigma, sym = T)
if(!all(eS$values >= 0))
stop("Sigma is not positive definite")

X <- mu + eS$vectors %*% diag(sqrt(eS$values)) %*% matrix(rnorm(p*n),p)
nm <- names(mu)
if(is.null(nm) && !is.null(dn <- dimnames(Sigma)))
nm <- dn[[1]]

if(n == 1)
drop(X)

else {
dimnames(X) <- list(nm, NULL)
t(X)

}
}

the Gibbs sampling function (diffuse priors)
probitgibbs <- function(obj,maxiter=1000){
x <- obj$x
y <- obj$y

xpx <- crossprod(x)
ixpx <- solve(xpx)
bmle <- coef(obj) # MLEs

100

#bmle <- ixpx%*%t(x)%*%y # naive OLS
n <- length(y) # number obs
k <- length(bmle) # number predictors
chains <- 4 # number chains (parallel Gibbs samplers)

initialize output storage objects
output <- list()
for (i in 1:chains){
output[[i]] <- matrix(NA,maxiter,1+k+3)
dimnames(output[[i]]) <- list(NULL,

c("iter",
names(coef(obj)),
"mu","ystar","llh")

)
output[[i]][1,1] <- 1

}
mu <- matrix(NA,n,chains) # E(y^*) = mu = xb

kappa <- c(-3,3)
se <- summary.glm(obj)$coefficients[,2]

permutation 1 of MLEs for start values
disperse <- rep(0,k)
disperse[1] <- kappa[1]
disperse[8] <- kappa[1]
disperse[6] <- kappa[1]
disperse[7] <- kappa[1]
output[[1]][1,2:(k+1)] <- bmle + disperse*se # write to output object
mu[,1] <- x%*%(bmle + disperse*se) # E(y^*) (starting values)
ystar <- rtnorm(mu[,1],y,n) # sample ystar
output[[1]][1,1+k+1] <- ystar[1000]
output[[1]][1,1+k+2] <- mu[1000,1]
Phi <- pnorm(mu[,1]) # P(y=1 | X, y, beta^{1})
output[[1]][1,1+k+3] <- sum(y*log(Phi) + (1-y)*(log(1-Phi))) # llh

permutation 2 of MLEs for start values
disperse <- rep(0,k)
disperse[6] <- kappa[1]
disperse[7] <- kappa[2]
disperse[1] <- kappa[1]
disperse[8] <- kappa[2]
output[[2]][1,2:(k+1)] <- bmle + disperse*se # write to output object
mu[,2] <- x%*%(bmle + disperse*se) # E(y^*) (starting values)
ystar <- rtnorm(mu[,2],y,n) # sample ystar
output[[2]][1,1+k+1] <- ystar[1000]
output[[2]][1,1+k+2] <- mu[1000,2]
Phi <- pnorm(mu[,1]) # P(y=1 | X, y, beta^{1})
output[[2]][1,1+k+3] <- sum(y*log(Phi) + (1-y)*(log(1-Phi))) # llh

permutation 3 of MLEs for start values
disperse <- rep(0,k)
disperse[6] <- kappa[2]
disperse[7] <- kappa[1]
disperse[1] <- kappa[2]
disperse[8] <- kappa[1]

101

output[[3]][1,2:(k+1)] <- bmle + disperse*se # write to output object
mu[,3] <- x%*%(bmle + disperse*se) # E(y^*) (starting values)
ystar <- rtnorm(mu[,3],y,n) # sample ystar
output[[3]][1,1+k+1] <- ystar[1000]
output[[3]][1,1+k+2] <- mu[1000,3]
Phi <- pnorm(mu[,1]) # P(y=1 | X, y, beta^{1})
output[[3]][1,1+k+3] <- sum(y*log(Phi) + (1-y)*(log(1-Phi))) # llh

permutation 4 of MLEs for start values
disperse <- rep(0,k)
disperse[6] <- kappa[2]
disperse[7] <- kappa[2]
disperse[1] <- kappa[2]
disperse[8] <- kappa[2]
output[[4]][1,2:(k+1)] <- bmle + disperse*se # write to output object
mu[,4] <- x%*%(bmle + disperse*se) # E(y^*) (starting values)
ystar <- rtnorm(mu[,4],y,n) # sample ystar
output[[4]][1,1+k+1] <- ystar[1000]
output[[4]][1,1+k+2] <- mu[1000,4]
Phi <- pnorm(mu[,1]) # P(y=1 | X, y, beta^{1})
output[[4]][1,1+k+3] <- sum(y*log(Phi) + (1-y)*(log(1-Phi))) # llh

commence Gibbs sampling, multiple chains
for (iter in 2:maxiter){
cat(paste("Gibbs sample number",iter,"\n"))
for(chain in 1:chains){ # loop over chains

cat(paste("chain",chain,"\n"))
ystar <- rtnorm(mu[,chain],y,n) # sample ystar
bstar <- ixpx%*%t(x)%*%ystar # E(beta | X, y, y^*)
beta <- mvrnorm(n=1,bstar,Sigma=ixpx) # sample beta
cat("beta:\n")
print(beta)

output iterative history
output[[chain]][iter,1] <- iter
output[[chain]][iter,2:(k+1)] <- beta
output[[chain]][iter,1+k+1] <- ystar[1000]
output[[chain]][iter,1+k+2] <- mu[1000,chain]
mu[,chain] <- x%*%beta # E(y^* | X, y, beta^{t+1})
Phi <- pnorm(mu[,chain]) # P(y=1 | X, y, beta^{t+1})
output[[chain]][iter,1+k+3] <- sum(y*log(Phi) + (1-y)*(log(1-Phi))) # llh
cat(paste("llh:",output[[chain]][iter,1+k+3],"\n"))

