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Lecture #3���
Nuclear Spin Hamiltonian

•  Topics
–   Liouville-von Neuman equation
–   Time-averaged versus instantaneous spin Hamiltonian
–   Chemical shift and J, dipolar, and quadrupolar coupling

•  Reading assignments
–  van de Ven: Chapters 2.1-2.2 
–  Levitt, Chapters 7 (optional)
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Coherences
•  Nuclear spins can be thought of as weak magnetic dipoles, 

each with a well defined direction of polarization.

€ 

2ˆ I z ˆ S z

No net tendency for I or S spins to be ±z
If I or S is ±z, increased probability paired spin is ±z

•  Summing the polarization across many spins can result in net 
phase coherences.

€ 

ˆ S z I
S

Net tendency for S spins to be +z
No net tendency for I spins in any direction
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The Spin Density Operator
•  Spin density operator,       , is the mathematical quantity that 

describes a statistical mixture of spins and the associated phase 
coherences that can occur, as encountered in a typical NMR or 
MRI experiment.

€ 

ˆ σ (t)

Mx = γ!Tr σ̂ Î x{ }= γ! Î x

•  Coherences (signals) observable with an Rf coil:

My = γ!Tr σ̂ Î y{ }= γ! Î y

Mz = γ! Îz Cxz = γ! 2 Î xŜz
“antiphase x”

Czz = γ! 2 ÎzŜz
“longitudinal two-spin order”

•  The goal is to describe how these quantities evolve in time.

•          is usually expressed as a linear combination of basis 
operators, e.g. 

€ 

ˆ σ (t)
(the 16 two-spin product operators){12 Ê, Î x, Ŝx, Î y, Ŝy,…, 2 ÎzŜz}

•  Some coherences not directly observable with an Rf coil:
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Liouville-von Neumann Equation
•  Time evolution of         :  

€ 

ˆ σ (t)

∂
∂t
σ̂ = −i ˆ̂Hσ̂     is the Hamiltonian operator 

and corresponds to the energy 
of the system (E    ).

ˆ H 

/!

•  The key, yet again, is finding the Hamiltonian!

€ 

ˆ I z

€ 

ˆ I x

€ 

ˆ I yσ̂ t( )
σ̂ 0( )

•        can often be expressed as sum of a large static component plus 
a small time-varying perturbation:                        , leading to…Ĥ = Ĥ0 + Ĥ1 t( )

ˆ H 

∂
∂t
σ̂ = −i ˆ̂H0σ̂ − ˆ̂Γ σ̂ − σ̂ B( )

Relaxation superoperator (a function of      )

Rotations Relaxation

Ĥ1

(Compare with Bloch’s equations)
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Spin-Lattice Disconnect
•  Complete QM description of a molecule involves lots of terms in 

the Hamiltonian (nuclear spin, molecular motion, electron-nucleus 
interactions, etc).

•  Previously, we assumed a negligible interaction between the 
nuclear spins and the lattice:

ˆ H = ˆ H l + ˆ H s + ˆ H i

ˆ H ≈ ˆ H l + ˆ H s

lattice spin interaction term

∂
∂t

ˆ σ = −i ˆ ˆ H s ˆ σ and just solved

•  Now we need to take a closer look at the interaction term, which 
includes effects such as spin operator coefficients that depend on 
molecular orientation, etc.
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The Nuclear Spin Hamiltonian

Examples:
2) interactions with dipole fields of other nuclei 
3) nuclear-electron couplings

•       is the sum of different terms representing different physical 
interactions.  
Ĥ

  

€ 

ˆ H = ˆ H 1 + ˆ H 2 + ˆ H 3 +!
1) interaction of spin with 

€ 

B0

•  In general, we can think of an atomic nucleus as a lumpy magnet 
with a (possibly non-uniform) positive electric charge

The nuclear electric charge 
interacts with electric fields

The nuclear magnetic moment 
interacts with magnetic fields

€ 

ˆ H = ˆ H elec + ˆ H mag

•  The spin Hamiltonian contains terms which describe the 
orientation dependence of the nuclear energy  
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Electromagnetic Interactions

•  Electric interactions

Hence, for spin-½ nuclei there are no electrical 
energy terms that depend on orientation or internal 
nuclear structure, and they behaves exactly like 
point charges! Nuclei with spin > ½ have electrical 
quadrupolar moments.

