Problem Set #2 Rad 226

1. Invariance of the trace.

Prove that the trace of the matrix representation of an operator is independent on the corresponding basis.

2. Hermitian Operators.

- a) Prove that the eigenvalues of a Hermitian operator are real.
- b) Prove that the eigenkets corresponding to non-degenerate eigenvalues of a Hermitian operator are orthogonal.

3. Dirac notation.

Using Dirac notation, let $|f\rangle$ and $|g\rangle$ be kets in a Hilbert space and \hat{A} an operator in that space. For each of the following expressions, state whether the result is a ket, bra, operator, or scalar.

- a. $\langle f | g \rangle$ b. $\langle f | \hat{A}$ c. $| f \rangle \langle g |$ d. $A | f \rangle \langle g |$ e. $\langle f | \hat{A}^{\dagger}$
- f. $\langle f | \hat{A} | g \rangle$

Problem Set #2 Rad 226

4. Projection Operators

Let $|\alpha\rangle$ and $|\beta\rangle$ form a complete orthonormal basis set for a two-dimensional system. Consider the wavefunction

 $|\varphi\rangle = \lambda_1 |\alpha\rangle + \lambda_2 |\beta\rangle$ where $|\lambda_1|^2 + |\lambda_2|^2 = 1$

and its corresponding projection operator $\hat{P}_{\varphi} = |\varphi\rangle\langle\varphi|$. The information content of the system can be measured by the quantity $\text{Tr}(\hat{P}_{\varphi}^2)$.

- a. <u>Case 1</u>. Let $\lambda_2=0$ (or equivalently $\lambda_1=0$) This is known as a *pure* state. Namely $|\varphi_1\rangle = |\alpha\rangle$. Find the eigenkets, eigenvalues, and trace of \hat{P}_{φ_1} . Find $\text{Tr}(\hat{P}_{\varphi}^2)$.
- b. <u>Case 2</u>. Let $\lambda_2 \neq 0$ and $\lambda_2 \neq 0$. Namely $|\varphi_2\rangle = \lambda_1 |\alpha\rangle + \lambda_2 |\beta\rangle$. Find $\operatorname{Tr}(\hat{P}_{\varphi}^2)$.

Problem Set #2 Rad 226

5. Superoperators.

Given operators \hat{A} , \hat{B} and \hat{C} , prove the following :

- a) If $\hat{A}\hat{B} = 0$, then $e^{\hat{A}+\hat{B}} = e^{\hat{A}}e^{\hat{B}} = e^{\hat{B}}e^{\hat{A}}$.
- b) $e^{\hat{A}}\hat{B} = e^{\hat{A}}\hat{B}e^{-\hat{A}}$. c) If $\hat{A}\hat{B} = 0$, then $e^{\hat{A}+\hat{B}}\hat{C} = e^{\hat{A}}e^{\hat{B}}\hat{C} = e^{\hat{B}}e^{\hat{A}}\hat{C}$.