Acoustic Properties of Tissue

- + Intensity
- + Speed of Sound
- Acoustic Impedance
- Attenuation
- + Intensity

Intensity

Intensity is the power transferred per unit area (W/m^2)

 $I \propto P^2$

will come back to this at end of lecture

Acoustic Properties of Tissue

- + Intensity
- + Speed of Sound
- + Acoustic Impedance
- Attenuation
- + Intensity

Particle Velocity vs Compression Wave Velocity

u = particle velocity

c = compression wave velocity (SoS)

к determines speed of sound

к=compressibility

5

Bulk Modulus

Rad225/Bioe225 Ultrasound Fall 2019

6

Acoustic Velocity/Speed of Sound

 $c^2 = \frac{B}{\rho}$

 $c = \sqrt{\frac{B}{\rho}}$

- B = Bulk Modulus = measure of the stiffness (Pa)
- $B = I/\kappa$ where κ =compressibility

$$\rho = \text{density} (\text{kg/m}^3)$$

Air (25°C) Fat	Density ρ (kg/m³) 1.16 928	Bulk Modulus B (MPa) 0.137 1900	Speed of Sound c (m/s) 344 1430
Water (22°C) Blood	998 1060	2190 2660	1482 1584
Skeletal muscle	1041	2600	1580
Liver	1050 1050	2610 2560	1578 1560
Bone	1600	18100	3360

Szabo

Rad225/Bioe225 Ultrasound Fall 2019

Speed of Sound

The pulse moves through tissue at a velocity specific to the tissue and *independent of the applied frequency*.

Speed of Sound

The pulse moves through tissue at a velocity specific to the tissue and *independent of the applied frequency*.

• Velocity (c), frequency (f), and wavelength (λ) are related:

• $c = \lambda f$

c in soft tissue

$$c = f\lambda$$

1540 m/s = 1 MHz * 1.54 mm

What is the wavelength for 500 kHz ultrasound in soft tissue? $\sim 3 \text{ mm}$

Why does this matter?

I) resolution ~ wavelength
 ⇒ higher frequency gives better resolution

we'll talk about this more later

2) phase aberrations

Two elements of the 1000 transducer There is a wavelength array elements change due to the speed of sound change in bone 11-1-02520964 There is more attenuation in the thicker bone

Two elements of the 1000 transducer array elements

There is a wavelength change due to the speed of sound change in bone

ALC: CONTRACTOR

There is more attenuation in the thicker bone

<u>At the target:</u> This beams has a phase of φ₁ This beams has a phase of φ₂

The sum is not as great as it could be

Acoustic Properties of Tissue

- + Intensity
- + Speed of Sound
- Acoustic Impedance
- Attenuation
- + Intensity

Example

Sound echo off a wall The wall has a different property from the air

- At each interface, some sound is reflected and some is transmitted.
- The relative amounts depend on the acoustic impedances Z_1 and Z_2 .

Acoustic Impedance

P is the pressure u is the particle velocity think of it like resistance

Acoustic Impedance

$$Z = \sqrt{B\rho}$$

$$B = -V\frac{dP}{dV}$$

B = Bulk Modulus = measure of the stiffness (Pa) $B = 1/\kappa$ where κ =compressibility

ratio of infinitesimal pressure increase to the resulting relative decrease in the volume

and using
$$c = \sqrt{\frac{B}{\rho}}$$

Acoustic Impedance

 $Z = \rho c$

	Density	Speed of Sound	Impedance (MRayl)
	ρ (kg/m³)	c (m/s)	Z (10º Kg/m²/S)
Air (25°C)	1.16	344	0.0004
Water (22°C)	998	1482	1.48
Blood	1060	1584	1.68
Skeletal muscle	1041	1580	1.65
Liver	1050	1578	1.64
Kidney	1050	1560	1.64
Fat	928	1430	1.33
Bone	1600	3360	5.69

Acoustic Impedance Z

% reflection =
$$100 * \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$$

%transmitted =
$$100 * 4 * \frac{Z_1 Z_2}{(Z_2 + Z_1)^2}$$

Reflection Examples

- What is the reflection at a <u>fat-muscle</u> interface? reflection = $100^{*}(1.7-1.38)^{2}/(1.7+1.38)^{2} = 1.1\%$
- What is the reflection at a <u>muscle-bone</u> interface? reflection = 100*(7.8-1.7)²/(7.8+1.7)²= 41%