•  Magnetic interactions

Nuclear electric charge distributions 
can be expressed as a sum of 
multipole components.

Symmetry properties: C(n)=0 for n>2I and odd interaction terms disappear 

monopole dipole quadrapole

  

€ 

C(! r ) = C(0)(! r ) + C(1)(! r ) + C(2)(! r ) +"

€ 

ˆ H elec = 0  (for spin I =1/2)
Ĥ elec ≠ 0 (for spin I >1/2)

  

€ 

ˆ H mag = − ˆ 
! 
µ ⋅
! 
B = −γ"ˆ 

! 
I ⋅
! 
B 

magnetic moment

local magnetic field
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Motional Averaging

•  Previously, we used averaging to simplify the Hamiltonian 

•  Molecular motion  

Molecular orientation depends on time and Hamiltonian terms can be written 
as                .  These terms were replaced by their time averages:

€ 

ˆ H int
0 Θ(t)( )

€ 

ˆ H int
0 = 1

τ
ˆ H int

0 Θ(t)( )
0

τ

∫ dt

Isotropic materials:

€ 

ˆ H int
isotropic = 1

N
ˆ H int

0 Θ( )∫ dΘ
normalization

ergodicity

€ 

ˆ H int
0 = ˆ H int

0 pΘ( )∫ dΘ
p(Θ)=probability 

density for molecule 
having orientation Θ 

•  We no longer want to make this approximation. 
Instead, the time variations will be analyzed as 
perturbations.

What does 
“secular” mean?

Secular 
Hamiltonian
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Time-averaged Spin Hamiltonian

Re
la

tiv
e 

m
ag

ni
tu

de
s
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Instantaneous Spin Hamiltonian

Re
la

tiv
e 

m
ag

ni
tu

de
s
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Simplifications

1.  For terms in the Hamiltonian that are periodic, we use a 
change of basis.  

•  In general, the nuclear spin Hamiltonian is quite complicated.  

2.  The secular approximation

•  We’ll regularly make use of two simplifications.

ˆ !H = e−iωt ˆ̂Iz Ĥ = e−iωtÎz ĤeiωtÎz
rotating frame laboratory frame

Ĥ t( ) = −ω0 Îz −ω1 Î x cosωt − Î y sinωt( ) Ĥeff = − ω0 −ω( ) Îz −ω1Î x
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The Secular Approximation
•  The large B0 field dominates some of the internal spin interactions.

•  Consider the general case of Ĥ = Â+ B̂
“large” “small”

Â i = ai i•  Choosing the eigenkets,                  , as an orthonormal basis set,
A = diag a1,a2...,an( ).then

•  Example: let the eigenvalues of A have the following pattern:

B =

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

In general, B is 
non-zero 

everywhere.

Energy

a1

a2, a3

a4

a5, a6, a7

nearly degenerate.

degenerate
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The Secular Approximation
•  The secular approximation of B is:

•  This is equivalent to omitting terms for which bmn << am − an .

Energy

a1

a2, a3

a4

a5, a6, a7

Eigenvalues of A 

B0 =

* 0 0 0 0 0 0
0 * * 0 0 0 0
0 * * 0 0 0 0
0 0 0 * 0 0 0
0 0 0 0 * * *
0 0 0 0 * * *
0 0 0 0 * * *

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

•  Mathematically B0 = bnn n n
n
∑ + bmn m n

m≠n
∑

`

where the    indicates summation only over terms which connect 
degenerate or nearly degenerate states of A.  

`

•  The secular approximation for the Hamiltonian is: Ĥ ≈ Â+ B̂0.
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Secular Approximation Example
•  Consider a spin in a large field B0 to which we add an x gradient Gx. 

hence B0 = 1
2

γGxx 0
0 −γGxx

"

#
$
$

%

&
'
'

•  However,                                    è B0 >>Gxx, ΔBx, ΔBy a1 − a2 = γB0 >> γ ΔBx ± iΔBy

•  We actually can’t create the field         alone (see Laplace’s Eqn)Gxx
!z

•  We really have:
!
B = B0

!z +Gxx
!z +ΔBx x, y, z( )

!x +ΔBy x, y, z( )
!y

In MRI, these are often called “Maxwell” or “concomitant gradient” terms.

