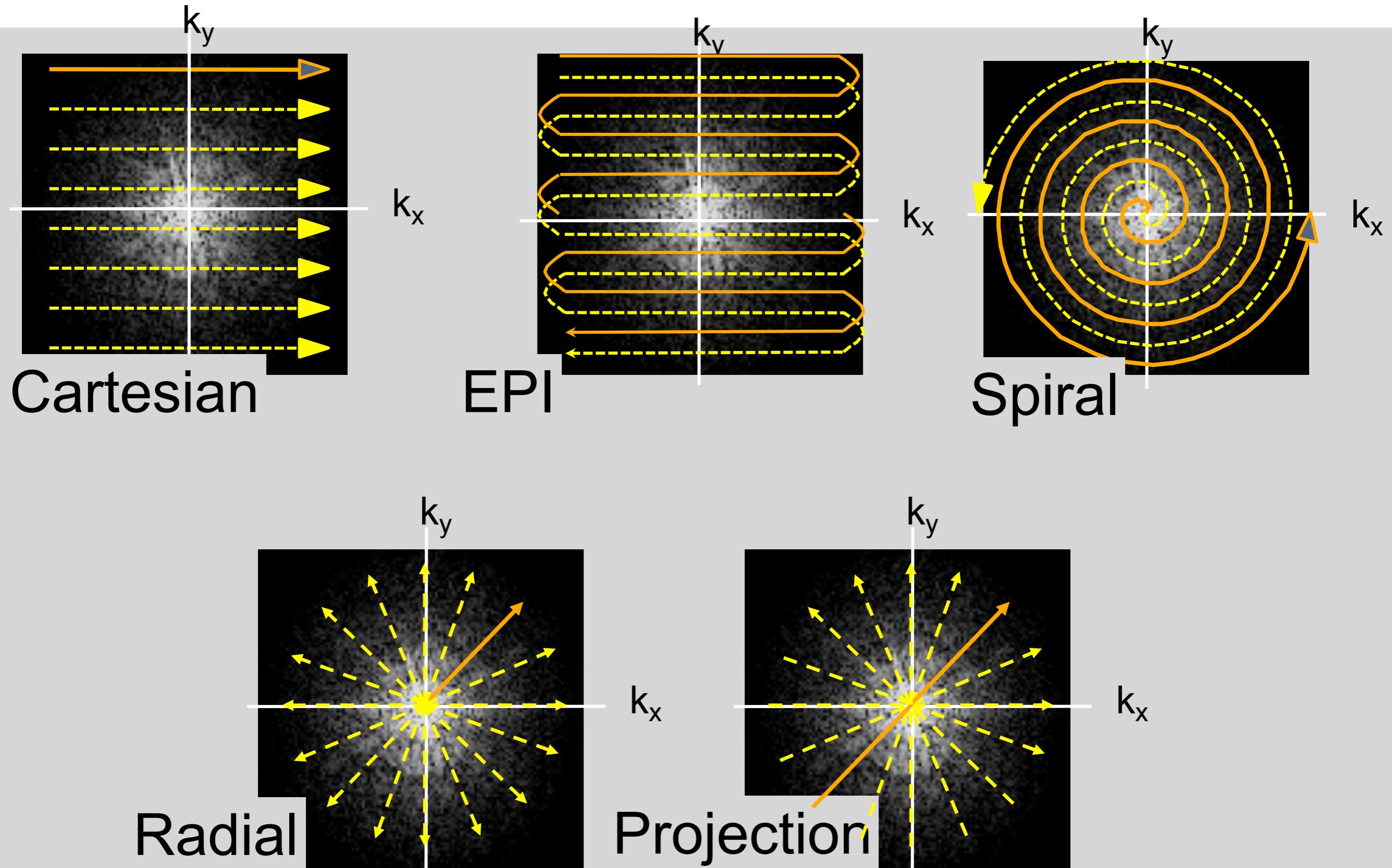


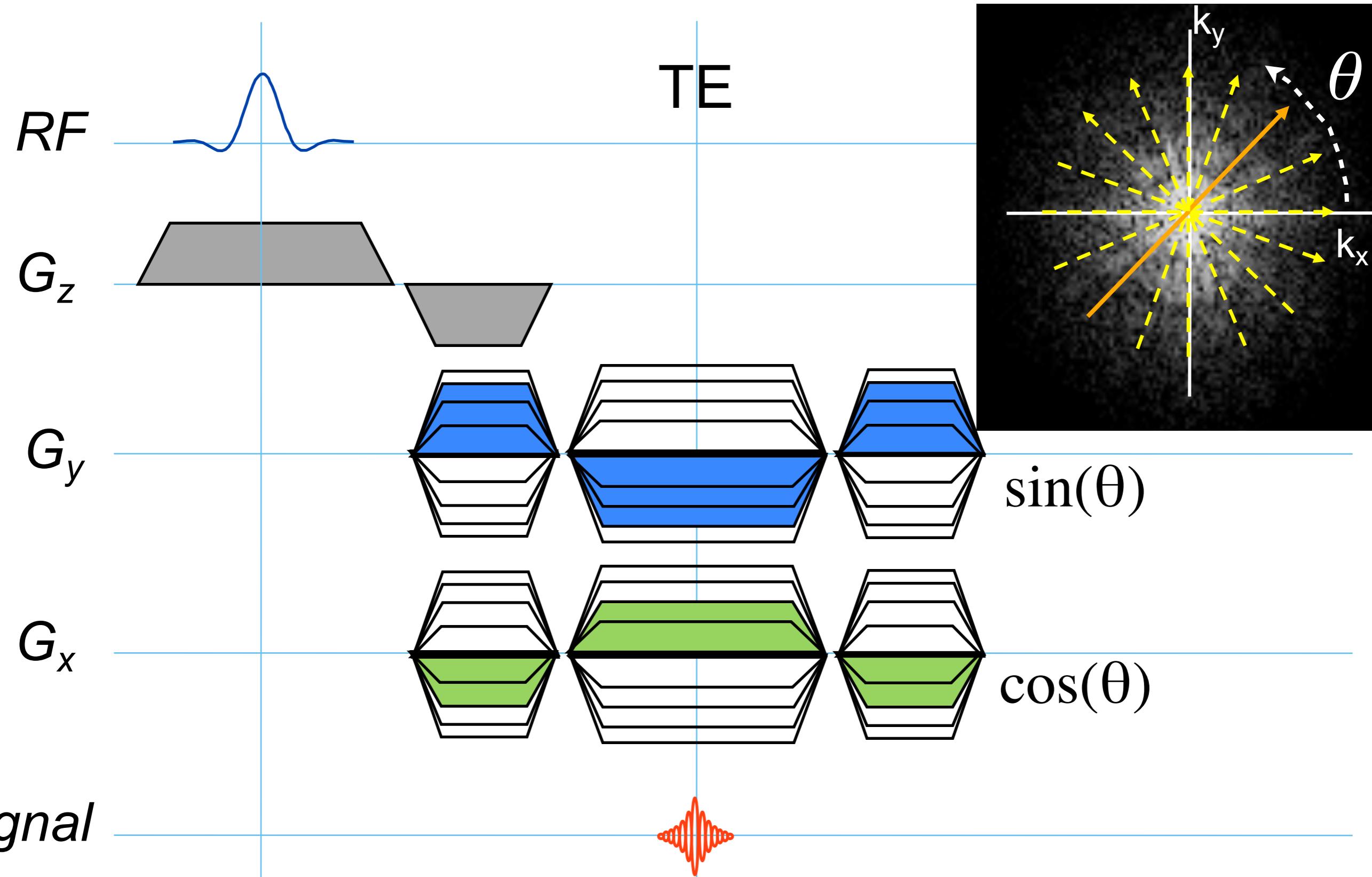
Advanced Imaging Trajectories



Radial and Projection Imaging