}
}
output

}

options(memory=1e+09,object.size=1e+08)

probitg2 <- probitgibbs(small.glm,maxiter=2000)

data.dump("probitg2","probitg2.dmp",oldStyle=T)

102

A.8 Graphing output of parallel Gibb samplers, probit model (Splus)

options(object.size=1e+08)
options(memory=200E+06)

attach("/home/simon/S/ellipse/.Data") # attach ellipse routines

mybinaryllh <- function(obj){ # a function to calculate llh
y <- obj$y
p <- obj$fitted.values
llh <- sum(y*log(p) + (1-y)*log(1-p))
llh

}

mle.llh <- mybinaryllh(small.glm)

postscript(file="probitlook2.ps",
width=7,height=7)
#,horizontal=T) # open plotting device

par(mfrow=c(2,2),
mar=c(4,4,1,2))
#pty="s") # page layout

plot joint traces
xmin <- min(unlist(lapply(probitg2,function(z)min(z[,"south"]))))
xmax <- max(unlist(lapply(probitg2,function(z)max(z[,"south"]))))
ymin <- min(unlist(lapply(probitg2,function(z)min(z[,"govelec"]))))
ymax <- max(unlist(lapply(probitg2,function(z)max(z[,"govelec"]))))

plot(probitg2[[1]][1:50,"south"],
probitg2[[1]][1:50,"govelec"],
xlim=c(xmin,xmax),
ylim=c(ymin,ymax),
xlab="south",ylab="govelec",
type="l")

lines(probitg2[[2]][1:50,"south"],probitg2[[2]][1:50,"govelec"])
lines(probitg2[[3]][1:50,"south"],probitg2[[3]][1:50,"govelec"])
lines(probitg2[[4]][1:50,"south"],probitg2[[4]][1:50,"govelec"])

mark starting values
lapply(probitg2,

function(z)
points(z[1,"south"],z[1,"govelec"],pch=15)
)

text for traces
for (i in 1:4){
text(probitg2[[i]][1,"south"] + .05*abs(diff(par()$usr[2:1])),

probitg2[[i]][1,"govelec"] + .05*abs(diff(par()$usr[4:3])),
as.character(i))

}

mark MLE
points(coef(small.glm)["south"],

103

coef(small.glm)["govelec"],
col=6,pch=15)

likelihood contours
lines(ellipse.glm(small.glm,which=c(6,7),level=.95),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(6,7),level=.90),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(6,7),level=.80),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(6,7),level=.50),col=6,lwd=3)

plot joint traces
xmin <- min(unlist(lapply(probitg2,function(z)min(z[,"(Intercept)"]))))
xmax <- max(unlist(lapply(probitg2,function(z)max(z[,"(Intercept)"]))))
ymin <- min(unlist(lapply(probitg2,function(z)min(z[,"closing"]))))
ymax <- max(unlist(lapply(probitg2,function(z)max(z[,"closing"]))))

plot(probitg2[[1]][1:50,"(Intercept)"],
probitg2[[1]][1:50,"closing"],
xlim=c(xmin,xmax),
ylim=c(ymin,ymax),
xlab="intercept",ylab="closing",
type="l")

lines(probitg2[[2]][1:50,"(Intercept)"],probitg2[[2]][1:50,"closing"])
lines(probitg2[[3]][1:50,"(Intercept)"],probitg2[[3]][1:50,"closing"])
lines(probitg2[[4]][1:50,"(Intercept)"],probitg2[[4]][1:50,"closing"])

mark starting values
lapply(probitg2,

function(z)
points(z[1,"(Intercept)"],z[1,"closing"],pch=15)
)

text for traces
for (i in 1:4){
text(probitg2[[i]][1,"(Intercept)"] + .05*abs(diff(par()$usr[2:1])),

probitg2[[i]][1,"closing"] + .05*abs(diff(par()$usr[4:3])),
as.character(i))

}

mark MLE
points(coef(small.glm)["(Intercept)"],

coef(small.glm)["closing"],
col=6,pch=15)

likelihood contours
lines(ellipse.glm(small.glm,which=c(1,8),level=.95),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(1,8),level=.90),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(1,8),level=.80),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(1,8),level=.50),col=6,lwd=3)

##
plot points from latter iterations
##
##
panel 3
##

104

xmin <- min(unlist(lapply(probitg2,function(z)min(z[,"south"]))))
xmax <- max(unlist(lapply(probitg2,function(z)max(z[,"south"]))))
ymin <- min(unlist(lapply(probitg2,function(z)min(z[,"govelec"]))))
ymax <- max(unlist(lapply(probitg2,function(z)max(z[,"govelec"]))))

plot(probitg2[[1]][,"south"],
probitg2[[1]][,"govelec"],
xlim=c(xmin,xmax),
ylim=c(ymin,ymax),
xlab="south",ylab="govelec",
type="n")

for (i in 1:4){
points(probitg2[[i]][1001:2000,"south"],

probitg2[[i]][1001:2000,"govelec"],
cex=.05,pch=16)

