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Lecture #2�
Review of Classical MR

•  Topics
–  Nuclear magnetic moments
–  Bloch Equations
–  Imaging Equation
–  Extensions

•  Handouts and Reading assignments
–  van de Ven: Chapters 1.1-1.9
–  de Graaf, Chapters 1, 4, 5, 10  (optional).
–  Bloch, “Nuclear Induction”, Phys Rev, 70:460-474, 1946 
–  Historical Notes

• Lauterbur, “Image Formation by Induced Local Interactions: Examples 
Employing Nuclear Magnetic Resonance”, Nature 242:190-191, 1973.
•  Mansfield and Grannell, “NMR ‘Diffraction’ in solids?”, J. Phys. C: Solid 
State Phys., 6:L422-L426, 1973.  
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Spin
•  Protons (as well as electrons and neutrons) possess intrinsic 

angular momentum called “spin”
•  Spin gives rise to a magnetic dipole moment
•  Useful (though not entirely accurate) to think of a proton as a 

spinning or rotating charge generating a current, which, in 
turn, produces a magnetic moment.  

�µ
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Nuclear Magnetic Moment

current • loop areaµ =

µ =
ev
2πr

⋅πr2

γgyromagnetic ratio
Langular momentum

•  From EM theory: in the far field a current loop looks just like 
a magnetic dipole with magnetic moment µ

•  Consider a point charge in circular motion:

velocity echarge

rradius
v

•  Thus
⇥µ = �⇥L
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Gyromagnetic Ratio

• For protons

γ
2π

= 42.58 MHz/T
nuclear magneton

γ e
γ

= 658Note, for electron spin:
Important for ESR, NMR 

contrast agents, etc

Planck’s constant/2π

K. Zavoisky

≅ 5.6where andµn =
e�

2mp
� =

gµn

�
g

• γ often expressed as

  = spin g factor

Bohr magneton
(m = electron mass)

where and� =
gµb

�
µb =

e�
2m g

≅ 2  (electrons)g
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Nuclear Spin in a Magnetic Field

Example: compass

•  In a uniform magnetic field, a magnetic dipole will 
experience a torque τ

⇥� = ⇥µ� ⇥B

Classically, energy can take on any value between ± µB

•  Potential energy given by:
angle between 

µ and BE = �⇥µ · ⇥B = �µB cos �
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Equation of Motion

•  Combining previous equations:

•  Newton’s Law:

d⇥L

dt
= ⇥�

d⇥µ

dt
= �⇥µ� ⇥B
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Physical Picture: �
Single Spin in a Uniform Magnetic Field

A compass needle has a magnetic 
moment and sits in the earth’s field.  

Why doesn’t it precess? Sir Joseph Larmor

The Larmor Equation

d⇥µ

dt
= �⇥µ� ⇥B = constantNote:|�µ|

θ

z

x
y

�B = B0ẑ

�µ

Precession 
frequency

Note: Some texts use 
ω0 = -γB0.

€ 

ω 0 ≡ γB0
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Net Magnetization

•  In tissue, we are always dealing with a large number of 
nuclei.

•   Hence,

  

€ 

d
! 

M 
dt

= γ
! 

M ×
! 
B 

•   Net magnetization:

  

€ 

! 
M = ! 

µ ∑
volume

Equation is valid for 
non-interacting spins
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Bloch Equations
•  In order to account for inter- and intra-molecular 

interactions, we can introduce exponential transverse (T2) 
and longitudinal (T1) relaxation time constants.

  

€ 

d
! 

M 
dt

= γ
! 

M × B0 ˆ z −
Mx ˆ x + My ˆ y 

T2

−
Mz − M0( )ˆ z 

T1

•   For   

€ 

! 
B = B0 ˆ z 



Rf Excitation
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B0

B1

MBeff

B1

M

B1

M

•  Apply a small magnetic 
field B1,    to B0, rotating 
at the Larmor frequency.

•  Sample magnetization 
reacts by nutating away 
from B0. 

B0 B0

Laboratory frame of 
reference

x

y 

z 

M

B1

ω = γ B0

Rotating frame of 
reference

ω = γ B1 

y’ 

z

M

B1

What happens if B1 
is off-resonance?



Rf Reception

11

y

z

x

Receiver coil

Mxy

time

S(t)
Mx

My

voltage∝
dMxy

dt

Free Induction Decay (FID)

NMR Spectrum

FT

Imag 

Real 

ω0

ω



Spin Echoes
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•  Bloch: Mxy decays with a time constant T2

•  Spin echo example
90º 

τ=τ

τ=2τ

Mxy

180º pulse refocuses 
deterministic effects:

e.g. static inhomogeneities, 
chemical shift

RF

90˚

signal

T2
* decay

τ

180˚

T2 decay

2τ

τ

•  Echoes = “phase coherences”
•  Mxy decay is a dephasing process



Longitudinal Magnetization
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•  Mz recovers exponentially to M0 with time constant T1

•  Inversion recovery example

Rf

Gz

180o MR signal
90o

slice selection

τ

•  GRE example

TR

Short T1

Longer T1

Mz
(steady state)
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Extended phase graphs

Rf

Signal



Spatial Localization
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•  Linear Gradients

t t t t

B = B0 + Grr
for r = x, y, or z Larmor Equation

ω = γ B
vials of
water

•  Selective Excitation

“Hard”      vs        “Soft”

R
F 

A
m

pl
itu

de
 



Spatial Localization
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•  Readout
ω = γ (B0 + Gx x)

x

B
t

•  Phase encode

Note: all gradient fields
point in z direction!