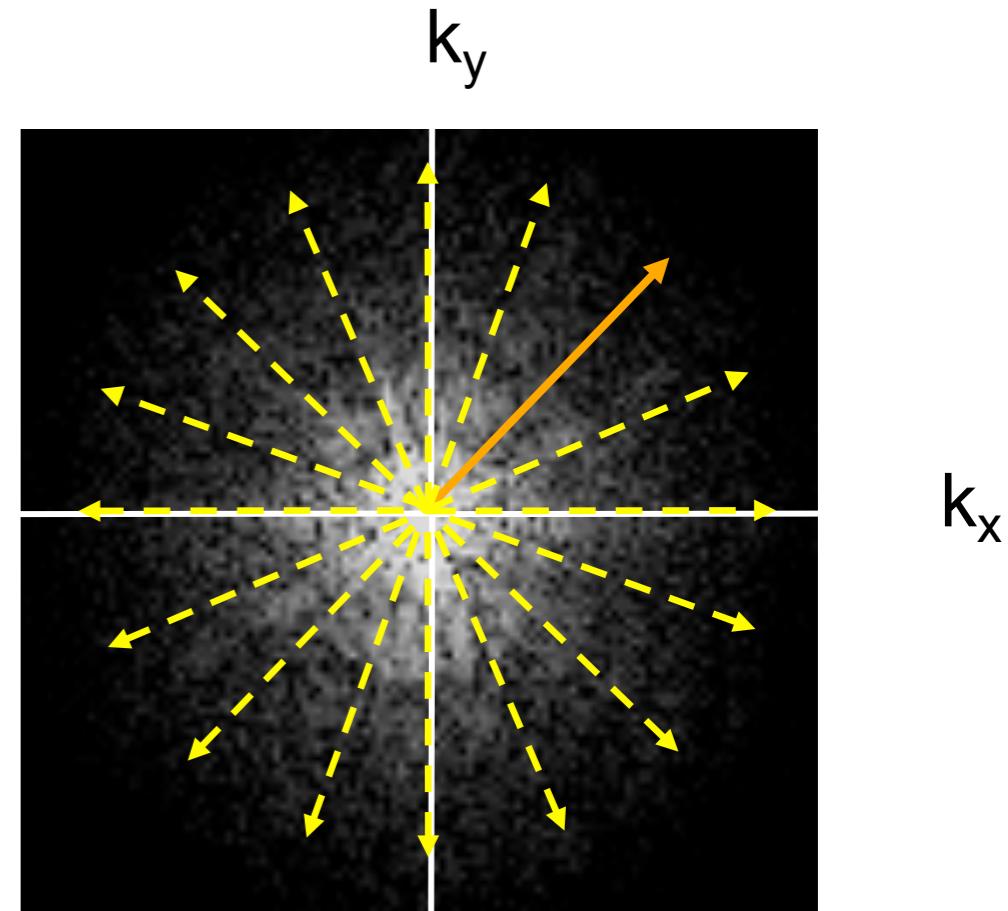
- Sample spokes
 - “Radial out”: from $k=0$ to k_{max}
 - Projection: from $-k_{max}$ to k_{max}
- Trajectory design considerations (resolution, #shots)
- Reconstruction, PSF and “streak-like” aliasing
- SNR considerations
- Undersampling
- 3D Projection