}

mark MLE
points(coef(small.glm)["south"],

coef(small.glm)["govelec"],
col=6,pch=15)

likelihood contours
lines(ellipse.glm(small.glm,which=c(6,7),level=.95),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(6,7),level=.90),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(6,7),level=.80),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(6,7),level=.50),col=6,lwd=3)

##
panel 4
##
xmin <- min(unlist(lapply(probitg2,function(z)min(z[,"(Intercept)"]))))
xmax <- max(unlist(lapply(probitg2,function(z)max(z[,"(Intercept)"]))))
ymin <- min(unlist(lapply(probitg2,function(z)min(z[,"closing"]))))
ymax <- max(unlist(lapply(probitg2,function(z)max(z[,"closing"]))))

plot(probitg2[[1]][,"(Intercept)"],
probitg2[[1]][,"closing"],
xlim=c(xmin,xmax),
ylim=c(ymin,ymax),
xlab="intercept",ylab="closing",
type="n")

for (i in 1:4){
points(probitg2[[i]][1001:2000,"(Intercept)"],

probitg2[[i]][1001:2000,"closing"],
cex=.05,pch=16)

}

mark MLE
points(coef(small.glm)["(Intercept)"],

coef(small.glm)["closing"],
col=6,pch=15)

105

likelihood contours
lines(ellipse.glm(small.glm,which=c(1,8),level=.95),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(1,8),level=.90),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(1,8),level=.80),col=6,lwd=3)
lines(ellipse.glm(small.glm,which=c(1,8),level=.50),col=6,lwd=3)

closeDevice()

A.9 Binary Response Model (WinBUGS)

model{
for (i in 1:N){ ## loop over observations
y[i] ~ dbern(p[i]); ## binary outcome
logit(p[i]) <- ystar[i]; ## logit link
ystar[i] <- beta[1] ## regression structure for covariates

+ beta[2]*educ[i]
+ beta[3]*(educ[i]*educ[i])
+ beta[4]*age[i]
+ beta[5]*(age[i]*age[i])
+ beta[6]*south[i]
+ beta[7]*govelec[i]
+ beta[8]*closing[i]
+ beta[9]*(closing[i]*educ[i])
+ beta[10]*(educ[i]*educ[i]*closing[i]);

llh[i] <- y[i]*log(p[i]) + (1-y[i])*log(1-p[i]); # llh contributions
}

sumllh <- sum(llh[]); # sum of log-likelihood contributions

priors
beta[1:10] ~ dmnorm(mu[] , B[,]) ; # diffuse multivariate Normal prior

see data file
}

A.10 Binary Response Model, truncated normal sampling (WinBUGS)

model{
for (i in 1:N){ ## loop over observations

mu[i] <- beta[1]
+ beta[2]*educ[i]
+ beta[3]*(educ[i]*educ[i])
+ beta[4]*age[i]
+ beta[5]*(age[i]*age[i])
+ beta[6]*south[i]
+ beta[7]*govelec[i]
+ beta[8]*closing[i]
+ beta[9]*(closing[i]*educ[i])
+ beta[10]*(educ[i]*educ[i]*closing[i]);

106

truncated normal sampling
ystar[i] ~ dnorm(mu[i],1)I(lo[y[i]+1],up[y[i]+1]);

probit(p[i]) <- ystar[i]; ## probs, as probit link
llh[i] <- y[i]*log(p[i]) + (1-y[i])*log(1-p[i]);

}
truncation points
lo[1] <- -50; lo[2] <- 0; # ystar | y=0 ~ N(xb,1)I(-50,0)
up[1] <- 0; up[2] <- 50; # ystar | y=1 ~ N(xb,1)I(0,50)

sumllh <- sum(llh[]);

priors
beta[1:10] ~ dmnorm(mu[] , B[,]) ; ## multivariate Normal prior

}

A.11 Regression with AR(1) disturbances (Splus)

##
Gibbs sample regression model with AR(1) disturbances
##
Reference: Chib (1993).
##
Data are monthly observations of approval for Reagan
##
simon jackman, dept of political science, stanford univ
october 1998
##
options(memory=200e+06,object.size=1e+09)

a function for doing lags properly
mylag <- function(x, lag = 1)
{
if(is.matrix(x)) { # is x a matrix?
n <- dim(x)[1]
k <- dim(x)[2]
z <- rep(NA, k)
y <- x[1:(n - lag),]
for(i in 1:lag)
y <- rbind(z, y)

}
else { ## assume x is a vector
n <- length(x)
y <- c(rep(NA, lag), x[1:(n - lag)])

}
y

}

a function for transforming variables, by 1st diffs and rho
mystar <- function(x, rho){
xstar <- x - (rho * mylag(x, 1))
Prais-Winsten transformation for 1st obersvation

