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Lecture #6
NMR in Hilbert Space

• Topics
– Review of spin operators
– Single spin in a magnetic field: longitudinal and transverse magnetization
– Ensemble of spins in a magnetic field
– RF excitation

• Handouts and Reading assignments
– van de Ven, section 1.10, Appendices B.1 and C.
– F. Bloch, W. Hansen, and M. Packard, Nuclear Induction. Phys. Rev., 69: 

127, 1946
– E. M. Purcell, H. C. Torrey and and R. V. Pound. Resonance absorption 

by nuclear magnetic moments in a solid. Phys. Rev., 69: 37, 1946.
– Miller, Chapter 12: pp 297-310 (optional).
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Isolated Spin in a Magnetic Field

• Procedure:

€ 

ψ .– Solve for 

– Find ˆ H (t).

• Goal: Find the appropriate wavefunction           that describes 
a system consisting of a nucleus (spin = 1/2) in a uniform 
magnetic field.

€ 

ψ(t)

– Compute quantities of interest: e.g. components of 
magnetic moment 

€ 

ˆ µ x ,  ˆ µ y ,  and ˆ µ z .
€ 

∂
∂t
ψ(t) = −i ˆ H (t)ψ(t)Schrödinger’s Equation:– Given:

Later we’ll show these correspond to the 
familiar quantities Mx, My, and Mz.
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Review: Spin, Angular Momentum, 
and Magnetic Moment

• Spin, angular momentum, and magnetic moment operators are 
linearly related.

  

€ 

ˆ µ p = γ ˆ L p = γ!ˆ I p ,     p = x,y,z{ }
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ˆ I z α = +
1
2
α   and  ˆ I z β = −

1
2
β• Spin 1/2 particle:

• Matrix representation in               basis:

€ 

α , β{ }

eigenkets of 

€ 

ˆ I z
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Spin Operators

from which it follows that                      commute cyclically:ˆ I x ,  ˆ I y ,  and ˆ I z

• General case (based on properties of angular momentum):

€ 

ˆ I x, ˆ I y[ ] = iˆ I z

€ 

ˆ I y, ˆ I z[ ] = iˆ I x

€ 

ˆ I z, ˆ I x[ ] = iˆ I y

€ 

ˆ I 2 = ˆ I x ˆ I x + ˆ I y ˆ I y + ˆ I z ˆ I z

• Let’s also define a new operator     corresponding to the total 
angular momentum (magnitude).

ˆ I 2

which is easily shown to satisfy 
ˆ I 2, ˆ I x[ ] = ˆ I 2 , ˆ I y[ ] = ˆ I 2, ˆ I z[ ] = 0

€ 

ˆ ˆ I p
" 
# 
$ % 

& 
' 

n
ˆ I q =

ˆ I p , ˆ I q[ ],  n odd
ˆ I q       ,  n even

( 
) 
* 

+ * 
   p,q = x,y,z; p ≠ q

superoperation notation
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Spin Operators
• From the commutator relations, one can derive the corresponding 

eigenkets and eignevalues of                (note, since operators 
commute, they have a common set of eigenkets).  

€ 

ˆ I 2 and ˆ I z

Spectrum of ˆ I 2 = I(I +1)   for   I integer multiple of 1/2

Spectrum of   

€ 

ˆ I z = m   for   m = −I,−I +1,…,I −1,I

• Hence, spin/angular momentum/magnetic moment of elementary 
particles (e.g. electrons, protons, etc) are quantized in magnitude 
and along a projection onto any one axis.

I is known as the spin quantum number.
m is known as the magnetic quantum number.

• Formally, eigenkets of    are written as:           Îz I,m

shorthand notation

α = 1
2 ,+ 1

2 ≡ +  and β = 1
2 ,− 1

2 ≡ − .where for I = ½: 
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Space quantization
  

€ 

! 
B = B0 ˆ z • In a magnetic field              , magnetic moment is quantized in z 

(remember Stern-Gerlach experiment).
• Pictorial drawings for spin 1/2 nuclei (e.g. 1H, 31P, 13C)

  

€ 

! 
B = B0 ˆ z 

  
r 
µ 

θ

µz

“spin down, anti-parallel”

  

€ 

θ =125.3!,  I = 1
2 ,  m = − 1

2

  

€ 

µz = − 1
2 γ!,  

" 
µ = 3

2 γ!