Projection-Reconstruction (PR) Sequence

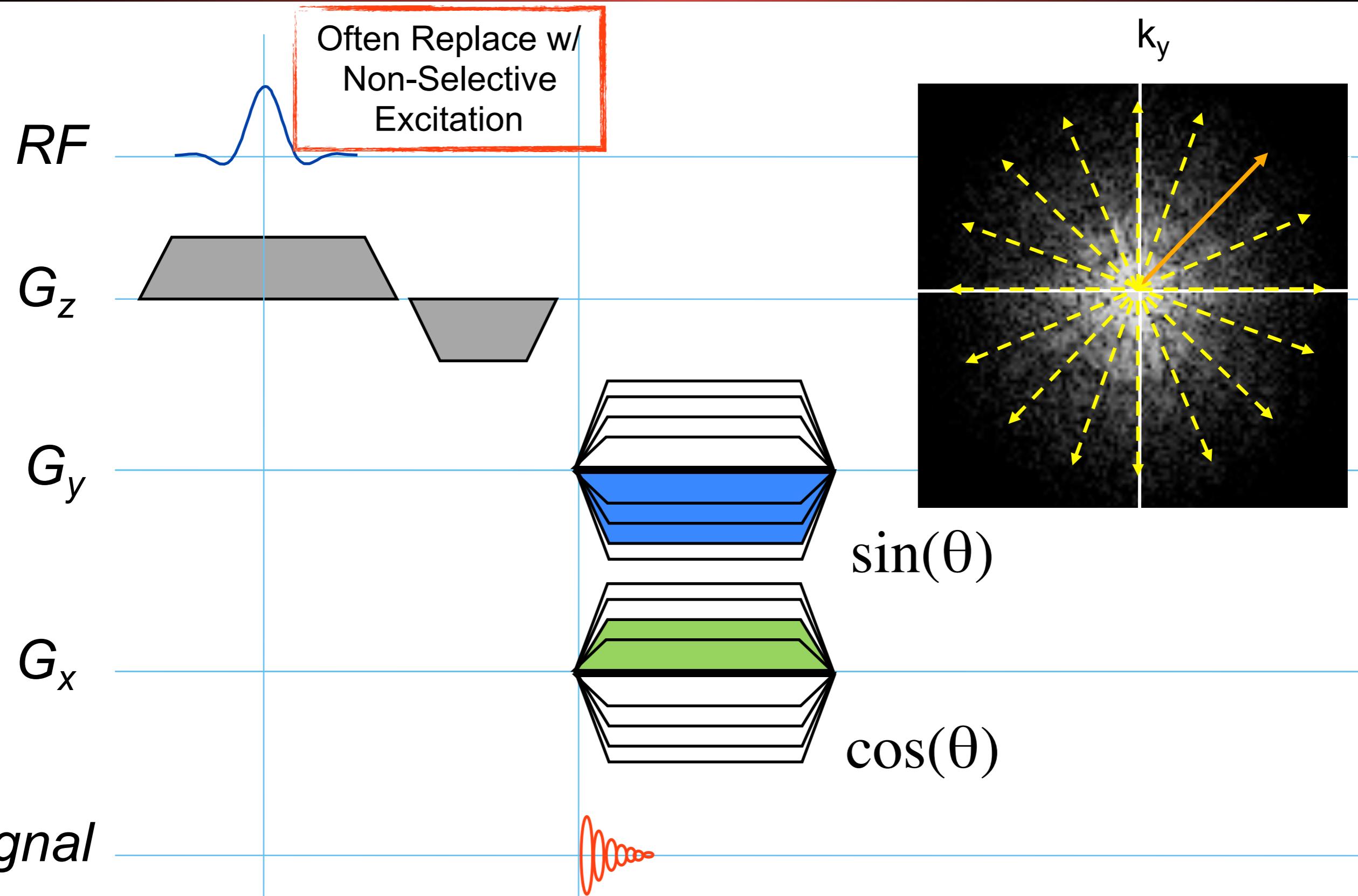


Radial ($k=0$ outward)

- Similar to Full Projection, but center-out readouts
- Shortest TE (~ 0) of any sequence
- Low first-moments
- Fastest way to reach high-spatial frequencies
- Impact of delays
- Can do odd/even sampling
- Impact of ramp sampling