107

if(is.matrix(x)) ## is x a matrix?
xstar[1,] <- sqrt(1 - (rho^2)) * x[1,]

else
xstar[1] <- sqrt(1 - (rho^2)) * x[1] # PW transform

xstar
}

Gibbs sampler function
ar1gibbs <- function(obj,maxiter=10){
y <- obj$y
x <- obj$x
n <- length(y) # number of observations
k <- dim(x)[2]
df <- n-k

beta <- coef(obj) # starting values
rho <- 0.0
sigma2 <- crossprod(y-x%*%beta)/df
cat(paste("starting values: sigma2=",sigma2,"\n"))
cat(paste("starting values: rho =",rho,"\n"))
print(beta)

priors
a0 <- diag(rep(.001,k)) # prior precision of beta
b0 <- rep(0.0,k) # prior mean of beta
ia0 <- solve(a0) # prior variance of beta
v.0 <- -k # prior equiv number of obs
sigma2.0 <- 0.0 # prior sample variance
delta.0 <- 0.0

initialize output
bout <- matrix(NA,maxiter,k)
s2out <- rep(NA,maxiter)
rhoout <- rep(NA,maxiter)
llhout <- rep(NA,maxiter)
nonstat <- 0

for (iter in 1:maxiter){ # commence Gibbs sampling
sample rho
u <- y - x%*%beta # regression residuals
Phi <- sum(u[-1]^2)
phi <- sum(u[-1]*u[-n])/Phi # E(rho | y, X, beta)
flag <- 0
repeat { # sample until |rho|<1

rho <- rnorm(1,mean=phi,sd=sqrt(sigma2/Phi))
if (abs(rho)<1)
break

else
flag <- 1

}
if (flag) nonstat <- nonstat + 1 # count instances non-stat

sample beta
ystar <- mystar(y,rho) # transform y
xstar <- mystar(x,rho) # transform x

108

xpy <- t(xstar)%*%ystar # cross-products
xpx <- crossprod(xstar) # data precision
ixpx <- solve(xpx) # data variance
atilde <- a0 + xpx # posterior precision
iatilde <- solve(atilde) # posterior variance
btilde <- iatilde%*%(a0%*%b0 + xpy) # posterior mean for beta
beta <- mvrnorm(mu=btilde, # sample beta
Sigma=as.numeric(sigma2)*iatilde)

sample sigma2
estar <- ystar - xstar%*%beta # white noise residuals
db <- crossprod(estar) # sum sq resids
Qb <- t(beta-b0)%*%a0%*%(beta-b0)
v <- v.0 + n + k # posterior df
z <- Rgamma(n=1, # sample from Gamma

r=v/2,
lambda=(delta.0 + Qb + db)/2)

sigma2 <- 1/z # sampled sigma2, IG

log-likelihood
llh <- -n/2*(log(2*pi) + log(sigma2)) + log(1-(rho^2))/2 - db/(2*sigma2)

bout[iter,] <- beta # beta output
s2out[iter] <- sigma2 # sigma2 output
rhoout[iter] <- rho # rho output
llhout[iter] <- llh

cat(paste("Iteration",iter,"sigma2 =",sigma2,"rho=",rho,"\n"))
} # end Gibbs sampler loop

out <- list(b=bout,s2=s2out,rho=rhoout,llh=llhout,nonstat)
out

}
###
end function definitions
###

run a regression to get start values, data in good shape, etc etc
reagan.temp <- lm(app~infl+unemp,

x=T,y=T,data=reagan)

call Gibbs sampler function
ar1gibbs.out <- ar1gibbs(reagan.temp,maxiter=5000)

A.12 Regression with AR(1) disturbances (WinBUGS)

##
AR(1) model for Reagan approval.
##
simon jackman, dept of political science, stanford university
##
model {

first-observation gets special treatment
m <- sqrt(1-pow(rho,2));

109

tau1 <- 1/((1-pow(rho,2))*sigma.e);
mu[1] <- b[1] + b[2]*infl[1] + b[3]*unemp[1]

+ b[4]*dsp500[1] + b[5]*irancontrad[1];
app[1] ~ dnorm(mu[1],tau1);

for (t in 2:T){ ## loop over obs 2 to T
mu[t] <- b[1]*(1-rho)
+ b[2]*(infl[t] - (rho*infl[t-1]))
+ b[3]*(unemp[t] - (rho*unemp[t-1]))
+ b[4]*(dsp500[t] - (rho*dsp500[t-1]))
+ b[5]*(irancontrad[t] - (rho*irancontrad[t-1]))
+ rho*app[t-1];
app[t] ~ dnorm(mu[t], tau.e);

}

sigma.e <- 1/sqrt(tau.e) ## convert precision to variance

priors
rho ~ dunif(-1,1); ## uniform prior on stationary interval
b[1:5] ~ dmnorm(b0[], B[,]); ## multivariate Normal prior
tau.e ~ dgamma(.05, .05); ## vague prior on sigma

}

Initial values:

list(b=c(20,-10,-10,-10, 5),rho=0,tau.e=.01)

list(b=c(120,20,20,20,20),rho=.9,tau.e=.01)

A.13 Right-Censored Failure Times

###
right-censored failure time regression
##
y ~ N(Xb, sigma^2)
y|censoring ~ N(Xb,sigma^2)I(c,)
##
data from Tanner 1996, Table 4.1
Simon Jackman, Dept of Political Science, Stanford University
August-December 1998
###
model{
for (i in 1:N.OK){ # loop over complete observations
mu[i] <- b[1] + v[i]*b[2];
t[i] ~ dnorm(mu[i],tau); # normal data and log-likelihood
llh[i] <- -log(2*pi)/2 - log(sigma2)/2 - pow((t[i]-mu[i]),2)/(2*sigma2);

}

for (i in (N.OK+1):N){ # loop over censored observations
mu[i] <- b[1] + v[i]*b[2];
t[i] ~ dnorm(mu[i],tau)I(c[i],); # left-truncated Normal
llh[i] <- log(1-phi((c[i]-mu[i])/sigma)); # incomplete data llh contrib