  

€ 

! 
B = B0 ˆ z 

  
r 
µ 

µz

θ

“spin up, parallel”

  

€ 

θ = 54.7!,  I = 1
2 ,  m = 1

2

  

€ 

µz = 1
2 γ!,  

" 
µ = 3

2 γ!
discrete!

€ 

θ = cos−1 m
I I +1( )

$ 

% 
& 
& 

' 

( 
) 
) 

angle between spin 
and magnetic field

Picture 1: “cones” (used by de Graaf)

Picture 2: “polarization” (used by Levitt)

€ 

= α

€ 

= β

What’s missing from 
these drawings?

If you were to measure Ix, Iy, 
and Iz for an individual spin, 

what would you get?Note:

€ 

β ≠ − α

Single spin

Arrow depicts the direction for 
which magnetic moment is well 

defined, i.e.             with 
probability 1.0  

€ 

= 1
2 γ!



7

The Hamiltonian

    

€ 

E = ! ˆ H = ! ψ ˆ H ψ   

€ 

(remember, we defined ˆ H  as energy/!)

€ 

ˆ H = −γBo
ˆ I z = −ω 0

ˆ I z

Zeeman splitting

• Total energy of the system is given by the expected value of ˆ H t( ).

• Classically, the potential energy of a dipole in a magnetic field is:

    

€ 

E = −
! 
µ ⋅
! 
B = −µzB0 (assumes field is in z direction)

• Substituting the operator corresponding to µz, yields the quantum 
mechanical Hamiltonian operator.

• Thus, the spectrum of     is discrete with eigenvalues           and 
eigenkets             

ˆ H   

€ 

∓
1
2ω 0

€ 

α  and β .

    

€ 

ΔE = !ω0  

€ 

E

B0
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Solving Schrödinger’s Equation

€ 

ψ t( ) = e−it ˆ H ψ 0( )

  

€ 

ψ t( ) = ˆ E + −it ˆ H ( ) +
−it ˆ H ( )2

2!
+
−it ˆ H ( )3

3!
+!

$ 
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& 
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( 

) 
) 
) 
ψ 0( )

• , hence

€ 

ˆ H = −γB0
ˆ I z ˆ H t( ) is time independent.

Schrödinger’s Equation:

€ 

∂
∂t
ψ(t) = −i ˆ H ψ(t)

• Solution: 

Above equation implies expanding       in terms of eigenkets of      
would be helpful.  Most general solution then given by: 

€ 

ψ

€ 

ˆ H 

€ 

ψ t( ) = cαe
i φα +γBot / 2( ) α + cβe

i φ β −γBot / 2( ) β

€ 

cα
2 + cβ

2 =1.ca, cb, fa, and fb real constants where
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Longitudinal Magnetization

• Longitudinal magnetization 

  

€ 

ˆ µ z = !γ ψ ˆ I z ψ

  

€ 

=
!γ
2

cα
2 − cβ

2( )

  

€ 

=
!γ
2

Pα − Pβ( ) where          probability finding the system in state 

€ 

α

β

$ 
% 
& 

' 
( 
) 
.

€ 

Pα
Pβ

$ 
% 
& 

' 
( 
) 

How do we find Pa and Pb? 

• Wavefunction is  

€ 

ψ t( ) = cαe
i φα +γBot / 2( ) α + cβe

i φ β −γBot / 2( ) β .
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Boltzman Distribution
• Probability Pn of finding a system in a specific state       is 

dependent on the energy En as given by the Boltzmann distribution 

€ 

n

Pn =
1
Z e

−En / kT Z = e−E i / kT

i
∑ .where

Boltzmann
constant

absolute
temperature

partition function
(normalization factor)

sum over all possible energies

e−En / kT ≈ 1− En / kT

• NMR Energies (                      ) much smaller than kT.  Thus   

€ 

En = ∓"ω 0 /2

Hence
  

€ 

ˆ µ z =
!γ
2

Pα − Pβ( )
  

€ 

=
!2γ 2B0
4kT

high temperature approximation

(compare Lecture 2, 
slide 14)

  

€ 

=
!γ
2
!ω 0

2kT
$ 

% 
& 

' 

( 
) 

factor of two 
from Z term
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Transverse Magnetization

• Letting Df=fb-fa, yields (after some algebra)  

  

€ 

ˆ µ x = !γ ψ ˆ I x ψ

  

€ 

ˆ µ y = !γ ψ ˆ I y ψ

Similarly...