Acoustic Properties of Tissue

- + Intensity
- + Speed of Sound
- + Acoustic Impedance
- Attenuation
- + Intensity

Attenuation

For a single frequency plane wave,

$$P(z,t) = P_0 e^{i(w_c t - kz)} e^{-\alpha z}$$

 α is given in nepers/cm

$$\alpha = \alpha_a + \alpha_s$$

 α_a = attenuation due to absorption α_s = attenuation due to scattering

Attenuation

 $\alpha = \alpha_a + \alpha_s$

 α_a = attenuation due to absorption - dominates in soft tissue

 α_s = attenuation due to scattering - dominates in medullary bone

Attenuation

loss of signal as the sound wave travels through the tissue

Loss of signal Worse at high frequency

Two sources: I) reflection and scatter and 2) absorption (heat)

dB

Relative SignalLevel(dB) =
$$20\log\left(\frac{P}{P_0}\right)$$

Relative SignalLevel(dB) =
$$10 \log \left(\frac{P}{P_0}\right)^2$$

Relative SignalLevel(dB) =
$$10\log\frac{I_2}{I_1}$$

Relative Sound Intensity

when I = 0.5 I_o , relative sound intensity is -3 dB when I = 0.1 I_o , relative sound intensity is -10 dB the multiply add

when I = 0.25 I_o , relative sound intensity is -6 dB when I = 0.001 I_o , relative sound intensity is -30 dB

Attenuation in dB

$$loss_{dB} = 20 \log_{10}(loss)$$
$$\alpha_{dB}z = 20 \log_{10}(\frac{P}{P_0})$$
$$\alpha_{dB} = \frac{1}{z} 20 \log_{10}(e^{-\alpha_{nepers}z})$$

$$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$$

 $\alpha_{dB} = 8.6886 \alpha_{nepers}$

You can use either $P(z,t) = P_0 e^{-\alpha z}$ $loss_{db} = \alpha_{db} z$

Duck

25 nd 19

Attenuation Examples

attenuation (dB) = α f z

• A 5 MHz beam passes thru 6 cm of tissue. The intensity is attenuated by how much?

attenuation = -1 dB/cm/MHz * 5MHz * 6cm

= -30dB

The received signal is 1/1,000 the transmitted signal.

Usually receive 1/1,000,000 the transmitted signal.

Attenuation Examples

Stanford's Ultrasound units are typically set to filter out signals <-60dB. What effect does this have?

It reduces some artifacts, but also limits depth reception.

How does this limit depth reception? If we have a -60 dB dynamic range and operate @5MHz, then depth is set:

attenuation (dB) = α f z

- For imaging deeper, need lower frequency
- More superficial structures, can use a higher frequency

Time Gain Control

TGC - Amplifies the signal based on its depth - equalizes the signal across the image.

Artifactual Enhancement

- Some structures do not have much attenuation cysts, bladder.
- Can have high signal beyond these structures. "Acoustic Window"

Rad225/Bioe225 Ultrasound Fall 2019

Acoustic enhancement

Artifact 1: What is causing this Liver Lesion?

Poorly adjusted Time-Gain Compensation

Artifact 2: What is causes increasing loss of liver signal?

more reflections from inhomgeneous fat/water liver

attenuation of fat compared to aqueous liver

Acoustic Properties of Tissue

- + Intensity
- Attenuation
- + Speed of Sound
- + Acoustic Impedance
- + Intensity

Intensity

Intensity is the power transferred per unit area (W/m^2) Intensity = power density

$$powerdensity = \frac{power}{area} = \frac{work}{area*time} = \frac{force*distance}{area*time}$$

$$powerdensity = P* particlevelocity$$

$$I = \frac{P^2}{Z}$$
Instantaneous

 \boldsymbol{P}

Ι

 $\frac{P^2}{Z}$ Ι $\frac{P^2}{2Z}$ 1 ave

Instantaneous

time average

