Signal Calculations

 Bloch Equations and Matrix Calculations
» Extended Phase Graphs
« Examples (both)
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Bloch Equation Matrix Simulations

 Basic Bloch Equation

 Bloch Equation with B+ / rotating frame

« Basic matrix simulations / Hard Pulse Approx.

* Many-spin simulations: Brute force

*B
*B

OoC

OoC

n-McConnell Equation with Exchange

n-Torrey Equations (McNab?)

Section B1

B.Hargreaves - RAD 229



Bloch Equation

» Basic Bloch Equation:

dM M,, My — M,
—— =M x~HyB- 2 4
dt T, T,
e In Matrix form with: M, |
M= | M,
- MZ —
« Becomes:
M - —-1/T, B, —yB, | 0
i ’}/By —’)/Bx —1/T1 i i Mo/Tl _

Standard right-handed cross product
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Relaxation

. : _ ,—T7/11
» Over time period < By =e"
E2 — G_T/TQ
" E, 0 0 ) 0 |
M’ = 0 Fy O M + 0
0 0 Er - Mo(1—-Ey) |
. y \ v )
)y B

(See relax.m)

>> [AB] = relax(0.5,0.5,0.1,1)

AB =
0.0067 0] 0 0
0] 0.0067 0 0
0 0 0.3679 0.6321
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RF Rotations

* For a flip angle o

1 0 0
M =R,.M=| 0 cosa sina
0 —sina cosa |
cosa 0 —sina
M’:RyM: 0 1 0
sina 0 cosa

>> A = xrot(90)

a=vbB1T
A =
 Rotations are left-handed
* (also achieved with negative y) 1°°3 3 1_03
* See xrot.m and yrot.m 0 -1.00 0
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RF Rotations (Arbitrary B1 phase)

" cos? ¢+ sinpcosa cosgsing(l —cosa) —singsina |
Ry = | cos¢sing(l —cosa) sin®¢+cos?pcosa  cosdsina
sin ¢ sin o — SIn @ Cos @ COS

<

¢ = taﬂ_l(By/B:c)

* Rotation axis in x-y plane

* Note Ry is just Ry(-¢)R(a) RA()

(See throt.m)
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Gradient / ABg Rotations

cos 6
M =R,M=| —sinf
0

* Rotations are left-handed
* (also achieved with negative y)
e See zrot.m

sinf 0 |
cosf O
0 1

M
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Perfect Spoliling

* Explicitly set transverse magnetization to zero

0 0 0
M=|0 0 0|M
0 0 1
rRFJ\ I\
GZ
«——TE——»
< TR >
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Example: Excitation/Recovery

(X.-y a—y a-y
M4|M> M1|M> M1|Mo

"cosa 0 sina ]

Mz —_ 0 1 0 Ml .
—sina 0 cosa. transy/ggsleecli?fgsllvdebtliéz?;tion
0 0 07 i 0

Ml — 0 0 0 Mz + 0
B G E my(1—E;).

M, = Eicosa My + mo(1 — E1) .

| Recall Prior
mo(l E1)

Example!

{ L= E cosa
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Overlapping RF/Gradients?

e 7 rotations and relaxation commute

 RF rotations do not commute with others

 Hard-Pulse Approximation:

« Small rotations/relaxation can be applied sequentially

* Break pulses into very short segments
 Aside: Basis for Variable Rate Selective Excitation

* Alternatively, calculate arbitrary rotations

Al
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Matrix Propagation
* Rotations / Relaxation: M’ = AM+B

e M; = AiMy+B; (Mo is starting M, not equilibrium M!)

* M>, = A2M+B: M, (n “operations’)

e Propagation: multiply A’s, sum B’s after multiplying by
all successive A’s

e M> = (A2A1)Mop+ A2B; + B>
Example (n=3)

i=n A= A3A2A1
. (HAj) B 3 A2 B 3.2 3
i=1 \j=n (See abprop.m)

11
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Steady States

* Propagation over 1 TR: M,,; = AM,+B
« Steady State: M,.; =M,
« Combine: My, =AM +B = (I-A)-'B

* As long as there is relaxation, there is a steady state,
since eigenvalues of A are less than one in magnitude
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Short-TR IR Signal (Agaln')

< JPEOEENEDEIIACNNOEAACNENNEACCNDYINAINNNCINNONACNNODNCOACONO00COACIN00N TR ............................. exampIeB1 13 m

-

< O

* Inversion Recovery Sequence:

>> A1 = diag([E2a E2a E1a]) * Rx(180);
>>B1 =[0;0;1-E1a];

« What is the signal for T1=0.5s, T2=100ms? >> A2 = diag([E2b E2b E1b]) * Rx(90);
>> B2 =[0;0;1-E1b];

>> A3 = diag([E2c E2c E1c]));

« TR=1s, TI =0.5s, TE=50ms

 “Operations” >> B3 = [0;0;1-E1c]:

* Migo = R(180)Mrw >> A = A2*AT*A3;

* Moo = Rx(90)E(0.55)M1g0 >> B = B2+A2*(B1+A1*B3);
* Mte = E(0.05s)Mgo >> M = inv(eye(3)-A)*B

[0; 0.2424; 0.0952 ]
« Mtk = E(0.45s = 1-0.5-0.05s)Mre
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Compact Simulation: abprop.m

* Propagate spins through series of A,B matrices

« Compact way to simulate sequences

function [A,B,mss] = abprop(Al,Bl1,A2,B2,A3,B3,...)
If mss is provided, the steady-state 1is calculated.
If an A1 is 3x4, then it is assumed to be [Al1 Bi]

If a Bi vector is omitted (the next argument is 3x3
or 3x4, it is assumed to be zero.