0 T t
Gy

t

ω = γ (B0 + Gy y)

x

B
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MRI: The Signal Equation
•  Let   

€ 

! 
B = Bˆ z 

  

€ 

d
! 

M 
dt

= γ
! 

M × Bˆ z (ignores relaxation)

€ 

Mxy (x,y,z)e
− iφ (x,y,z,t )

z

θ

x
y

  
r 
M 

  
r 
M xy = Mx + iMy

•    Following RF excitation (a topic we’ll revisit) and using:

each small tissue volume looks like a tiny oscillating 
magnetic dipole.
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MRI: The Signal Equation

•  Instantaneous frequency: ω = dφ/dt

€ 

s(t) = e− iγB0t Mxy (x,y,z)e
− iγ Gx ( $ t )x +Gy( $ t )y +Gz( $ t )z( )d $ t 

0

t
∫ dxdydz

z
∫

y
∫

x
∫

•  In the presence of linear gradients: 

€ 

B(x,y,z,t) = B0 +Gx (t)x +Gy (t)y +Gz(t)z

•  Assuming a uniformly sensitive RF coil, the received 
signal is given by: 

€ 

s(t) = Mxy (x,y,z)e
−iφ (x,y,z,t )dxdydz

z
∫

y
∫

x
∫

€ 

φ(x,y,z,t) = ω(x,y,z, $ t )d $ t 
0

t
∫

e

demodulate at γB0

P. Lauterbur P. Mansfield

€ 

= γ B(x,y,z, # t )d # t 
0

t
∫
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k-space 

€ 

se (t) =     γ
2π

Gx ( $ t )d $ t , γ
2π

Gy ( $ t )d $ t ,
0

t
∫ γ

2π
Gz( $ t )d $ t 

0

t
∫0

t
∫

& 

' 
( 

) 

* 
+ M 

kx ky kz

Gradients trace a trajectory 
through k-space

kx

ky

kz

€ 

se (t) = Mxy (x,y,z)e
−iγ Gx ( $ t )x +Gy( $ t )y +Gz( $ t )z( )d $ t 

0

t
∫ dxdydz

z
∫

y
∫

x
∫

received signal

€ 

(kx,ky,kz ) = Mxy (x,y,z)e
−i2π kxx+kyy+kz z( )dxdydz

z
∫

y
∫

x
∫M 

FT of Mxy

Comparing...

k-space interpretation of MRI.

Gz

Gx

Gy

t
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Pulse sequence diagrams
Example – Spin Echo Imaging

kx

ky

frequency

ph
as

e

2D k-space
Rf

Gz

Gx

Gy

DAQ

TE
90o 180o

MR signal

readout

phase encode

slice selection

TR



21

Summary
•  The Bloch equation

  

€ 

d
! 

M 
dt

= γ
! 

M × B0 ˆ z −
Mx ˆ x + My ˆ y 

T2

−
Mz − M0( )ˆ z 

T1

•  Signal equation

  

€ 

se (t) = Mxy (x,y,z)e
−iγ

! 
G ⋅
! 
r ( )d % t 

0

t
∫ dxdydz

z
∫

y
∫

x
∫

•  What’s missing?

•  Rf excitation:
Longitudinal magnetization Transverse magnetization
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T1 and T2
Can be included as k-space weightings:

 but ...

€ 

se (t) = Mxy (x,y,z,T1 j ,T2 j )e
−t /T2 j e

−iγ G⋅rd % t 
0

t
∫ dr

r
∫

j
∑

   What are the underlying mechanisms?
   Why do different tissues have different T1s and T2s?
   How do contrast agents work?
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Chemical Shift

Note, same equation also holds for B0 inhomogeneity (due to 
magnetic susceptibility, etc)

•  Looks like a new k-space axis

€ 

se (t) = Mxy (x,y,z,ω)e
− iγ G⋅rd & t 

0

t
∫ e−iωtdrdω

r
∫

ω

∫

€ 

se (t) =     γ
2π

Gx ( $ t )d $ t , γ
2π

Gy ( $ t )d $ t ,
0

t
∫ γ

2π
Gz( $ t )d $ t , t

2π0

t
∫0

t
∫

& 

' 
( 

) 

* 
+ M 

kx ky kz kω

•  Interaction between electron cloud and B0

€ 

ω = γBeff = γB0(1−σ )
shielding constant

Depends on: electron density
molecular geometry, etc
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But what about …

•  Coupling between spins
•  Chemical exchange 
•  Nuclei with spin ≠ 1/2
•  etc.
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Next Lecture: Introduction to 
Quantum Mechanics



