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Signal Calculations

• Bloch Equations and Matrix Calculations 

• Extended Phase Graphs 

• Examples (both)
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Bloch Equation Matrix Simulations

• Basic Bloch Equation 

• Bloch Equation with B1 / rotating frame 

• Basic matrix simulations / Hard Pulse Approx. 

• Many-spin simulations:  Brute force 

• Bloch-McConnell Equation with Exchange 

• Bloch-Torrey Equations (McNab?)
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Bloch Equation
• Basic Bloch Equation: 

• In Matrix form with:  

• Becomes:
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Relaxation
• Over time period τ
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(See relax.m)
A B

>> [AB] = relax(0.5,0.5,0.1,1)

AB =
   0.0067         0         0         0
         0    0.0067        0         0
         0         0    0.3679    0.6321 
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RF Rotations

• For a flip angle α
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• Rotations are left-handed 
• (also achieved with negative γ) 
• See xrot.m and yrot.m

Ry(α)

>> A = xrot(90)

A =

    1.00       0       0
       0       0    1.00
       0   -1.00       0
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RF Rotations (Arbitrary B1 phase)
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• Rotation axis in x-y plane 

• Note Rφ is just Rz(-φ)Rx(α) Rz(φ)
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Gradient / ΔB0 Rotations
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• Rotations are left-handed 
• (also achieved with negative γ) 
• See zrot.m
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Perfect Spoiling
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• Explicitly set transverse magnetization to zero 

RF

Gz

TR
TE
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Example:  Excitation/Recovery

M1 M2 M1 M2 M1 M2

α-y α-y α-y

1

Recall Prior  
Example!

Neglect residual 
transverse magnetization
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Overlapping RF/Gradients?
• z rotations and relaxation commute 

• RF rotations do not commute with others 

• Hard-Pulse Approximation: 

• Small rotations/relaxation can be applied sequentially 

• Break pulses into very short segments 

• Aside:  Basis for Variable Rate Selective Excitation 

• Alternatively, calculate arbitrary rotations
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Matrix Propagation
• Rotations / Relaxation:  M’ = AM+B 

• M1 = A1M0+B1              (M0 is starting M, not equilibrium M!)

• M2 = A2M1+B2      .....     Mn       (n “operations”) 

• Propagation:  multiply A’s, sum B’s after multiplying by 
all successive A’s 

• M2 = (A2A1)M0 + A2B1 + B2
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(See abprop.m)
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Steady States

• Propagation over 1 TR:  Mn+1 = AMn+B 

• Steady State:  Mn+1 = Mn 

• Combine:  Mss = AMss+B   = (I-A)-1B  
• As long as there is relaxation, there is a steady state, 

since eigenvalues of A are less than one in magnitude
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Short-TR IR Signal (Again!)

• “Operations” 

• M180 = Rx(180)MTR 

• M90 = Rx(90)E(0.5s)M180 

• MTE = E(0.05s)M90 

• MTR = E(0.45s = 1-0.5-0.05s)MTE
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>> A1 = diag([E2a E2a E1a]) * Rx(180); 
>> B1 = [0;0;1-E1a];                
>> A2 = diag([E2b E2b E1b]) * Rx(90); 
>> B2 = [0;0;1-E1b]; 
>> A3 = diag([E2c E2c E1c]); 
>> B3 = [0;0;1-E1c]; 

>> A = A2*A1*A3;                         
>> B = B2+A2*(B1+A1*B3); 

>> M = inv(eye(3)-A)*B   
         [ 0;  0.2424;  0.0952 ]

• Inversion Recovery Sequence: 

• TR = 1s, TI = 0.5s, TE=50ms 

• What is the signal for T1=0.5s, T2=100ms?

1
2

3

exampleB1_13.m
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Compact Simulation:  abprop.m

• Propagate spins through series of A,B matrices 

• Compact way to simulate sequences 
function [A,B,mss] = abprop(A1,B1,A2,B2,A3,B3,...)

If mss is provided, the steady-state is calculated.

If an Ai is 3x4, then it is assumed to be [Ai Bi]

If a Bi vector is omitted (the next argument is 3x3 
or 3x4, it is assumed to be zero. 

