Problem Set \#3

$\operatorname{Rad} 226$

1. The Pauli matrices

Let $\left|\varphi_{x_{i}}\right\rangle,\left|\varphi_{y_{i}}\right\rangle$, and $\left|\varphi_{z_{i}}\right\rangle$ for $i=1,2$ be the eigenkets for \hat{I}_{x}, \hat{I}_{y}, and \hat{I}_{z}. The Pauli matrices, expressed in the $\left|\varphi_{z_{i}}\right\rangle$ basis, are given by:

$$
\underline{I}_{x}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \underline{I}_{y}=\frac{1}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \underline{I}_{z}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

a) Find the corresponding eigenvectors and eigenvalues for \underline{I}_{x}, I_{y}, and \underline{I}_{z}.
b) Show by direct matrix calculation that:

$$
\sum_{i=1}^{2}\left|\varphi_{x_{i}}\right\rangle\left\langle\varphi_{x_{i}}\right|=\sum_{i=1}^{2}\left|\varphi_{y_{i}}\right\rangle\left\langle\varphi_{y_{i}}\right|=\sum_{i=1}^{2}\left|\varphi_{z_{i}}\right\rangle\left\langle\varphi_{z_{i}}\right|=\hat{\mathrm{E}} \text { (identity operator) }
$$

c) Find $\left[\hat{I}_{z}, \hat{I}_{x}\right],\left[\hat{I}_{z}, \hat{I}_{y}\right]$, and $\left[\hat{I}_{x}, \hat{I}_{y}\right]$.
d) Express \hat{I}_{x}, \hat{I}_{y}, and \hat{I}_{z} in the $\left|\varphi_{y_{i}}\right\rangle$ basis.

Problem Set \#3

$\operatorname{Rad} 226$

2. Stern-Gerlach Experiment

The x, y, and z components of the intrinsic angular momemtum (spin) of a spin- $1 / 2$ particle are given by the cyclically commuting operators:

$$
\hat{I}_{x}, \hat{I}_{y}, \text { and } \hat{I}_{z}, \text { each with eigenvalues } \pm 1 / 2
$$

Consider an arbitrary unit vector \vec{u}.

a) What are the eigenvalues of \hat{I}_{u}, the operator corresponding to the spin in the \vec{u} direction?
b) What is the matrix form of \hat{I}_{u} expressed in the $\{|+\rangle,|-\rangle\}$ basis, where $|+\rangle$ and $|-\rangle$ are the eigenkets of \hat{I}_{z} corresponding to eigenvalues $+1 / 2$ and $-1 / 2$ respectively?

Problem Set \#3

Rad 226

c) The general form of a ket for single spin- $1 / 2$ particle is

$$
|\psi\rangle=\alpha|+\rangle+\beta|-\rangle \text { where }|\alpha|^{2}+|\beta|^{2}=1
$$

Can you find α and β such that $|\psi\rangle$ represents an unpolarized spin, i.e.

$$
\left\langle\hat{I}_{x}\right\rangle=\left\langle\hat{I}_{y}\right\rangle=\left\langle\hat{I}_{z}\right\rangle=0 ?
$$

d) Consider a collection of spin- $1 / 2$ nuclei each described by the same ket

$$
\left|s_{p}\right\rangle=\frac{1}{\sqrt{3}}\left(\left|s_{x}\right\rangle+\left|s_{y}\right\rangle\right)
$$

where $\left|s_{x}\right\rangle$ and $\left|s_{y}\right\rangle$ are spin states oriented along the $+x$ and $+y$ directions respectively. This system is said to be in a "pure" state.

Show $\left|s_{p}\right\rangle$ is normalized.
Find $\left\langle\hat{M}_{x}\right\rangle,\left\langle\hat{M}_{y}\right\rangle$, and $\left\langle\hat{M}_{z}\right\rangle$.

Problem Set \#3

Rad 226

e) Silver atoms leaving the furnace in the Stern-Gerlach experiment can be polarized in any direction. It can be shown that the state of a spin polarized in an arbitrary direction \vec{u} is given by

$$
|\psi\rangle=\cos \frac{\theta}{2}|+\rangle+\sin \frac{\theta}{2} e^{i \phi}|-\rangle
$$

For a statistical ensemble of spins where all directions $\vec{u}(\theta, \phi)$ are equally likely show:

$$
\overline{\left\langle\hat{M}_{x}\right\rangle}=\overline{\left\langle\hat{M}_{y}\right\rangle}=\overline{\left\langle\hat{M}_{z}\right\rangle}=0 .
$$

(which represents an unpolarized spin system).

Problem Set \#3

$\operatorname{Rad} 226$

3. The Bloch Equation Revisited

Consider a spin- $1 / 2$ particle with associated magnetic moment $\hat{A}_{\hat{\sim}}$ operators $\hat{\mu}_{x}, \hat{\mu}_{y}$, and $\hat{\mu}_{z}$ (written more compactly as $\hat{\vec{\mu}}=\gamma \hbar \hat{\vec{I}}$).
a) While the operator $\hat{\vec{\mu}}$ is independent of time, the expected value $\langle\hat{\vec{\mu}}\rangle$ is, in general, time varying. Show:

$$
i \frac{d}{d t}\langle\hat{\vec{\mu}}\rangle(t)=\langle[\hat{\vec{\mu}}, \hat{H}]\rangle
$$

where \hat{H} is the Hamiltonial operator of the system.
b) When placed in a magnetic field $\vec{B}(t), \quad \hbar \hat{H}(t)=-\hat{\vec{\mu}} \cdot \vec{B}(t)$.

Show:

$$
\frac{d}{d t}\langle\hat{\vec{\mu}}\rangle(t)=\gamma\langle\hat{\vec{\mu}}\rangle(t) \times \vec{B}(t)
$$

(hint: use the commulator relationships for \hat{I}_{x}, \hat{I}_{y}, and \hat{I}_{z}).

Hence, the expected value of $\hat{\vec{\mu}}$ obeys the classical Bloch equation (ignoring relaxation)!

Problem Set \#3

$\operatorname{Rad} 226$

4. Basis sets in Liouville space.

Prove that if the kets $\left|f_{i}\right\rangle$ form an orthonormal basis for an n-dimensional Hilbert space, then the transition operators $\hat{T}_{i j}=\left|f_{i}\right\rangle\left\langle f_{j}\right|$ constitute an orthonormal basis in the corresponding Liouville space.