« abprop(A1,B1, [A2 B2], A3, A1)  (Here Bz= B4= 0)
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Short-TR IR Signal (Compact)

-

< O

* Inversion Recovery Sequence:

« TR=1s, TI =0.5s, TE=50ms

exampleB1_15.m

>> [A,B,Mss] = abprop(

« What is the signal for T1=0.5s, T>=100ms? relax(TR-TE-TI,T1,T2,1), ...
xrot(180), ...
o “Operations” relaX(TI,T1 ,T2,1 ), .
xrot(90), ...
* M1go = Rx(180)Mtr relax(TE,T1,T2,1));
* Mgo = Rx(90)E(0.58)M1s0 >> Mss

* Mte = E(0.05s)Mgo
* Mtr = E(0.45s = 1-0.5-0.05s)M+e

[0; 0.2424; 0.0952 ]
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* 90.y Excitation pulse

Example

RF Waveform

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

* Time samples of 4us Jmene)

Small Tip Approximation

* 3 sinc cycles

e 2ms duration

* Area of 5.9 uT*ms
« BW ~ 3 kHz
« 2.3 mT/m gradient (1kHz/cm)

16
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Simulation

* Loop over z
* Define R,
* Loop over t
e M’=R.R.(t)

* Plot M over time
and space

exampleB1_17.m

M.(8)

-0.5
-1

. _Psition (cm)

-1 0 1

05

0 05
Time (ms)

05

i 05 1
Time (ms)

0
Position (cm)

0
Position (cm)
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Example (With Off-Resonance)

04 0B

02 0 02
time(ms)
Small Tip Approximation

* 90 Excitation pulse

................................................................................................

 BW ~ 3 kHz

g osition (cm)

05 i 05 1 - 0
Time (ms) Position (cm)
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Excitation Recovery (Real Pulse)

a=30 =30 a=30
/\ /\ A exampleB1_19.m
0 Myy 0 Myy

» Simulate full pulse and position
» Perfect spoiling (“keep only Mz matrix)

« Matrix propagation to calculate steady-state at each
position: E() = relaxation

« End of RF to TR:  Spoil, E(TR-TrF)
* Over RF: [ E(t)Rz(yGzt) Ry(t,T) ] at each interval
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Excitation Recovery (Real Pulse)
a=30 =30 =30

0 Myy 0 Myy
008 Excitation/Recovery Signal vs Position 0 Excitation Profile vs Position
0.06

[pe]
.
T

0.04 3

[a]
(=]
]

0.02%

Flip Angle (deg)

-0.02%-
10¢
-0.041
St
-0.064-
-0.08 2 0
-5 0 5 -
Position (cm) FPosition (cm)
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Example: Adiabatic Pulse

Adiabatic Inversion Pulse

Bl T)

Time (ms)

05 T T T T

Freq (kHz;

Time (ms)
4 T T T T
=) :
o :
L .
o) 3
[ o &
< ¥ :
4 i i

0 1 2 3 4 5 3 7 8
Time (ms)

(See adiabatic.m,
[b1,freq,phase] = adiabatic(.15,1000,1000,0.008,.000004) )
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Exchange: Bloch-McConnell Equation

» Ma and MY are magnetizations in “exchanging” pools:

* 75, and p are resident times

[ —1/T¢ —1/7, Yo B —Ya By 1/ 0 0 0
_fYaBz _1/T2a [ 1/7-(1 ’YaB:E 0 1/Tb 0 0
ﬂ _ ’YaBy —YaBs _1/Tf - 1/Ta 0 0 1/7_5 M+ Mg/Tla
dt 1/7, 0 0 —1/T2 — 1/ Yo B —vp By 0
0 1/7a 0 —vp B, —1/T? —1/7 Vb B 0
0 0 1/7, v B, —vp B, ~1/T? —1/7 | | ME/TY
_ Mo _
Ma 4 . . ] )
iy Single-Pool Bloch Equation:
M= "z ) _ : _
%gg M ~1/Ty B, —vB, 0
" z L ’}/By —’}/Bx —1/T1 ] L Mo/T1 B
\_ J
22 Section B1 B.Hargreaves - RAD 229 @B




Challenge: Diffusion
180

o [ e

NS\

At

. 1D Gaussian Diffusion: Al = V2DA¢

* Imagine a sequence with 2 gradients of area GT,
with a 180 refocusing pulse between.

* What is the expected value of the spin echo signal
as a function of D, At, GT, ignoring T2?
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Summary

* Bloch equation: Rotations and Relaxation
» Consider M as a 3x1 vector

» Rotations ~ Simple multiplier

* Relaxation ~ M’ = AM+B

* Propagate Effects like “Operators”
* Brute force simulations by looping:

* Time, Position, Frequency, etc

24
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