• abprop(A1,B1, [A2  B2], A3, A4)      (Here B3 = B4 = 0)
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Short-TR IR Signal (Compact)

• “Operations” 

• M180 = Rx(180)MTR 

• M90 = Rx(90)E(0.5s)M180 

• MTE = E(0.05s)M90 

• MTR = E(0.45s = 1-0.5-0.05s)MTE
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>> [A,B,Mss] = abprop( 
relax(TR-TE-TI,T1,T2,1),  … 
xrot(180), ... 

        relax(TI,T1,T2,1),  … 
xrot(90), … 
relax(TE,T1,T2,1)); 

>> Mss  
[ 0;  0.2424;  0.0952 ] 

• Inversion Recovery Sequence: 

• TR = 1s, TI = 0.5s, TE=50ms 

• What is the signal for T1=0.5s, T2=100ms?

1
2

3

exampleB1_15.m



B.Hargreaves - RAD 229Section B1

Example

• 90-y Excitation pulse 

• Time samples of 4µs 

• 3 sinc cycles 

• 2ms duration 

• Area of 5.9 µΤ*ms 

• BW ~ 3 kHz 

• 2.3 mT/m gradient (1kHz/cm)
16
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Simulation

• Loop over z 

• Define Rz 

• Loop over t 

• M’=RzR-y(t)M

• Plot M over time 
and space
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M
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z)
exampleB1_17.m
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M
z(

z)

Example (With Off-Resonance)

• 90 Excitation pulse 

• BW ~ 3 kHz 

• 2.3 mT/m gradient (1kHz/cm) 

• 2kHz off-resonance??
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Excitation Recovery (Real Pulse)

• Simulate full pulse and position 

• Perfect spoiling (“keep only Mz” matrix) 

• Matrix propagation to calculate steady-state at each 
position:    E() = relaxation 

• End of RF to TR:     Spoil, E(TR-TRF)  
• Over RF: [  E(τ)Rz(γGzτ) R-y(t,τ) ]  at each interval 
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α=30

0 Mxy 0 Mxy

α=30 α=30
exampleB1_19.m
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Excitation Recovery (Real Pulse)

20

α=30

0 Mxy 0 Mxy

α=30 α=30

Ernst 
Angle 8°
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Example:  Adiabatic Pulse

• Simulate complex B1 

• Track M and Beff 

• Plot…

21

(See adiabatic.m,  
[b1,freq,phase] = adiabatic(.15,1000,1000,0.008,.000004)  )
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Exchange:  Bloch-McConnell Equation

• Ma and Mb are magnetizations in “exchanging” pools: 

• τa and τb are resident times

22

M =

2

6666664

Ma

x

Ma

y

Ma

z

M b

x

M b

y

M b

z

3

7777775 dM

dt
=

2

4
�1/T2 �B

z

��B
y

��B
z

�1/T2 �B
x

�B
y

��B
x

�1/T1

3

5M +

2

4
0
0

M0/T1

3

5

Single-Pool Bloch Equation:

dM

dt
=

2

6666664

�1/T a

2 � 1/⌧
a

�
a

B
z

��
a

B
y

1/⌧
b

0 0
��

a

B
z

�1/T a

2 � 1/⌧
a

�
a

B
x

0 1/⌧
b

0
�
a

B
y

��
a

B
x

�1/T a

1 � 1/⌧
a

0 0 1/⌧
b

1/⌧
a

0 0 �1/T b

2 � 1/⌧
b

�
b

B
z

��
b

B
y

0 1/⌧
a

0 ��
b

B
z

�1/T b

2 � 1/⌧
b

�
b

B
x

0 0 1/⌧
a

�
b

B
y

��
b

B
x

�1/T b

1 � 1/⌧
b

3

7777775
M+

2

6666664

0
0

Ma
0 /T

a
1

0
0

M b
0/T

b
1

3

7777775



B.Hargreaves - RAD 229Section B1

Challenge:  Diffusion

• 1D Gaussian Diffusion:  

• Imagine a sequence with 2 gradients of area GT, 
with a 180 refocusing pulse between. 

• What is the expected value of the spin echo signal 
as a function of D, Δt, GT, ignoring T2?
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Summary

• Bloch equation:  Rotations and Relaxation 

• Consider M as a 3x1 vector 

• Rotations ~ Simple multiplier 

• Relaxation ~ M’ = AM+B 

• Propagate Effects like “Operators” 

• Brute force simulations by looping: 

• Time, Position, Frequency, etc
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