Problem Set \#2

Rad 226

1. Invariance of the trace.

Prove that the trace of the matrix representation of an operator is independent on the corresponding basis.
2. Hermitian Operators.
a) Prove that the eigenvalues of a Hermitian operator are real.
b) Prove that the eigenkets corresponding to non-degenerate eigenvalues of a Hermitian operator are orthogonal.

3. Dirac notation.

Using Dirac notation, let $|f\rangle$ and $|g\rangle$ be kets in a Hilbert space and \hat{A} an operator in that space. For each of the following expressions, state whether the result is a ket, bra, operator, or scalar.
a. $\langle f \mid g\rangle$
b. $\langle f| \hat{A}$
c. $|f\rangle\langle g|$
d. $A|f\rangle\langle g|$
e. $\langle f| \hat{A}^{\dagger}$
f. $\langle f| \hat{A}|g\rangle$

Problem Set \#2

$\operatorname{Rad} 226$

4. Projection Operators

Let $|\alpha\rangle$ and $|\beta\rangle$ form a complete orthonormal basis set for a two-dimensional system. Consider the wavefunction

$$
|\varphi\rangle=\lambda_{1}|\alpha\rangle+\lambda_{2}|\beta\rangle \quad \text { where } \quad\left|\lambda_{1}\right|^{2}+\left|\lambda_{2}\right|^{2}=1
$$

and its corresponding projection operator $\hat{P}_{\varphi}=|\varphi\rangle\langle\varphi|$.
The information content of the system can be measured by the quantity $\operatorname{Tr}\left(\hat{P}_{\varphi}^{2}\right)$.
a. Case 1. Let $\lambda_{2}=0$ (or equivalently $\lambda_{1}=0$)

This is known as a pure state. Namely $\left|\varphi_{1}\right\rangle=|\alpha\rangle$.
Find the eigenkets, eigenvalues, and trace of $\hat{P}_{\varphi_{1}}$.
Find $\operatorname{Tr}\left(\hat{P}_{\varphi}^{2}\right)$.
b. Case 2. Let $\lambda_{2} \neq 0$ and $\lambda_{2} \neq 0$.

Namely $\left|\varphi_{2}\right\rangle=\lambda_{1}|\alpha\rangle+\lambda_{2}|\beta\rangle$.
Find $\operatorname{Tr}\left(\hat{P}_{\varphi}^{2}\right)$.

Problem Set \#2

$\operatorname{Rad} 226$
5. Superoperators.

Given operators \hat{A}, \hat{B} and $\hat{\mathrm{C}}$, prove the following:
a) If $\hat{\hat{A}} \hat{B}=0$, then $e^{\hat{A}+\hat{B}}=e^{\hat{A}} e^{\hat{B}}=e^{\hat{B}} e^{\hat{A}}$.
b) $e^{\hat{A}} \hat{B}=e^{\hat{A}} \hat{B} e^{-\hat{A}}$.
c) If $\hat{\hat{A}} \hat{B}=0$, then $e^{\hat{\hat{A}}+\hat{B}} \hat{C}=e^{\hat{\hat{A}}} e^{\hat{\hat{B}}} \hat{C}=e^{\hat{\hat{B}}} e^{\hat{A}} \hat{C}$.