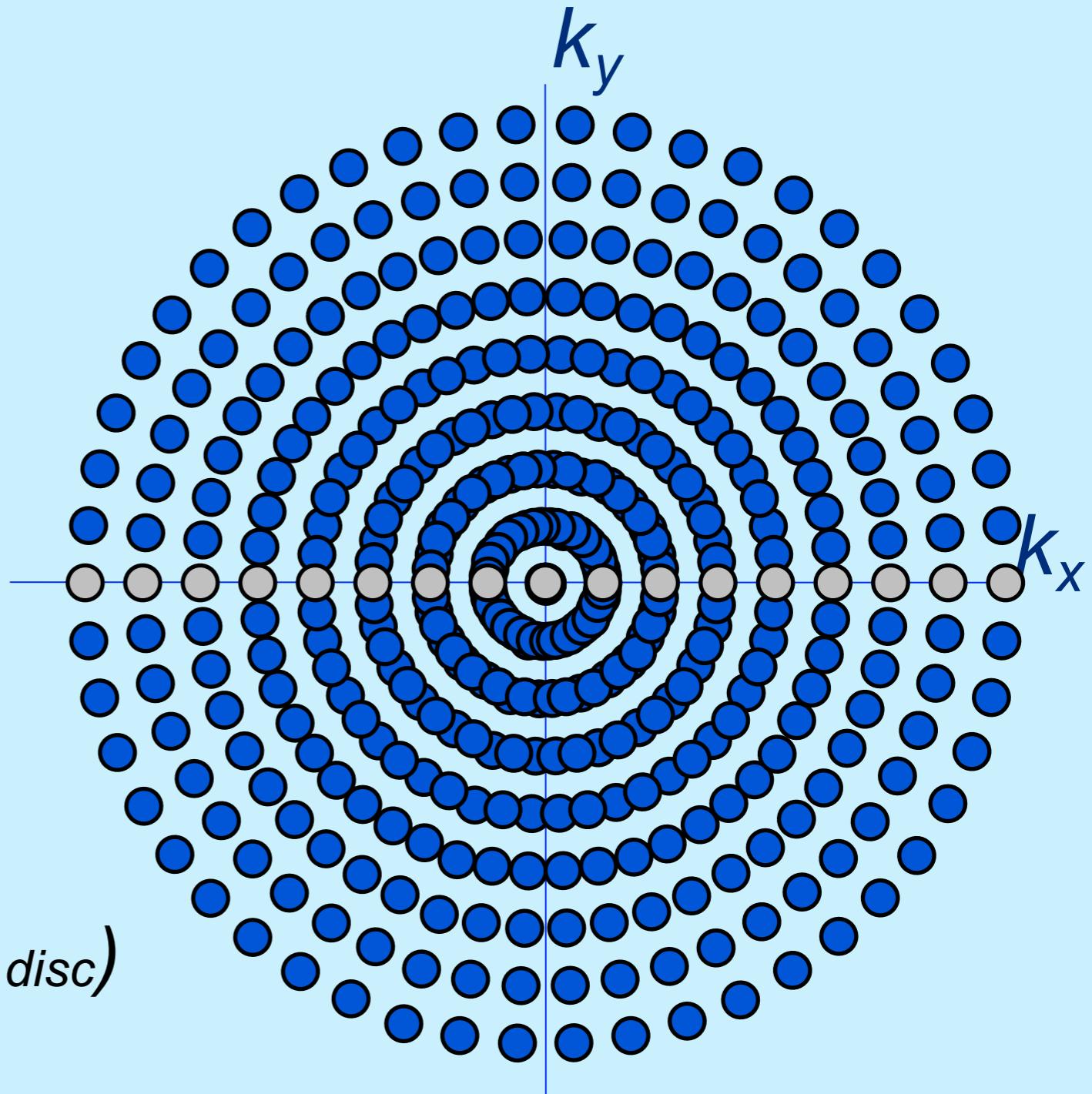


Radial (out) Sequence



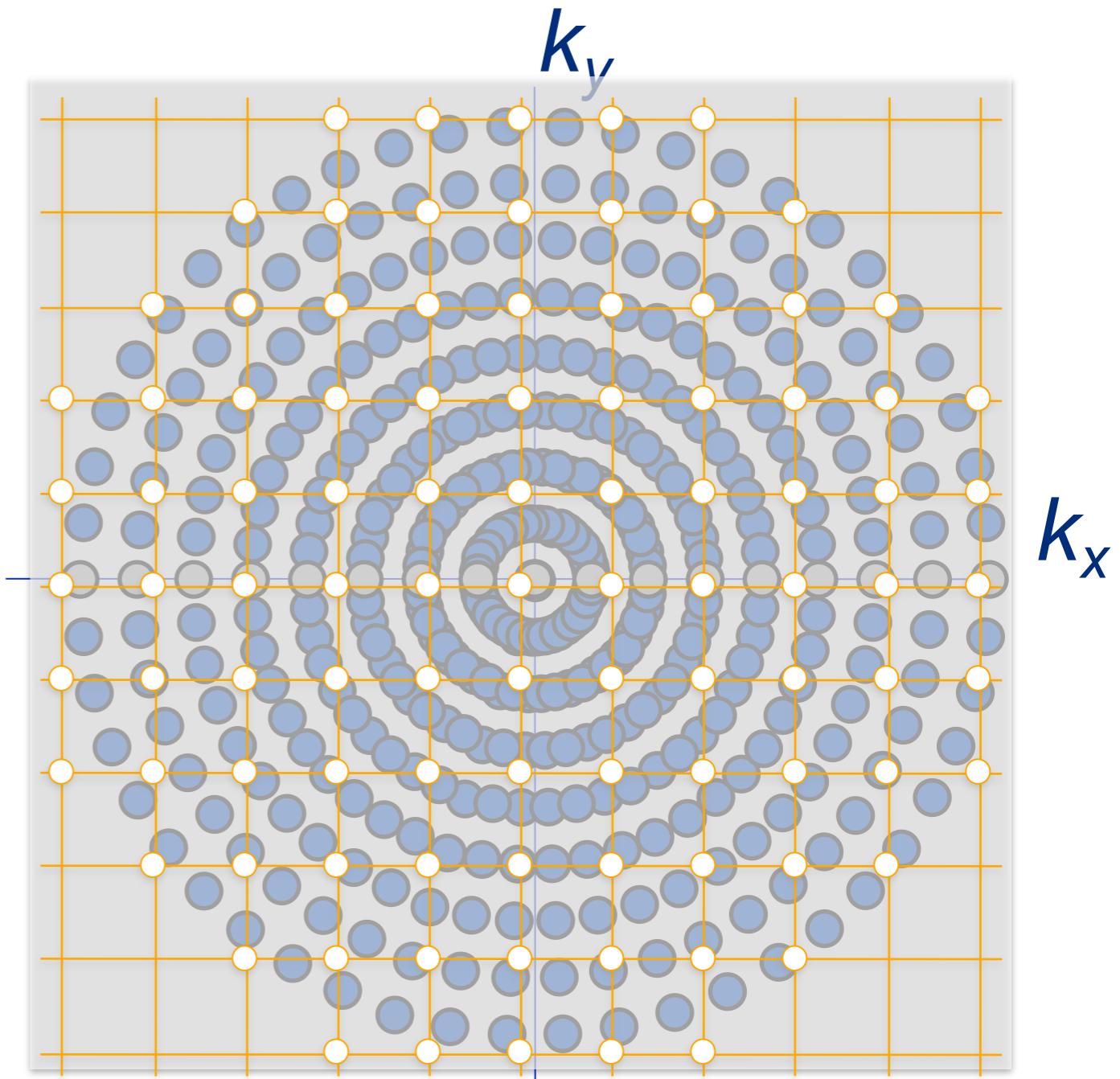
Projection (PR): Design Considerations

- Readout Resolution?
 - Same as Cartesian
- Readout FOV?
 - Same as Cartesian
- Number of angles?
 - $(\pi/2)N_{read}$ (Full Projection)
 - πN_{read} (Radial-Out)