}

110

sumllh <- sum(llh[]); # sum llh contributions

priors
b[1:2] ~ dmnorm(b0[], Omega[,]); # multivariate normal
b0[1] <- 0.0; b0[2] <- 0.0; # uninformative priors
Omega[1,1] <- .005; Omega[1,2] <- 0.0;
Omega[2,1] <- 0.0; Omega[2,2] <- .005;
tau ~ dgamma(.005,.005); # uninformative Gamma
sigma2 <- 1/tau; # variance is inverse precision
sigma <- sqrt(sigma2); # std error

to do (inefficient!) univariate sampling, comment out the references
to b and Omega, above, and uncomment the following lines
b[1] ~ dnorm(0,.005);
b[2] ~ dnorm(0,.005);

}

A.14 Severe Missingness in Bivariate Normal Data (C)

/***
**
** routine to Gibbs sample from posterior for Sigma
** (inverse-Wishart sampling)
** with tanner51 data (Tanner, 3rd edition, Table 5.1)
**
** compile as:
**
** gcc -lm tanner51.c nrutil.o ranlib.o com.o linpack.o
** ludcmp.o lubksb.o
**
** usage:
**
** ./a.out <maxiter>
**
** where maxiter is integer number of samples from posterior
**
** simon jackman, dept of political science, stanford university
** 1998/99
**
***/

#include <stdio.h>
#include <time.h>
#include <math.h>
#include "nr.h"
#include "nrutil.h"
#include "ranlib.h"

float **xprod(float **x, int n, int p);
float **inverse(float **x, int n);

/**
** Inverse-Wishart sampling routine
** uses the approach described in Gelman et al, p480

111

** (1) takes raw X data, forms A = centered cross-products of X.
** (2) if A is k by k, and df degrees of freedom, then
** alpha[j,] ~ N(0,A^{-1}), j = 1, ... df
** (3) theta = alpha’alpha
** (4) return theta^{-1}
***/
float **simpwish(float **xstar, int df, int n, int k){

int i,j,h,l,m;
float **sigma, **a, **alpha, **sigmaout, *xrow, xp, *mu, *parm, *covm,
*x, *work;

a=matrix(1,k,1,k);
alpha=matrix(1,df,1,k);
xrow=vector(1,k);
sigma=matrix(1,k,1,k);
sigmaout=matrix(1,k,1,k);
parm=vector(0,k*(k*3)/2 + 1);
mu=vector(0,k-1);
covm=vector(0,k*k - 1);
x=vector(0,k-1);
work=vector(0,k-1);

sigma=xprod(xstar,n,k); /* centered cross-products matrix */
sigma=inverse(sigma,k); /* invert */

mu[0]=0.0; mu[1]=0.0;
for(i=1,l=0;i<=k;i++){
for(j=1;j<=k;j++){
covm[l++]=sigma[i][j];

}
}

setgmn(mu,covm,k,parm); /* setup for multivariate Normal sampling */
for(i=1;i<=df;i++) {
genmn(parm,x,work); /* multivariate Normal sampling */
alpha[i][1]=x[0]; alpha[i][2]=x[1];

}

for (i=1;i<=df;i++){ /* form xproducts */
xrow=alpha[i];
for (j=0,l=1;l<=k;l++){
xp=xrow[l];
for (j++,h=0,m=1;m<=l;m++)
sigmaout[j][++h] += xp*xrow[m];

}
}

for (j=2;j<=k;j++)
for (l=1;l<j;l++)

sigmaout[l][j]=sigmaout[j][l];

sigmaout=inverse(sigmaout,k); /* invert */

/* printmat(sigmaout,k,k); */
return sigmaout;

112

}

/***
** matrix inversion routine from NR
***/
float **inverse(float **x, int n)
{
float **a, **y, d, *col;
int i, j, *indx;

col=vector(1,n);
indx=ivector(1,n);
y=matrix(1,n,1,n);
a=matrix(1,n,1,n);

for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
y[i][j]=x[i][j];
a[i][j]=x[i][j];

}
}

/* fprintf(stdout,"inverse: calling dludcmp, matrix a = \n");
printmat(a,n,n); */

ludcmp(a,n,indx,&d);
for (j=1;j<=n;j++) {
for(i=1;i<=n;i++) col[i]=0.0;
col[j]=1.0;
lubksb(a,n,indx,col);
for(i=1;i<=n;i++) y[i][j]=col[i];

}

return y;
}

/**
** cross-products routine
**/
float **xprod(float **x, int n, int p)
{
int i, j, k;
float *mu, **xpx;

mu = vector(1,p);
xpx = matrix(1,p,1,p);

for (j=1;j<=p;j++){
mu[j]=0.0;
for (k=1;k<=p;k++){
xpx[j][k] = 0.0; /* zero-out entries in sigma */

}
}

113

for (i=1;i<=n;i++){
for (j=1;j<=p;j++){

mu[j] += x[i][j]/n; /* calculate the means */
}

}

for (i=1;i<=n;i++){ /* subtract out the means, form xprod */
for (j=1;j<=p;j++){

for (k=1;k<=p;k++){
xpx[j][k] += ((x[i][j] - mu[j]) * (x[i][k] - mu[k]));

}
}

}
return xpx;

}

/**
** the main event...!
**/
int main(argc,argv)

int argc;
char *argv[];