Ĥ = −γ
!
B ⋅ ˆ
!
I = −γB0 Îz −γGxxÎz −γΔBxÎx −γΔByÎy = Â+ B̂Hence:

A = 1
2

γB0 0
0 −γB0

"

#
$
$

%

&
'
'

B = 1
2

γGxx γ ΔBx + iΔBy( )
γ ΔBx − iΔBy( ) −γGxx

#

$

%
%
%

&

'

(
(
(

Â B̂where and

•  The secular approximation is: Ĥ = −γ
!
B ⋅ ˆ
!
I ≈ Â+ B̂0 = −γ B0 +γGxx( ) Îz

i.e. we can safely ignore the “Maxwell” terms as is routinely done in 
MRI (with just a few exceptions, particularly at low field)
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B0-Electron Interactions

•  Local effect: Chemical Shift  

•  Global effects: magnetic susceptibility

When a material is placed in a magnetic field it is magnetized to 
some degree and this modifies the field…

€ 

B0
s = (1− χ)B0

Hereafter we’ll use “B0” to refer to the internal field.

field inside sample bulk magnetic susceptibility applied field

Electrons in an atom circulate about B0, 
generating a magnetic moment opposing 
the applied magnetic field.

Different atoms experience 
different electron cloud densities.

€ 

B = B0(1−σ)

shielding constant
(Don’t confuse with the 
spin density operator!)

Shielding:
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The Zeeman Hamiltonian

  

€ 

ˆ H zeeman = −γ
! ˆ I (1−σ)

! 
B 

€ 

σ =σ iso = Tr(σ /3)

  

€ 

E = −γ
! 
B ⋅
! 
I Classical:

ĤZeeman = −γ (1−σ )B0 Îz

  

€ 

! 
µ = γ
! 
I 

  

€ 

! 
B •  The interaction energy between the magnetic field,    , and the 

magnetic moment,          , is given by the Zeeman Hamiltonian.

•  The formal correction for chemical shielding is:

where

€ 

σ = 3× 3 shielding tensor

•  In vivo, rapid molecular tumbling averages out the non-isotropic 
components.

!
B = [0, 0,B0 ] :•  Hence for

  

€ 

ˆ H zeeman = −γ
! 
B ⋅
! ˆ I QM:

E

€ 

B = 0

€ 

B = B0
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Chemical Shielding Tensor
•  Electron shielding is in general anisotropic, i.e. the degree of 

shielding depends on the molecular orientation.
•  The shielding tensor can be written as the sum of three terms:

σ =

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz

!

"

#
#
#
#

$

%

&
&
&
&

=σ iso

1 0 0
0 1 0
0 0 1

!

"

#
#
#

$

%

&
&
&
+σ 1( ) +σ 2( )

= 1
3 σ xx +σ yy +σ zz( )

antisymmetric

•  Both σ(1) and σ(2) are time-varying due to molecular tumbling.

•  σ(2) gives rise to a relaxation mechanism called chemical shift 
anisotropy (CSA).  (to be discussed later in the course)

•  σ(1) causes only 2nd order effects and is typically ignored.

symmetric and 
traceless

See Kowalewski, pp 
105-6 for details.

A little foreshadowing…
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J-Coupling: Mechanism

•  What’s in a name?

•  At very small distances (comparable to the nuclear radius), the 
dipolar interaction between an electron and proton is replaced by 
an isotropic interaction called “Fermi contract interaction”.

Energy Diagram
less stable

more stable

I spin “senses” 
polarization of 

S spin

I S

I S

e e

e e

A simple model of J-coupling

  

€ 

∝−γ eγ n

! ˆ I ⋅
! ˆ S •  Interaction energy

independent of molecular orientation

J-coupling

Through-bond (vs through-
space) interaction

Scalar coupling

Spin-spin coupling

Indirect 
interaction
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J-Coupling: Energy Diagram

  

€ 

= 2πJ
! ˆ I ⋅
! ˆ S 

J-Coupling

€ 

= 2πJ( ˆ I x ˆ S x + ˆ I y ˆ S y + ˆ I z ˆ S z)  

€ 

ˆ H J =
! ˆ I J
! ˆ S 

En
er

gy
Zeeman Splitting

We’re now 
considering pairs of 

spins

J-coupling constant (Hz)•  The J-Coupling Hamiltonian

“product operators”
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J-Coupling and Relaxation
•  Because J is unchanged with molecular tumbling, J-coupling 

typically does not contribute to relaxation.

A little foreshadowing…

•  However, there are a few cases where J can become “effectively” 
time-varying.

