Problem Set \#5

Rad 226

1. Two-spin Operators

For a single spin- $1 / 2$ nucleus, matrices corresponding to the spin operators are identity plus the 2×2 Pauli matrices:

$$
\underline{I}_{x}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \underline{I}_{y}=\frac{1}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \underline{I}_{z}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \underline{E}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

If we now consider pairs of spins, e.g. I and S, the two-spin operators needed to describe the system correspond to 4×4 matrices are are calculated using the matrix direct product (also known as the Kronecker product, tensor product, or outer product):
a. Find the matrices corresponding to these two-spin operators:
$\underline{I}_{x}=\underline{I}_{x} \otimes \underline{E}=?$
two-spin operator one-spin operators

$$
2 \underline{I}_{z} \underline{S}_{z}=? \quad 2 \underline{I}_{y} \underline{S}_{z}=?
$$

b. Show $2 \hat{I}_{z} \hat{S}_{z}, \hat{I}_{x}$, and $2 \hat{I}_{y} \hat{S}_{z}$ cyclically commute.

Problem Set \#5

Rad 226

2. The Steady-State Density Matrix $\underline{\sigma}_{0}$

Given a time independent Hamiltonian, \hat{H} with non-degerate eigenvalues e_{i} and eigenkets $|i\rangle$, i.e.

$$
\hat{H}|i\rangle=e_{i}|i\rangle
$$

a) Show that in steady-state conditions, the diagonal elements of $\underline{\sigma}_{0}$ (expressed in terms of the eigenkets of \hat{H}) are constants.
b) Show that in steady-state conditions the off-diagonal elements of $\underline{\sigma}_{0}$ (expressed in terms of the eigenkets of \hat{H}) are zero.
c) For a two-spin system of spin $1 / 2$ nuclei I and S, the steadystate density operator, $\hat{\sigma}_{0}$, can be expressed as a linear combination of the following four product operators:

$$
\hat{E}, \hat{I}_{z}, \hat{S}_{z}, \text { and } 2 \hat{I}_{z} \hat{S}_{z}
$$

Why don't we need any of the other twelve 2 -spin product operators?

Problem Set \#5

Rad 226

d. Given: $\hat{H}_{0}=-\gamma_{I} B_{0} \hat{I}_{z}-\gamma_{S} B_{0} \hat{S}_{z}+2 \pi J(\hat{\vec{I}} \cdot \hat{\vec{S}})$,
the Boltzmann distribution yields the follow expression for $\hat{\sigma}_{0}$

$$
\hat{\sigma}_{0}=\frac{1}{Z} e^{\frac{-\hbar \hat{H}_{0}}{k T}} \quad \text { and } \quad Z=\operatorname{Tr}\left(e^{\frac{-\hbar \hat{H}_{0}}{k T}}\right)
$$

Ignoring the standard high temperature approximation, show

$$
\hat{\sigma}_{0}=\alpha_{0} \frac{1}{2} \hat{E}+\alpha_{1} \hat{I}_{z}+\alpha_{2} \hat{S}_{z}+\alpha_{3} 2 \hat{I}_{z} \hat{S}_{z}
$$

where

$$
\begin{aligned}
& \alpha_{0}=\frac{1}{2} \\
& \alpha_{1} \approx \frac{1}{2} \tanh \left(\frac{\hbar \gamma_{I} B_{0}}{2 k T}\right) \\
& \alpha_{2} \approx \frac{1}{2} \tanh \left(\frac{\hbar \gamma_{S} B_{0}}{2 k T}\right) \\
& \alpha_{3} \approx \frac{1}{2} \tanh \left(\frac{\hbar \gamma_{I} B_{0}}{2 k T}\right) \tanh \left(\frac{\hbar \gamma_{S} B_{0}}{2 k T}\right)
\end{aligned}
$$

Hint: you may safely assume $\gamma_{I} B_{0}, \gamma_{S} B_{0} \gg J$.

Problem Set \#5

Rad 226

3. J-coupling

Consider a homonuclear two-spin system with a J-coupling of $\mathrm{J}=16 \mathrm{~Hz}, \mathrm{~T}_{2}=100 \mathrm{~ms}$, and chemical shift difference between the two spins equal to $\Delta \Omega$. Using the full density matrix, simulate (e.g. using Matlab) the series of spectra generated by the 90 -acquire sequence shown below with $\Delta \Omega / \mathrm{J}$ ranging from 0 to 10 . Account for the effect of T_{2} by assuming the signal following the 90° excitation is weighted by a factor of $\mathrm{e}^{-\mathrm{t} / 2}$.

4. Dipolar-coupling

Consider a homonuclear two-spin system from an anisotropic material with $\mathrm{J}=0$ but a residual dipole coupling of $\mathrm{d}=16 \mathrm{~Hz}$. Assume a $T_{2}=100 \mathrm{~ms}$ and a chemical shift difference between the two spins equal to $\Delta \Omega$. Using the full density matrix, simulate (e.g. using Matlab) the series of spectra generated by the 90 -acquire sequence shown above with $\Delta \Omega / \mathrm{d}$ ranging from 0 to 10 . Use the secular approximation to the dipolar coupling spin Hamiltonian. Account for the effect of T_{2} by assuming the signal following the 90° excitation is weighted by a factor of $\mathrm{e}^{-t / \mathrm{T} 2}$.

Comments on the differences between the results found in Problems 2 and 3.

