Lecture #6 y
NMR 1n Hilbert Space

* Topics
— Review of spin operators
— Single spin in a magnetic field: longitudinal and transverse magnetization
— Ensemble of spins in a magnetic field
— RF excitation

 Handouts and Reading assignments

— van de Ven, section 1.10, Appendices B.1 and C.

— F. Bloch, W. Hansen, and M. Packard, Nuclear Induction. Phys. Rev., 69:
127, 1946

— E. M. Purcell, H. C. Torrey and and R. V. Pound. Resonance absorption
by nuclear magnetic moments in a solid. Phys. Rev., 69: 37, 1946.

— Miller, Chapter 12: pp 297-310 (optional).



Isolated Spin 1n a Magnetic Field

* Goal: Find the appropriate wavefunction |1/J(t )> that describes
a system consisting of a nucleus (spin = 1/2) in a uniform
magnetic field.

* Procedure:
— Given: Schrédinger’s Equation: %‘w(t» - _iH (D[yp(1))
— Find H(?).
— Solve for |y).

— Compute quantities of interest: e.g. components of
magnetic moment <Mx> <My>, and </‘z>

Later we’ll show these correspond to the
familiar quantities M, My, and M,.




Review: Spin, Angular Momentum,
and Magnetic Moment

* Spin, angular momentum, and magnetic moment operators are
linearly related.

ﬂp = Vi’p = Yhip’ P= {x,y,z}
/N N\

magnetic angular spin . A
moment momentum eigenkets of /,

T

 Spin 1/2 particle: iz\(x> = +%\(x> and ?Z|/3> = —%|/3>

/3’>} basis:

1{0 1 1{0 —i 1{1 O
lx=_ ly=_ . lZ=_
211 0 2170 210 -1

* Matrix representation in {\ a),



Spin Operators

* General case (based on properties of angular momentum):

1= [1a]=d [14]-d,

from which it follows that I . I

and I, commute cyclically:

x° Ty
2\ A i,i , nodd
(Ip) Iq=<[p "] pP-q=x.y.3, p#q
\ LIq , neven

superoperation notation

e Let’s also define a new operator & corresponding to the total
angular momentum (magnitude).

A, AA AA L Aa
I"=1I +11 +1I1
which 1s easily shown to satisty

(12,1 ][] [0 ]-o0



Spin Operators

e From the commutator relations, one can derive the corresponding
eigenkets and eignevalues of [* and I (note, since operators
commute, they have a common set of eigenkets).

Spectrum of 12 = J (I +1) for [Iinteger multiple of 1/2
Spectrum of }Z =m for m=-1-I+1,....[-1,1
=) [1s known as the spin quantum number.

=) m 1s known as the magnetic quantum number.

* Hence, spin/angular momentum/magnetic moment of elementary
particles (e.g. electrons, protons, etc) are quantized in magnitude
and along a projection onto any one axis.

e Formally,

where for I = %: ‘a>

Loty and )= =]
N —

shorthand notation




Space quantization

e In a magnetic field B = B, 7 , magnetic moment is quantized in z
(remember Stern-Gerlach experiment).

e Pictorial drawings for spin 1/2 nuclei (e.g. 'H, 3P, 13C)
“spin up, parallel” “spin down, anti-parallel”
B B=B?

A

Picture 1: “cones” (used by de Graaf)

angle between spin
and magnetic field

/9 = cosl[\/ﬁ) I:>

D R

discrete! u
6=1253", I=3, m=—;
1 1/3 h
. . . °9 . MZ = —_ h’ M = __
Picture 2: “polarization” (used by Levitt) o1 =5
. . What’s missing from
Single spin Q ¢ = |a) . O
: O
) $ o

Arrow depicts the direction for I
which magnetic moment is well & = ‘ [3’>
defined,1.e. = ;yh with
probability 1.0 Note:‘ [5> ” _‘ O£>

O

If you were to measure I, I,
and I, for an individual spin,
what would you get?



The Hamiltonian A
Total energy of the system is given by the expected value of H(z).

= h<ﬁ > = h<w|ﬁ] |1/J> (remember, we defined H as energy/ )

Classically, the potential energy of a dipole in a magnetic field 1s:

F=—li-B= —u_ B, (assumes field is in z direction)

Substituting the operator corresponding to s, yields the quantum
mechanical Hamiltonian operator.