{
float **x, **xstar, **sigma, rho, sd1, sd2, m1, m2, **sigmanew, **isigma,

**xpx, **ixpx;
int i, j, k, l, n, iter, maxiter, df;
long seed1, seed2;
time_t nseconds, qseconds, pseconds;
struct tm *ptr, *localtime();
char *seedstr, *asctime();
FILE *outfile, *rhofile;

/* C H E C K A N D O P E N O U T P U T F I L E S */
if((outfile = fopen("/home/simon/mcmc/tanner51/log", "w")) == NULL) {
printf("cannot open log file\n");
exit(1);

}

if((rhofile = fopen("/home/simon/mcmc/tanner51/rho.out", "w")) == NULL) {
printf("cannot open output file for rho\n");
exit(1);

}

maxiter = atoi(argv[1]); /* arguments from user invocation */

nseconds = time(NULL); /* note start time for seeding rng */
ptr=localtime(&nseconds);
seedstr = asctime(ptr);
fprintf(outfile,"Starting Execution at: %s",seedstr);

fprintf(outfile,"Getting seeds from timestamp string\n");
phrtsd(seedstr,&seed1,&seed2);
fprintf(outfile,"Generated seeds: %12d %12d\n",seed1,seed2);
setall(seed1,seed2);

114

fprintf(outfile,"...seeded random number generators ok\n");

/* I N I T I A L I Z A T I O N */
n=12; k=2; df = 11;
x=matrix(1,n,1,k);
xstar=matrix(1,n,1,k);
xpx=matrix(1,k,1,k);
ixpx=matrix(1,k,1,k);

/* D A T A */
x[1][1] = 1.0; x[1][2] = 1.0;
x[2][1] = 1.0; x[2][2] = -1.0;
x[3][1] = -1.0; x[3][2] = 1.0;
x[4][1] = -1.0; x[4][2] = -1.0;
x[5][1] = 2.0; x[5][2] = 9.0; /* 9.0 is missing code */
x[6][1] = 2.0; x[6][2] = 9.0;
x[7][1] = -2.0; x[7][2] = 9.0;
x[8][1] = -2.0; x[8][2] = 9.0;
x[9][1] = 9.0; x[9][2] = 2.0;
x[10][1] = 9.0; x[10][2] = 2.0;
x[11][1] = 9.0; x[11][2] = -2.0;
x[12][1] = 9.0; x[12][2] = -2.0;

/* S T A R T I N G V A L U E S */
sigma = matrix(1,k,1,k);
sigmanew = matrix(1,k,1,k);
isigma = matrix(1,k,1,k);

sigma[1][1]=1.0; sigma[2][2]=1.0;
sigma[1][2]=0.0; sigma[2][1]=0.0;
rho = sigma[1][2]/sqrt(sigma[1][1]*sigma[2][2]);
sd1 = sqrt(sigma[1][1]*(1.0 - rho*rho));
sd2 = sqrt(sigma[2][2]*(1.0 - rho*rho));
m1 = rho*sqrt(sigma[1][1]/sigma[2][2]);
m2 = rho*sqrt(sigma[2][2]/sigma[1][1]);

/* C O M M E N C E G I B B S S A M P L I N G */
for (iter=1;iter<=maxiter;iter++){ /* loop over samples */
for(i=1;i<=n;i++){ /* loop over observations */

xstar[i][1] = x[i][1];
xstar[i][2] = x[i][2];
if (x[i][1]==9.0){ /* x1 is missing, so sample */

xstar[i][1] = gennor(m1*x[i][2],sd1);
}
if (x[i][2]==9.0){

xstar[i][2] = gennor(m2*x[i][1],sd2); /* x2 is missing, so sample */
}

}

sigmanew=simpwish(xstar,df,n,k); /* sample for Sigma */

rho = sigmanew[1][2]/sqrt(sigmanew[1][1]*sigmanew[2][2]);
sd1 = sqrt(sigmanew[1][1]*(1.0 - rho*rho));
sd2 = sqrt(sigmanew[2][2]*(1.0 - rho*rho));
m1 = rho*sqrt(sigmanew[1][1]/sigmanew[2][2]);

115

m2 = rho*sqrt(sigmanew[2][2]/sigmanew[1][1]);

fprintf(rhofile,"%14.8lf\n",rho); /* output to file */
}

/* E X I T R O U T I N E */
pseconds = time(NULL);
ptr=localtime(&pseconds);
seedstr = asctime(ptr);
fprintf(outfile,"Ending Execution at: %s",seedstr);
fprintf(outfile,
"Execution took %6.0lf seconds\n",
difftime(pseconds,nseconds));

fclose(outfile);
fclose(rhofile);

}

116

References

Albert, James H. and Siddhartha Chib. 1993. ‘‘Bayesian Analysis of Binary and Polychotomous
Response Data.’’ Journal of the American Statistical Association 88:669--79.

Barnett, Vic. 1982. Comparative Statistical Inference. Second ed. New York: Wiley.

Besag, J. 1974. ‘‘Spatial interaction and the statistical analysis of lattice systems (with
discussion).’’ Journal of the Royal Statistical Society, Series B 41:143--168.

Brooks, Stephen P. and Andrew Gelman. 1998. ‘‘General Methods for Monitoring Convergence
of Iterative Simulations.’’ Journal of Computational and Graphical Statistics 7:434--455.

Chan, K.S. and Johannes Ledolter. 1995. ‘‘Monte Carlo EM Estimation for Time Series Models
Involving Counts.’’ Journal of the American Statistical Association 90:242--252.