Aren’t fa and fb arbitrary?

• Some useful equations:  

€ 

ˆ I y α = i
2 β

€ 

ˆ I x α = 1
2 β

€ 

ˆ I x β = 1
2 α

€ 

ˆ I y β = − i
2 α

  

€ 

=
!γ
2

cαcβe
− i ω 0t+Δφ( ) + cβcαe

+i ω 0t+Δφ( )( )
  

€ 

= !γcαcβ cos ω 0t + Δφ( )

  

€ 

= −!γcαcβ sin ω 0t + Δφ( )

Larmor precession!

free precession

w0tDf
x

y

  

€ 

! 
µ xy
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Ensemble of Identical Spins
• Consider an ensemble of N independent spins with fa and fb (and 

by extension Df) randomly distributed.  

  

€ 

ˆ µ z = N !
2γ 2B0

4kT

spins/volume

average over ensemble

€ 

ˆ µ x = ˆ µ y = 0
• Physical pictures for a collection of spins in states  

€ 

α   and  β :

“Polarization”

B0   

€ 

Mz =
N
V
!2γ 2B0
4kT

= ρ
!2γ 2B0
4kT

“Cones”
B0

z
+

−
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RF Excitation

• In the presence of a rotating magnetic field, the Hamiltonian is:

€ 

ˆ H (t) = −ω 0
ˆ I z −ω1

ˆ I x cosωt − ˆ I y sinωt( )

€ 

ω1 = γB1.where

€ 

" ψ = e−iωt ˆ I z ψ

€ 

" ˆ H = e−iωt ˆ I z ˆ H eiωt ˆ I z = e−iωt ˆ ˆ I z ˆ H and

• Using Schrödinger’s equation and the chain rule for differentiation:

€ 

∂
∂t # ψ = −i ˆ H eff # ψ    where  ˆ H eff = −(ω 0 −ω )ˆ I z −ω1

ˆ I x
Effective field in the rotating frame 

just like the classical caseTime independent

• is periodic change to rotating frame of reference.ˆ H t( )

(Change of 
basis)

• In order to get transverse magnetization, we need to establish some 
phase relationship (coherence) among spins.  

RF excitation
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RF Excitation
• Assuming RF pulse is on resonance (i.e. w=w0),              at the end 

of a constant pulse of length t is:

€ 

" ψ τ( )

€ 

" ψ τ( ) = e−iτ ˆ H eff " ψ 0( )

€ 

= cαe
−iφα cos 1

2ω1τ( ) α + isin 1
2ω1τ( ) β[ ]

€ 

+ cβe
−iφ β cos 1

2ω1τ( ) β + isin 1
2ω1τ( ) α[ ]

• Case 1: ω1t =180o

  

€ 

ˆ µ z = !γ
2 cβ

2 − cα
2( )

180o€ 

" ψ τ180( ) = i cαe
−iφα β + cβe

− iφ β α( )

B0

z

€ 

α

€ 

β

“Polarization”

“Cones”

Mz inverted

z

€ 

α

€ 

β
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RF Excitation
• General case:

€ 

" ψ τ( ) = e−iτ ˆ H eff " ψ 0( )

€ 

= cαe
−iφα cos 1

2ω1τ( ) α + isin 1
2ω1τ( ) β[ ]

€ 

+ cβe
−iφ β cos 1

2ω1τ( ) β + isin 1
2ω1τ( ) α[ ]

• Case 2: g1B1t = 90o (about x axis)

€ 

" ψ τ 90( ) = 2
2 cαe

− iφα + icβe
−iφ β( ) α + cβe

−iφ β + icαe
− iφα( ) β) 

* 
+ 

, 

- 
. 