Biography: Sir Joseph Larmor
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Joseph Larmor (1857-1942) was educated at the Royal Belfast Academical 
Institution and the Queens College Belfast. He then took another degree at 
St.  Johns  College  Cambridge,  as  was  common  for  promising  young 
students  from  provincial  universities.  He  won  top  prize  at  the  final 
mathematical examination in Cambridge. This was the second year in a 
row  that  a  student  from  Belfast  had  been  crowned  "senior  wrangler". 
Larmor  then  returned  to  Ireland  as  Professor  of  Natural  Philosophy  at 
Queens  College  Galway.  He  held  this  position  for  five  years  but  then 
returned to Cambridge to take up a new Mathematics position and he was 
later appointed to the prestigious Lucasian Chair of Mathematics. Larmor 
is well known for his contributions to the theory of electromagnetism, in 
particular  the  electron theory of  matter.  Larmor published his  collected 
papers on electromagnetism in 1900 in a famous book entitled "Aether and 
Matter". Larmor's work, though rooted in the classical physics in which he 
had been trained, eventually led to the breakdown of classical physics and 
the rise of relativity theory and quantum mechanics.

He  was  described  as  'one  who  rekindled  the  dying  embers  of  the  old 
physics to prepare the advent of the new'. Larmor saw himself as part of an 
Irish scientific tradition and was involved in editing the collected works of 
a  number  of  Irish  scientists.  Larmor  spent  most  of  his  career  in  Great 
Britain but returned to Ireland most summers and moved back permanently 
after  his  retirement  from the  Lucasian  chair.  He was  committed  to  the 
Union of Ireland with Great Britain and this led him to serve in Parliament 
as a member for Cambridge University from 1911 to 1922.



Biography: Sir Peter Mansfield
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(born  October  9,  1933,  London,  England)  English  physicist  who,  with 
American chemist Paul Lauterbur, won the 2003 Nobel Prize for Physiology 
or Medicine for the development of magnetic resonance imaging (MRI), a 
computerized scanning technology that  produces  images  of  internal  body 
structures,  especially  those  comprising  soft  tissues.  Mansfield  received  a 
Ph.D.  in  physics  from the University of  London in 1962.  Following two 
years as a research associate in the United States, he joined the faculty of the 
University of Nottingham, where he became professor in 1979. Mansfield 
was  knighted  in  1993.  Mansfield's  prize-winning  work  expanded  upon 
nuclear  magnetic  resonance  (NMR),  which  is  the  selective  absorption  of 
very  high-frequency radio  waves  by certain  atomic  nuclei  subjected  to  a 
strong stationary magnetic field. A key tool in chemical analysis, it uses the 
absorption  measurements  to  provide  information  about  the  molecular 
structure of various solids and liquids. In the early 1970s Lauterbur laid the 
foundations for MRI after realizing that if the magnetic field was deliberately 
made nonuniform, information contained in the signal distortions could be 
used  to  create  two-dimensional  images  of  a  sample's  internal  structure. 
Mansfield transformed Lauterbur's discoveries into a practical technology in 
medicine by developing a way of using the nonuniformities, or gradients, 
introduced  in  the  magnetic  field  to  identify  differences  in  the  resonance 
signals  more  precisely.  He  also  created  new  mathematical  methods  for 
quickly  analyzing  information  in  the  signal  and  showed  how  to  attain 
extremely  rapid  imaging.  Because  MRI  does  not  have  the  harmful  side 
effects  of  X-ray  or  computed  tomography  (CT)  examinations  and  is 
noninvasive, the technology proved an invaluable tool in medicine.



Biography: Paul Lauterbur
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American chemist (born May 6, 1929 , Sidney, Ohio—died March 27, 
2007 , Urbana, Ill.) won the Nobel Prize for Physiology or Medicine 
in 2003, together with British physicist Sir Peter Mansfield, for the 
development of magnetic resonance imaging (MRI), a computerized 
scanning technology that produces images of internal body structures, 
especially those comprising soft tissues. Lauterbur received a Ph.D. 
(1962) in chemistry from the University of Pittsburgh. He served as a 
professor at the State University of New York at Stony Brook from 
1969  to  1985,  when  he  accepted  the  position  of  professor  at  the 
University  of  Illinois  at  Urbana-Champaign  and  director  of  its 
Biomedical  Magnetic  Resonance  Laboratory.  In  the  early  1970s 
Lauterbur began using nuclear magnetic resonance (NMR), which is 
the selective absorption of very-high-frequency radio waves by certain 
atomic nuclei subjected to a strong stationary magnetic field. NMR is 
a key tool in chemical analysis, using the absorption measurements to 
provide information about  the molecular  structure of  various solids 
and  liquids.  Lauterbur  realized  that  if  the  magnetic  field  was 
deliberately  made  nonuniform,  information  contained  in  the  signal 
distortions  could  be  used  to  create  two-dimensional  images  of  a 
sample's internal structure. This discovery laid the groundwork for the 
development of MRI as Mansfield transformed Lauterbur's work into 
a  practical  medical  tool.  Noninvasive and lacking the harmful  side 
effects of X-ray and computed tomography (CT) examinations, MRI 
became widely used in medicine.