Chib, Siddhartha. 1993. ‘‘Bayes regression with autoregressive errors: a Gibbs sampling
approach.’’ Journal of Econometrics 58:275--94.

Clifford, P. 1993. ‘‘Discussion on the Meeting on the Gibbs Sampler and Other Markov Chain
Monte Carlo Methods.’’ Journal of the Royal Statistical Society, Series B 55:53--102.

Cochrane, D. and G.H. Orcutt. 1949. ‘‘Application of Least Squares Relationships Containing
Autocorrelated Error Terms.’’ Journal of the American Statistical Association 44:32--61.

Cowles, Mary Kathryn and Bradley P. Carlin. 1996. ‘‘Markov Chain Monte Carlo Convergence
Diagnostics: A Comparative Review.’’ Journal of the American Statistical Association
91:883--904.

Dempster, A. P., N. M. Laird and D. B. Rubin. 1977. ‘‘Maximum Likelihood from Incomplete
Data via the EM Algorithm.’’ Journal of the Royal Statistical Society, Series B 39:1--38.

di Finetti, B. 1974. Theory of Probability. Chichester: Wiley. Volume 1.

Gelfand, Alan E. and A. F. M. Smith. 1990. ‘‘Sampling based approaches to calculating
marginal densities.’’ Journal of the American Statistical Association 85:398--409.

Gelman, Andrew and Donald B. Rubin. 1992. ‘‘Inference from Iterative Simulation Using
Multiple Sequences.’’ Statistical Sciences 7:457--511.

Gelman, Andrew and Gary King. 1990. ‘‘Estimating the Consequences of Electoral
Redistricting.’’ Journal of the American Statistical Association 85:274--82.

Gelman, Andrew, John B. Carlin, Hal S. Stern and Donald B. Rubin. 1995. Bayesian Data
Analysis. London: Chapman and Hall.

Geman, S. and D. Geman. 1984. ‘‘Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images.’’ IEEE Transactions on Pattern Analysis and Machine Intelligence
6:721--41.

Geweke, J. 1989. ‘‘Bayesian inference in econometric models using Monte Carlo integration.’’
Econometrica 57:1317--1339.

117

Geweke, J. 1992. ‘‘Evaluating the accuracy of sampling-based approaches to the calculation
of posterior moments (with discussion).’’ In Bayesian Statistics 4, ed. J. M. Bernardo, J. O.
Berger, A. P. Dawid and A. F. M. Smith. Oxford: Oxford University Press pp. 169--193.

Gilks, Walter R. 1996. ‘‘Full conditional distributions.’’ In Markov Chain Monte Carlo in
Practice, ed. W. R. Gilks, S. Richardson and D. J. Spiegelhalter. London: Chapman and Hall
pp. 75--88.

Gorin, Zeev. 1980. ‘‘Income Inequality in the Marxist Theory of Development: A Cross-National
Test.’’ In Comparative Social Research, ed. Richard Tomasson. Greenwich, CT: 3A1.

Greene, William H. 1993. Econometric Analysis. Second ed. New York: Prentice-Hall.

Howson, Colin and Peter Urbach. 1993. Scientific Reasoning: the Bayesian approach. Second
ed. Chicago: Open Court.

Jackman, Simon. 1994. ‘‘Measuring Electoral Bias: Australia, 1949--1993.’’ British Journal of
Political Science 24:319--57.

Jeffreys, H. 1961. Theory of Probability. Third ed. Oxford: Clarendon Press.

Johnson, Norman L., Samuel Kotz and Adrienne W. Kemp. 1992. Univariate Discrete
Distributions. Second ed. New York: Wiley.

Johnson, Norman L., Samuel Kotz and N. Balakrishnan. 1994. Continuous Univariate
Distributions. Vol. 1 second ed. New York: Wiley.

King, Gary. 1989. Unifying Political Methodology. New York: Cambridge University Press.

King, Gary. 1997. A Solution to the Ecological Inference Problem. Princeton: Princeton
University Press.

Kolmogorov, A. N. 1956. Information Theory and Statistics. New York: Chelsea.

Kyburg, Henry E. and Howard E. Smokler. 1980. Studies in Subjective Probability. Second ed.
Huntington, New York: Kreiger.

Lange, Peter and Geoffrey Garrett. 1987. ‘‘The Politics of Growth Reconsidered.’’ Journal of
Politics 49:257--74.

Leamer, Edward. 1978. Specification Searches: Ad Hoc Inference with Nonexperimental Data.
New York: Wiley.

Leamer, Edward. 1983. ‘‘Let’s Take the Con out of Econometrics.’’ American Economic Review
23:31--43.

Lee, Peter M. 1989. Bayesian Statistics: an introduction. Oxford: Oxford University Press.

Little, Roderick J. A. and Donald B. Rubin. 1983. ‘‘On Jointly Estimating Parameters and
Missing Data by Maximizing the Complete-Data Likelihood.’’ The American Statistician
37:218--220.

118

Little, Roderick J. A. and Donald B. Rubin. 1987. Statistical Analysis with Missing Data. New
York: Wiley.

Maddala, G. S. 1983. Limited-dependent and Qualitative Variables in Econometrics. New
York: Cambridge University Press.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller. 1953.
‘‘Equations of state calculations by fast computing machines.’’ Journal of Chemical Physics
21:1087--91.

