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1. Invariance of the trace.  
Prove that the trace of the matrix representation of an operator is 
independent on the corresponding basis.

2. Hermitian Operators.  
a)  Prove that the eigenvalues of a Hermitian operator are real.

b)  Prove that the eigenkets corresponding to non-degenerate 
eigenvalues of a Hermitian operator are orthogonal.



3. Dirac notation.

Using Dirac notation, let        and        be kets in a Hilbert space 
and        an operator in that space.  For each of the following 
expressions, state whether the result is a ket, bra, operator, or 
scalar.
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f Â g

a.   

b.   

c.   

d.   

e.   

f.   



4. Projection Operators
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Let                      form a complete orthonormal basis set for a 
two-dimensional system.  Consider the wavefunction

α  and β

ϕ = λ1 α +λ2 β λ1
2
+ λ2

2
=1where

and its corresponding projection operator
The information content of the system can be measured by 
the quantity

a. Case 1. Let λ2=0  (or equivalently λ1=0) 

P̂ϕ = ϕ ϕ .

Tr P̂ϕ
2( ).

This is known as a  pure state.  Namely ϕ1 = α .

Find the eigenkets, eigenvalues, and trace of P̂ϕ1.

Find Tr P̂ϕ
2( ).

b. Case 2. Let λ2≠0 and λ2≠0.
Namely

Find Tr P̂ϕ
2( ).

ϕ2 = λ1 α +λ2 β .
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Given operators ˆ A ,  ˆ B  and ˆ C , prove the following :
5. Superoperators.  

 a)

 b)

 c)

€ 

e ˆ ˆ A ˆ B = e ˆ A ˆ B e− ˆ A .

€ 

If ˆ ˆ A ̂  B = 0, then e ˆ ˆ A + ˆ ˆ B ˆ C = e ˆ ˆ A e ˆ ˆ B ˆ C = e ˆ ˆ B e ˆ ˆ A ˆ C .€ 

If ˆ ˆ A ̂  B = 0, then e ˆ A + ˆ B = e ˆ A e ˆ B = e ˆ B e ˆ A .