-  Case 1: the S spin is engaged in chemical exchange

-  Case 2: the T1 of the S spin itself is << 1/J. 

•  These cases are called scalar relaxation of the first and second 
kind respectively, and both are important for the study of MRI 
contrast agents.

ĤJ = 2π J
!̂
I ⋅
!̂
S J Θ t( )( ) = Jwhere
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Magnetic Dipoles
•  Nuclei with spin ≠ 0 act like tiny magnetic dipoles.  

permeability of free space

falls off as r3

Dipole at origin

€ 

Bµx =
µ0
4π
# 

$ 
% 

& 

' 
( 

µ
r3
# 

$ 
% 

& 

' 
( 3sinθ cosθ( )

€ 

Bµy = 0

€ 

Bµz =
µ0
4π
# 

$ 
% 

& 

' 
( 

µ
r3
# 

$ 
% 

& 

' 
( 3cos2θ −1( )

Magnetic Field in y=0 plane

Lines of Force Bµz Bµx
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Dipolar Coupling
•  Dipole fields from nearby spins interact (i.e. are coupled).  

•  Rapid fall off with distance causes this to be primarily a 
intramolecular effect.

Water 
molecule 

in a 
magnetic 

field

with 
tumbling 

Interaction is 
time variant!

Spins remain 
aligned with B0
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The Nuclear Dipolar Coupling 
Hamiltonian

•  Mathematically speaking, the general expression is:  

Ĥdipole = −
µ0γ IγS
4πr3

!
"̂
I ⋅
!̂
S − 3

r2
(
!̂
I ⋅ !r )(

!̂
S ⋅ !r )

#

$
%

&

'
( where      vector from 

spin I to spin S
  

€ 

! r 

•  Secular approximation:

  

€ 

ˆ H dipole = d 3ˆ I z ˆ S z −
! ˆ I ⋅
! ˆ S $ 

% 
& ' 

( 
)     where   d = −

µ0γ Iγ S

4πr3 " 3cos2ΘIS −1( )
dipole coupling 

constant
angle between B0 
and vector from 

spins I and S 

Ĥdipole = 0-  With isotropic tumbling, the time average of 

-  However, the temporal variations of                 are typically 
the dominant source of T1 and T2 relaxation in vivo. 

Ĥdipole t( )
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Quadrupolar Interactions

•  This electrical quadrupole moment interacts with local electric 
field gradients

•  Quadrupolar coupling Hamiltonian (secular approximation):

•  Nuclei with spin I > ½ have a electrical quadrupolar moment 
due to their non-uniform charge distribution.

-  Static E-field gradients results in shifts of the resonance frequencies of the 
observed peaks.

-  Dynamic (time-varying) E-field gradients result in relaxation.

What’s the spin of Gd3+ with 
its 7 unpaired electrons?

Looks like an 
interaction of a spin 

with itself.
ĤQ =

3eQ
4I 2I −1( )!

V0 3Îz
2 −
!̂
I ⋅
!̂
I( )

Coupling constant

Electric field gradient – 
dependent on molecular 

orientation



Magnevist
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Nucleus-unpaired electron couplings
•  Both nuclear-electron J and dipolar coupling occur.
•  Important for understanding MR contrast agents.

A little foreshadowing…

7 unpaired electrons,
I = 7/2, non-zero 

quadrupolar moment

J coupling Dipolar 
coupling
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Summary: Nuclear Spin Hamiltonian
Ĥ = −γ I

!̂
I (1−σ I )

!
B−γS

!̂
S(1−σ S )

!
B+ 2π J

!̂
I ⋅
!̂
S( )+ d 3ÎzŜz − !̂I ⋅ !̂S( )+ηQ 3Îz

2 −
!̂
I ⋅
!̂
I( )

ĤRf = −ω1
I Î x −ω1

SŜx

Zeeman terms J-coupling Dipolar 
coupling

Quadrupolar 
coupling

(+S spin term)

•  Major relaxation mechanisms important for MRI (+ contrast agents)
-  d(t) gives rise to dipolar relaxation
-  σ(t) gives rise to chemical shift anisotropy (CSA)
-  η(t) gives rise to quadrupolar relaxation
-  “J(t)” gives rise to scalar relaxation of the 1st and 2nd kind
-  Plus, we also need to figure out how include chemical exchange effects
-  At the end, we’ll add Rf excitation when computing T1ρ:
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Next lecture:���
Basics of Relaxation


