Understanding the Brain Through Imaging: AI/ML Opportunities

Greg Zaharchuk, MD PhD
Professor of Radiology
Stanford University

@GregZ_MD
Disclosures

GE Healthcare: Research support
Bayer: Research support
Nvidia: GPU donation
Biogen: Advisory panel
Subtle Medical: Co-founder, equity
A Brief History of Radiology

1895 X-rays

1927 Angiography

1972 CT

1973 MRI

2000 PACS

? 2017 ML/AI
Good News
Imaging #1 healthcare advance over last 30 yrs*

Bad News
Imaging is costly and inefficient

*Fuchs et al., Health Affairs 2001
Radiology from the Patient’s Perspective

New & Different

Image Acquisition

Enhancement & Visualization

Analytics

Interpretation

Pre-/peri-imaging

Scanner

Post-processing

Reconstruction

Diagnosis

Treatment
AI Focus Areas

- Image automation ("pre-voxel")
- Image reconstruction
- Post-processing / quantitation
- Interpretation
- New & different
Improving and Standardizing Image Acquisition

Courtesy of Robert Hu, MD, HeartVista
AI Focus Areas

• Image automation ("pre-voxel")
• Image reconstruction
• Post-processing / quantitation
• Interpretation
• New & different
How it's performed
MRI scan

A magnetic resonance imaging (MRI) scan is a painless procedure that lasts 15 to 90 minutes, depending on the size of the area being scanned and the number of images being taken.
Magnetic Resonance Imaging (MRI)

- Challenges
 - Very expensive
 - Need a lot of electricity/cooling
 - Need a lot of space
 - Need people to run them (technologists)

Upshot: not many people can get MRI's

'Three back in 2020 for your MRI', Mumb

Konkan farmer was recently asked by Nair Hospital, already overburdened radiology department.

English hospitals in urgent need of more scanners and staff to deal with backlog

Exclusive: more than half of NHS patients referred for imaging diagnostics are waiting six weeks or more

- MP reveals difficulty getting breast cancer scans
- Coronavirus - latest updates
- See all our coronavirus coverage
Pretty good MRI examination principles

- Examinations should consist of 10 minutes of imaging plus 5 minutes of patient handling time, for a total cycle time of 15 minutes.
- Pulse sequences should acquire 3-D data that can be reformatted in any plane.
- Pulse sequences should acquire and use multiple echoes or use SSFP to maximize SNR and CNR.
- Optimized multicoil arrays should be used to maximize SNR.
- Prescan and scanner parameter adjustment (RF transmit amplitude, RF receive gain, tuning) should be kept to <30 seconds per patient.
- Scans should be done using a high-quality imager at fields ≥ 1.5 T.
Image Transformation

Deep Residual Encoder-Decoder Convolutional Neural Network (U-Net)

What you’ve got (lower quality, faster) What you want (higher quality)
Arterial Spin Labeling

- Non-contrast method for measuring blood flow

Low SNR!

CBF map
Improved Perfusion MRI

8 min
High SNR ASL

2 min
Low SNR ASL

2 min
Synthetic ASL

RSME 29%
Error map vs High SNR

4-fold time reduction
3-fold RSME improvement

Gong, Pauly, Zaharchuk/Stanford/Proc ISMRM 2017
De-noising of Anatomic Images

Standard Acquisition

Scan time: 3:49
Number of averages: 4
Slice thickness: 4 mm

Fast Acquisition (2x)

Scan time: 1:57
Number of averages: 2
Slice thickness: 4 mm

DL-enhanced

Scan time: 1:57
Number of averages: 2
Slice thickness: 4 mm
Super-Resolution

Deep Learning Model

- 3x resolution improvement
- Better diagnostic quality
- More confident clinical decision
- Or faster...

Tacq 4:46 Tacq 2:34 Tacq 2:34

50% reduction

12 yo M, epilepsy
Application to Automated Brain Region Analysis

Morphometry Results – Standard Scan (Scan Time 5:01)

Morphometry Results – DL-accelerated Scan (Scan Time 2:37)

Bash et al., AJNR 2021
Beyond Faster

- Replace inputs of network with other contrasts or modalities
- “100%” speed up
- Provide new info after patient leaves the scanner
- **Assumption**: Input images contain required information to create new contrast!
Modality Transfer

• MRI to CT
 • Attenuation correction for PET
 • Evaluating bony lesions
• MR sequence transfer
 • Predicting STIR from T1 and T2
• A form of style transfer

Liu et al., Radiology 2017; Jans et al., Radiology 2020
Missing Data Imputation

Take what you have and make your best guess at what you don’t have.
Can be used as a predictor of contrast-enhanced images / zero-dose

Liu et al., One Model to Synthesize Them All, ArXiv 2204.13738