 - (Note: $N_{read} = \# \text{ points across disc}$)
 - May undersample



Projection Reconstruction

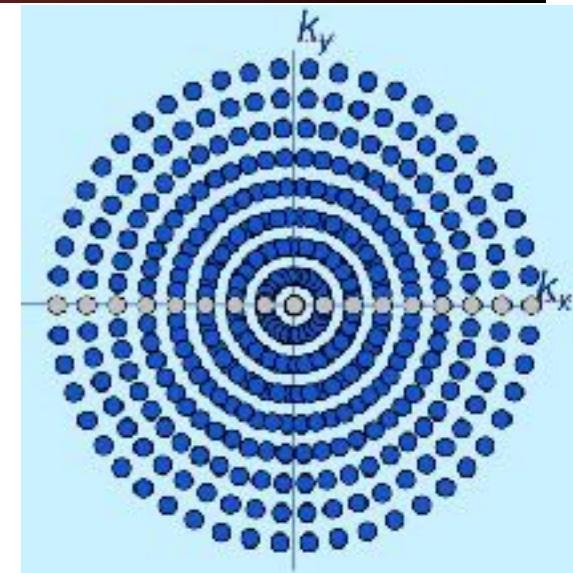
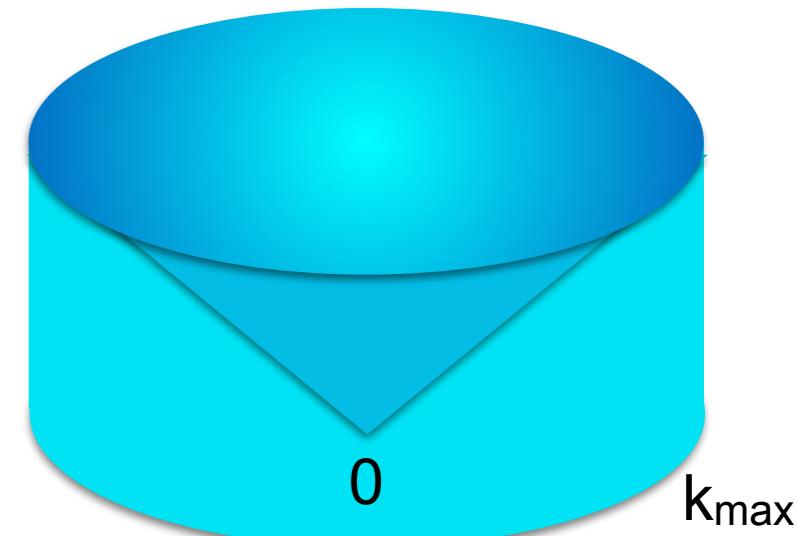
- Non-Cartesian Sampling
- Filtered back-projection
- Gridding + FFT
 - Both use $|k_r|$ density compensation