  

€ 

ˆ µ x = !γcαcβ cosΔφ
ˆ µ y = − 1

2 !γ cα
2 − cβ

2( )
ˆ µ z = !γcαcβ sinΔφ

Single Spin

as expected
  

€ 

ˆ µ x = 0
ˆ µ y = − 1

2 !γ cα
2 − cβ

2( )
ˆ µ z = 0

Ensemble average
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Mz

RF Excitation

B0

z z

y

My

  

€ 

90x
!

Cone Diagram Energy Diagram

• In summary       RF pulse causes:    90 x
o

2)  a phase coherence between               states generating My.

€ 

α , β{ }
1)  equalization of probabilities of               states

€ 

α , β{ } ⇒ Mz = 0.

E

  

€ 

1
2 !ω0

  

€ 

−
1
2 !ω0

Transitions occur 
via emission of 
absorption of a 

photon of energy 
  

€ 

!ω0.

“Bloch” “Purcell”

There is something subtle, yet 
fundamentally wrong, about the above 

diagrams.  What is it?
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Linear Superposition of States
Consider the following two examples:

• System 1:  Na and  Nb spins with                              
respectively such that  N = Na + Nb,

€ 

Nα N = cα
2 ,  and Nβ N = cβ

2 .
ψα = α  and ψβ = β

Implies that a given spin has probabilities                  of 
being in state                     respectively.  

cα
2  and cβ

2

α  and β

“Polarization”

B0

z
B0 α

β

“Cones”

However, System 1 virtually never occurs in practice!
It is wrong to claim that all spins are either “spin up” of “spin down”.
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Linear Superposition of States
• System 2:  N spins each with wavefunction 

€ 

ψ = cαe
−iφα α + cβe

−iφ β β .

€ 

cα
2 and cβ

2Does NOT imply that a given spin has probabilities                     
of being in state                    respectively.  

€ 

α  and β

Here, spins are almost fully 
polarized in z

“Cones”: picture doesn’t work

“Polarization”: works better, but still not very realistic

z
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Linear Superposition of States

Example:  If we insist that each spin is always either “spin up” 
or “spin down” (System 1), then for all spins: {ca, cb}={1, 0} or 
{ca, cb}={0, 1}.  Hence this system could never generate any 
transverse magnetization.   

  

€ 

ˆ µ x = !γcαcβ cos ω 0t + Δφ( )

  

€ 

ˆ µ y = −!γcαcβ sin ω 0t + Δφ( )
product always = 0

€ 

ˆ µ x = ˆ µ x = 0 independent of any 
phase coherences

• System 2 spins are described by a linear superposition of states as 
opposed to the statistical mixture of states in System 1.  

For System 2, all spins have perfect phase coherence.
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Actual MR Experiments
• In a real NMR experiment, we actually deal with a statistical 

mixture of spins each of which is described by a linear 
superposition of states (topic for next lecture).  

• System 3:  N spins with wavefunctions ψi = cαi e
−iφαi α + cβi e

−iφβi β

cαi
2 + cβi

2 =1.where i=1,..N,                              real constants for whichcαi ,cβi ,φαi ,  and φβi

€ 

ˆ I z

Polarization 
diagram

At typical magnetic fields and temperatures, spins are 
polarized almost isotropically in space, with the term 

“almost” referring to a slight preference for the +z component 
(~10ppm for 1H, B0 = 3 Tesla, T = 37°C)

EEnergy 
diagram

€ 

+
€ 

−

€ 

ˆ I z
= population deficit
= population excess

We’ll make use of this 
alternative energy diagram 
when studying relaxation.
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Summary

• Rigorous but with limited intuition. 

• Subsequent lectures will show that Liouville Space description of 
NMR and, in particular, the Product Operator Formalism is….   

— Mathematically easier.
— Retains intuition associated with classical vector formulation.
— Readily extended to the case of interacting spins (coupling).

• Quantum mechanical derivations show that                         
faithfully reproduce the classically-derived behavior of Mx, My, 
and Mz (e.g. Larmor precession, RF excitation, etc).   

€ 

ˆ µ x ,  ˆ µ y ,  and ˆ µ z
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Next Lecture: NMR in Liouville 
Space