Nagler, Jonathan. 1994. ‘‘Scobit: an alternative estimator to logit and probit.’’ American
Journal of Political Science 38:230--55.

Polson, Nicholas G. 1996. ‘‘Convergence of Markov Chain Monte Carlo Algorithms.’’ In
Bayesian Statistics 5, ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F .M. Smith.
Oxford: Oxford University Press pp. 763--773.

Prais, S. J. and C. B. Winsten. 1954. Trend estimators and serial correlation. Chicago: Cowles
Commission.

Quandt, Richard E. and James B. Ramsey. 1973. ‘‘Estimating Mixtures of Normal Distributions
and Switching Regressions.’’ Journal of the American Statistical Association 73:730--738.

Raftery, Adrian E. 1996. ‘‘Hypothesis testing and model selection.’’ In Markov Chain Monte
Carlo in Practice, ed. W. R. Gilks, S. Richardson and D. J. Spiegelhalter. London: Chapman
and Hall pp. 163--187.

Roberts, Gareth O. 1996. ‘‘Markov chain concepts related to sampling algorithms.’’ In Markov
Chain Monte Carlo in Practice, ed. W. R. Gilks, S. Richardson and D. J. Spiegelhalter.
London: Chapman and Hall pp. 45--57.

Rosenthal, J. 1995. ‘‘Rates of convergence for Gibbs sampling for variance component
models.’’ Annals of Statistics 23:740--761.

Rubin, Donald B. 1987. Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Spiegelhalter, David J., Andrew Thomas, Nicky Best and Wally R. Gilks. 1997. BUGS 0.6:
Bayesian inference using Gibbs sampling. Cambridge, UK: MRC Biostatistics Unit.

Tanner, Martin A. 1996. Tools for Statistical Inference: Methods for the Exploration of Postrior
Distributions and Likelihood Functions. Third ed. New York: Springer-Verlag.

Tanner, Martin and Wing Hung Wong. 1987. ‘‘The Calculation of Posterior Distributions by
Data Augmentation.’’ Journal of the American Statistical Association 82:528--40.

Tierney, Luke. 1997. ‘‘Markov Chain Monte Carlo Algorithms.’’ In Encyclopedia of the Statistical
Sciences, ed. Samuel Kotz, Campbell B. Read and David L. Banks. Vol. 1 (Update) New
York: Wiley pp. 392--399.

Titterington, D. M, Adrian F. M. Smith and U. E. Makov. 1985. Statistical Analysis of Finite
Mixture Distributions. New York: Wiley.

119

van Dantzig, D. 1957. ‘‘Statistical priesthood (Savage on personal probabilities).’’ Statistica
Neerlandica 11:1--16.

von Mises, R. 1957. Probability, Statistics, and Truth. New York: Academic Press.

Western, Bruce. 1998. ‘‘Causal Heterogeneity in Comparative Research: A Bayesian
Hierarchical Modelling Approach.’’ American Journal of Political Science 42:1233--1259.

Western, Bruce and Simon Jackman. 1994. ‘‘Bayesian Inference for Comparative Research.’’
American Political Science Review 88:412--23.

Wu, J.C.F. 1983. ‘‘On the Convergence Properties of the EM Algorithm.’’ The Annals of Statistics
11:95--103.

	Philosophical Preliminaries
	End of the Holy War?
	What is Probability?
	Critiques of Classical Statistical Practice
	Confidence Intervals
	Specification Searches

	Bayes' Rule
	An Example
	Conjugacy
	Pooling Analogy
	Inference for a Proportion
	Other Types of Prior for
	Example: male-female birth rates
	Simulation from Posterior

	Inference for the Mean
	Inference for the Mean and Variance, Normal data
	Bayesian Inference for a Regression, Normal data

	Simulation Methods
	Imputation/Augmentation
	Monte Carlo and other simulation methods
	Computing marginal posterior densities
	Functions of Parameters
	Techniques for Sampling

	EM
	Example: Probit model for binary data
	Example: Linear Regression with AR(1) disturbances
	Example: right-censored failure time data
	Remarks
	Monte Carlo Implementation of the E-Step
	Data Augmentation

	Gibbs Sampling
	Historical Remarks
	Example: Probit model for binary data
	Diagnosing Convergence
	Geweke diagnostic
	Parallel Gibbs Samplers

	Example: Linear Regression with AR(1) disturbances
	Right-Censored Failure Times

	Imputations for Missing Data via MCMC
	Example: missing bivariate Normal data

	Mixture Models
	Demonstration
	Gibbs sampling for mixture models
	Example: District-Level Effects in a Simulation Model of Electoral System.

	Other Applications
	Software
	Programs
	Sensitivity of posterior to prior for a proportion (Splus)
	EM for binary response (SPlus)
	EM for regression with AR(1) disturbances (Splus)
	EM for right-censored failure time
	Gibbs sampler, probit model (Splus)
	Graphical summaries, Gibbs sampler output, probit model (Splus)
	Parallel Gibbs samplers, probit model (Splus)
	Graphing output of parallel Gibb samplers, probit model (Splus)
	Binary Response Model (WinBUGS)
	Binary Response Model, truncated normal sampling (WinBUGS)
	Regression with AR(1) disturbances (Splus)
	Regression with AR(1) disturbances (WinBUGS)
	Right-Censored Failure Times
	Severe Missingness in Bivariate Normal Data (C)

	References