A

H = —)/B(jZ = —a)OiZ

Thus, the spectrum of H is discrete with eigenvalues 1%0) , and
eigenkets |¢r) and |f3).

E <€ = hw, Zeeman splitting

>

>

b,



Solving Schrodinger’s Equation
e H = —)/Boiz, hence H (¢) is time independent.
m=) Schrodinger’s Equation: %|w(r)> - —iH (1))
e Solution:

w(r))=¢

—ltH

’ w(O)f () (-ud)
‘l])(t)>= E+(—itH)+ oty +'°"¢(O)>

Above equation implies expanding |w> in terms of eigenkets of H
would be helpful. Most general solution then given by:

= () = e, e,

Cq» Cp. $o» and gy real constants where ¢, +cj; =1.



Longitudinal Magnetization

e Wavefunction is ‘w(r)>=caei(¢“”30”2)\a>+cﬁ o5-m. t/2|/3’>

e Longitudinal magnetization

(i) = ry(w|L|y)

h
-5 (i)
_ ﬂ( p_p ) where {Pa} probability finding the system in state {@}
g \a p Py B)

» How do we find P, and Py?



Boltzman Distribution

e Probability P, of finding a system in a specific state ‘n> 1S
dependent on the energy E, as given by the Boltzmann distribution

Boltzmann partition function
/ constant (normalization factor)
/
1 -E /kT -E. /kT
P, =5e ™"  where Z=Ee T
tei?sggttl?re ' >~ sum over all possible energies

* NMR Energies (E, = Fhw,/2) much smaller than kT. Thus

e_En [ kT ~ | — En [ kT  <— high temperature approximation

o\ h hy (ho h*y’B

Henee (i) ==~ (P, ~7,) = > (ZkTO) ) 4ykTO
e

\

factor of two
from Z term (Coml);l‘if geLlei)ture 2,

10



Transverse Magnetization

* Some useful equations:
I]a)=|p) Ila) =3[ B)

1g)=3la) — LIB=-;
* Letting Ag=¢s—4,, yields (after some algebra)

a)

<‘lAlx> = h}/<?./} ix l/}> = %(Cacﬁe—i(wOHA(P) + Cﬁcae+i(a)0t+A¢))
Similarly = COS(th ¥ A¢) 7 Larmor precession!
;

<[Ly> = hy<1p |}y|1/)> = —hyc,c, sin(a)ot + A¢)

(i)

2
X

Aren’t ¢, and ¢ arbitrary?

free precession



Ensemble of Identical Spins

* Consider an ensemble of N independent spins with ¢, and ¢; (and
by extension A@) randomly distributed.

average over ensemble N

(i1,) = (@2, ) =0
e Physical pictures for a collection of spins in states |a) and |B):

DR
4kT

:> 2,,2 2,,2
1 M_NhyB0 n°y'B,

TV 4kT =/p AKT

spins/volume
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RF Excitation

In order to get transverse magnetization, we need to establish some

phase relationship (coherence) among spins.

mm) RF excitation

In the presence of a rotating magnetic field, the Hamiltonian is:

H(1) = —wO}Z = a)l(}x COS Wt — iy sina)t) where w, = yB,.

A

H(t) is periodic = change to rotating frame of reference.

—za)tlZ

y) =e

Using Schrodinger’s equation and the chain rule for differentiation:

0 A
E‘w’> = _lHeﬁ

Time independent

w> and I’_‘I, _ e—iwtfz ﬁeiwtfz _ e—iwtle"{ (Change of

basis)

1,1)’> where ﬁeﬁ = —(w, - a))iZ - a)lix

Effective field in the rotating frame
just like the classical case
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RF Excitation

l/J'(’L’)> at the end

of a constant pulse of length 71is:
w(r) = (0)) = e [cos(so)la)+isin(so)|B)
+c _"Pﬁ[cos( )/3 +lSlIl( )\a>]

= (ie)="(c; )

e Case 1: w,;7=180°

M, inverted
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RF Excitation

e General case:

/(1)) =e

—irﬁeﬁ

l/J’(O)> ¢ e I:Cos(%a)lf)‘ a)+ isin(% 0)1’5)‘ /3>]

tege” [cos(%a)lr)\ B+ isin(%wlr)\ a>]

e Case 2: 1B, 7=90° (about x axis)
1/)’(1:90)> RE [(cae_i"’“ + icﬁe_i¢ﬁ)\a> + (cﬁe_i¢ﬁ +ic e ' )‘ /3>]

2

Single Spin Ensemble average

<Ax> =hyc,c, COSA¢ <ﬁx> -0
(f,)==strlci-c;)  mmy (i) =-3nv(ci-cj)
<Az> = hycac/s sinA¢ <AZ> =( as expected
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RF Excitation

e In summary 90 RF pulse causes:

/3>} states = M, = 0.
/3>} states generating M, .

1) equalization of probabilities of {\ a),

2) a phase coherence between {\ a),

Cone Diagram Energy Diagram

1
Transitions occur
i via emission of
E i absorption of a
photon of energy

1 ! hao, .

“Purcell”

There 1s something subtle, yet
fundamentally wrong, about the abgve
diagrams. What is it?

j}
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Linear Superposition of States

Consider the following two examples:
 System 1: N, and N spins with‘z/) > a> and ‘¢ﬁ> ‘/3>

respectively such that N=N, + N3, N /N =c,, and N /N c :

== Implies that a given spin has probabilities ¢’ and Cy > of
being in state oc> and ‘ /J’> respectively.

“Polarization” |
BO ‘,T (] ‘\

) oY R \/
YXRZ

¥ “r \/ G

However, System 1 virtually never occurs in practice!
It 1s wrong to claim that all spins are either “spin up” of “spin down.




Linear Superposition of States

e System 2:

N spins each with wavefunction |y) = ¢_e ™"

a> + cﬂe_i¢’3‘/3’>.

== Does NOT imply that a given spin has probabilities ¢ and c[f,
of being in state|a) and |3) respectively.

“Cones”’: picture doesn’t work

‘“Polarization’: works better, but still not very realistic

\

Here, spins are almost fully
polarized in z

Yoy

Xy
t‘ﬁs‘?"x
’x}‘?‘;‘
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Linear Superposition of States

e System 2 spins are described by a linear superposition of states as
opposed to the statistical mixture of states in System 1.

Example: If we insist that each spin 1s always either “spin up”
or “spin down” (System 1), then for all spins: {c,, cg}={1,0} or
{cq, cpp=10, 1}. Hence this system could never generate any
transverse magnetization.

<f4x> hyc,c cos(a)ot+A¢) _ _ |
> product always =0 == < Mx> = < Mx> =0 < H};l)(}ll?s) lec(l)iitrgrfljensy
<ﬁty> = -hyc,c sm(a)ot + A¢)

For System 2, all spins have perfect phase coherence.
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Actual MR Experiments

* In areal NMR experiment, we actually deal with a statistical
mixture of spins each of which 1s described by a linear
superposition of states (topic for next lecture).

* System 3: N spins with wavefunctions |y, ) = c e

@)y ™ |5)

where i=1,.N,c, ,c,;,¢, , and ¢, real constants for which ¢> + c/f,_ =
B Net polarization ( l l
| & \ P - —— =) —o—
Polarization Energy ‘ 7
diagram }‘ § A7 diagram E 1 z
- 3 )
| }“’ 2‘ }*’ G O = population deficit
| ; ® = population excess
i We’ll make use of this

: - : alternative energy diagram
At typical magnetic fields and temperatures, spins are £y C1ag

polarized almost 1sotropically in space, with the term when studying relaxation.
“almost” referring to a slight preference for the +z component
(~10ppm for 'H, B,= 3 Tesla, T = 37°C)

1.
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Summary

* Quantum mechanical derivations show that @, <ﬂy>, and @
faithfully reproduce the classically-derived behavior of M,, M,,
and M, (e.g. Larmor precession, RF excitation, etc).

e Rigorous but with limited intuition.

* Subsequent lectures will show that Liouville Space description of
NMR and, in particular, the Product Operator Formalism i1s....

— Mathematically easier.

— Retains intuition associated with classical vector formulation.
— Readily extended to the case of interacting spins (coupling).
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Next Lecture: NMR 1n Liouville
Space
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