#### **1. The Pauli matrices**

Let  $|\varphi_{x_i}\rangle$ ,  $|\varphi_{y_i}\rangle$ , and  $|\varphi_{z_i}\rangle$  for i = 1, 2 be the eigenkets for  $\hat{I}_x$ ,  $\hat{I}_y$ , and  $\hat{I}_z$ . The Pauli matrices, expressed in the  $|\varphi_{z_i}\rangle$  basis, are given by:

$$\underline{I}_{x} = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \underline{I}_{y} = \frac{1}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad \underline{I}_{z} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

a) Find the corresponding eigenvectors and eigenvalues for  $\underline{I}_x$ ,  $\underline{I}_y$ , and  $\underline{I}_z$ .

b) Show by direct matrix calculation that:

$$\sum_{i=1}^{2} |\varphi_{x_{i}}\rangle \langle \varphi_{x_{i}}| = \sum_{i=1}^{2} |\varphi_{y_{i}}\rangle \langle \varphi_{y_{i}}| = \sum_{i=1}^{2} |\varphi_{z_{i}}\rangle \langle \varphi_{z_{i}}| = \hat{E} \text{ (identity operator)}$$

c) Find  $[\hat{I}_z, \hat{I}_x], [\hat{I}_z, \hat{I}_y]$ , and  $[\hat{I}_x, \hat{I}_y]$ .

d) Express  $\hat{I}_x$ ,  $\hat{I}_y$ , and  $\hat{I}_z$  in the  $|\varphi_{y_i}\rangle$  basis.

## 2. Stern-Gerlach Experiment

The *x*, *y*, and *z* components of the intrinsic angular momentum (spin) of a spin-1/2 particle are given by the cyclically commuting operators:

 $\hat{I}_{m{x}}, \ \hat{I}_{m{y}}, \ ext{and} \ \ \hat{I}_{m{z}}, \ ext{each with eigenvalues } \pm 1/2$ 



a) What are the eigenvalues of  $\hat{I}_u$ , the operator corresponding to the spin in the  $\vec{u}$  direction?

b) What is the matrix form of  $\hat{I}_u$  expressed in the  $\{|+\rangle, |-\rangle\}$  basis, where  $|+\rangle$  and  $|-\rangle$  are the eigenkets of  $\hat{I}_z$  corresponding to eigenvalues +1/2 and -1/2 respectively?

c) The general form of a ket for single spin-1/2 particle is

$$|\psi\rangle = \alpha |+\rangle + \beta |-\rangle$$
 where  $|\alpha|^2 + |\beta|^2 = 1$ .

Can you find  $\alpha$  and  $\beta$  such that  $|\psi\rangle$  represents an unpolarized spin, i.e.

$$\langle \hat{I}_x \rangle = \langle \hat{I}_y \rangle = \langle \hat{I}_z \rangle = 0?$$

d) Consider a collection of spin-1/2 nuclei each described by the same ket

$$\left|s_{p}\right\rangle = \frac{1}{\sqrt{3}}\left(\left|s_{x}\right\rangle + \left|s_{y}\right\rangle\right)$$

where  $|s_x\rangle$  and  $|s_y\rangle$  are spin states oriented along the +x and +y directions respectively. This system is said to be in a "pure" state.

Show  $|s_p\rangle$  is normalized. Find  $\langle \hat{M}_x \rangle$ ,  $\langle \hat{M}_y \rangle$ , and  $\langle \hat{M}_z \rangle$ .

e) Silver atoms leaving the furnace in the Stern-Gerlach experiment can be polarized in any direction. It can be shown that the state of a spin polarized in an arbitrary direction  $\vec{u}$  is given by

$$|\psi\rangle = \cos\frac{\theta}{2}|+\rangle + \sin\frac{\theta}{2}e^{i\phi}|-\rangle.$$

For a statistical ensemble of spins where all directions  $\vec{u}(\theta, \phi)$  are equally likely show:

$$\overline{\langle \hat{M}_x \rangle} = \overline{\langle \hat{M}_y \rangle} = \overline{\langle \hat{M}_z \rangle} = 0.$$

(which represents an unpolarized spin system).

## 3. The Bloch Equation Revisited

Consider a spin-1/2 particle with associated magnetic moment operators  $\hat{\mu}_x$ ,  $\hat{\mu}_y$ , and  $\hat{\mu}_z$  (written more compactly as  $\hat{\vec{\mu}} = \gamma \hbar \vec{I}$ ).

a) While the operator  $\hat{\vec{\mu}}$  is independent of time, the expected value  $\langle \hat{\vec{\mu}} \rangle$  is, in general, time varying. Show:  $i \frac{d}{dt} \langle \hat{\vec{\mu}} \rangle(t) = \langle [\hat{\vec{\mu}}, \hat{H}] \rangle$ 

where  $\hat{H}$  is the Hamiltonial operator of the system.

b) When placed in a magnetic field  $\vec{B}(t)$ ,  $\hbar \hat{H}(t) = -\hat{\vec{\mu}} \cdot \vec{B}(t)$ .

Show:

$$\frac{d}{dt} \left\langle \hat{\vec{\mu}} \right\rangle(t) = \gamma \left\langle \hat{\vec{\mu}} \right\rangle(t) \times \vec{B}(t)$$

(hint: use the commulator relationships for  $\hat{I}_x$ ,  $\hat{I}_y$ , and  $\hat{I}_z$ ).

Hence, the expected value of  $\hat{\vec{\mu}}$  obeys the classical Bloch equation (ignoring relaxation)!

## 4. Basis sets in Liouville space.

Prove that if the kets  $|f_i\rangle$  form an orthonormal basis for an *n*-dimensional Hilbert space, then the transition operators  $\hat{T}_{ij} = |f_i\rangle\langle f_j|$  constitute an orthonormal basis in the corresponding Liouville space.