gridmat.m

Radial Sampling Efficiency

- Number of samples per-unit-area of k-space:
 - Cartesian requires $N \times N$ samples, Area $4k_{\max}^2$
 - Radial requires $(\pi/2)N \times N$ samples, Area πk_{\max}^2
 - Radial requires $(\pi/2)/(\pi/4) = 2x$ samples / unit area
 - Penalty $1/\sqrt{2}$
- Noise variance averaged over k-space area
 - average of k_r (Density compensation)
 - “pill-box minus cone” = $2/3$
 - Overall Efficiency is $1 / \sqrt{2 \times 2/3} = \sqrt{3}/2 = 0.87$



*Reduced aliasing artifacts using variable-density k-space sampling trajectories.
Tsai CM, Nishimura DG. Magn Reson Med. 2000 Mar;43(3):452-8.*

Radial/Projection: SNR Efficiency (η)

- Radial density $D = k_{max}/k_r$, extent $[-1, 1]$

Quantity	Symbol	Cartesian	2D Radial
k-space area	(A)	4	π
#samples needed to cover area	$\int_A D$	4	2π
Integrated density compensation	$\int_A 1/D$	4	$2\pi/3$
Efficiency	$\eta = \frac{A}{\sqrt{\int_A D \int_A 1/D}}$	1	$\sqrt{3}/2 = 0.87$

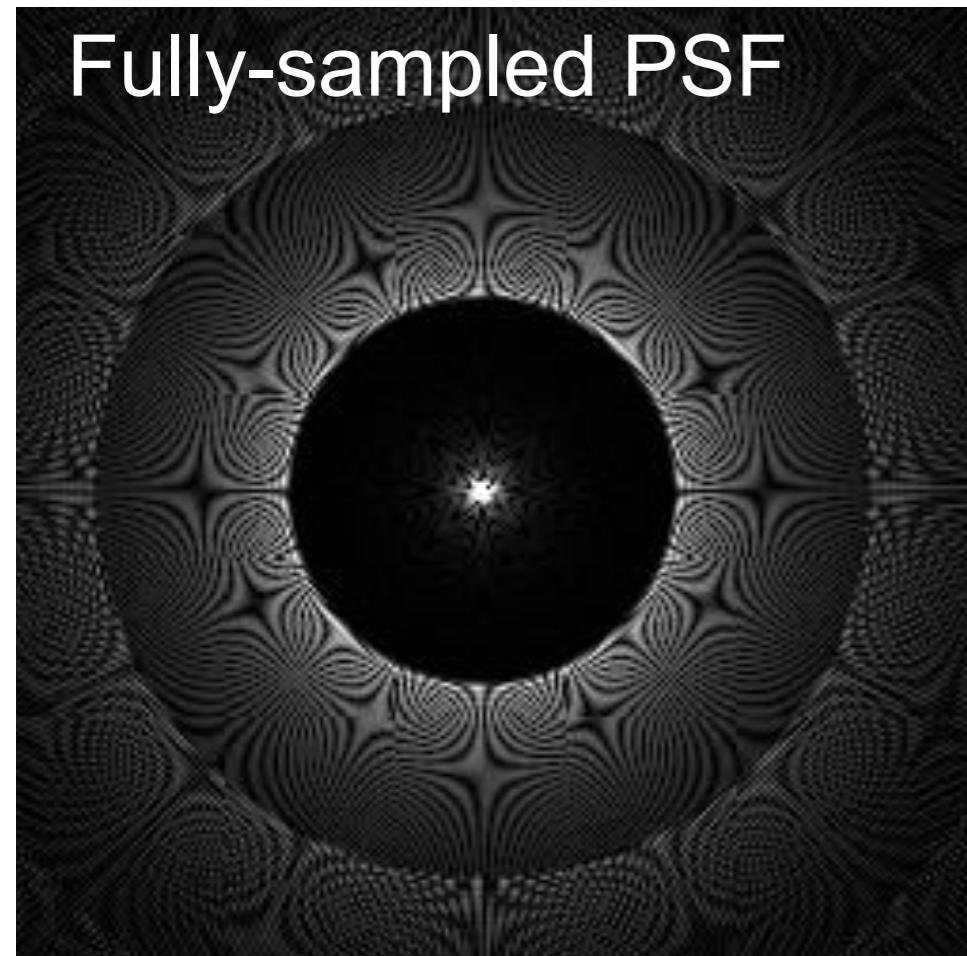
- Note that the density variation affects efficiency

Radial-Outward Design Example

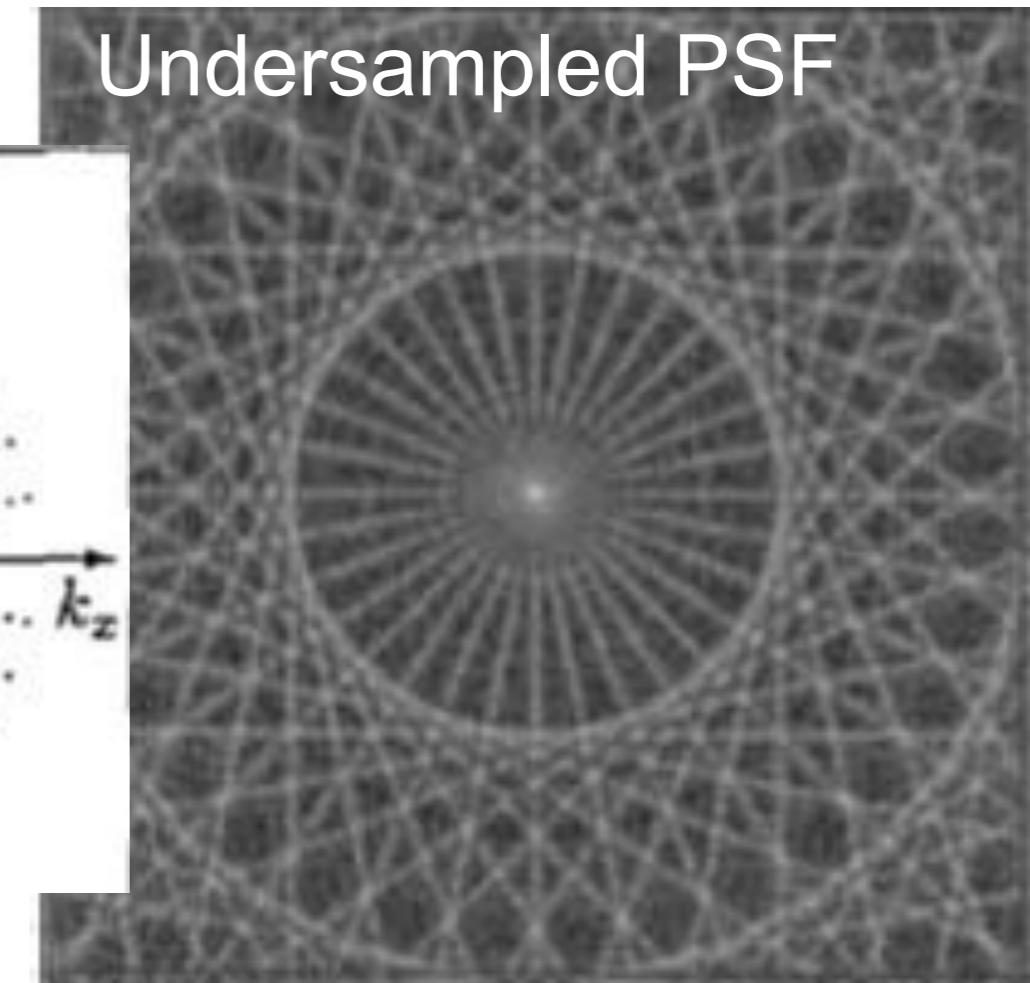
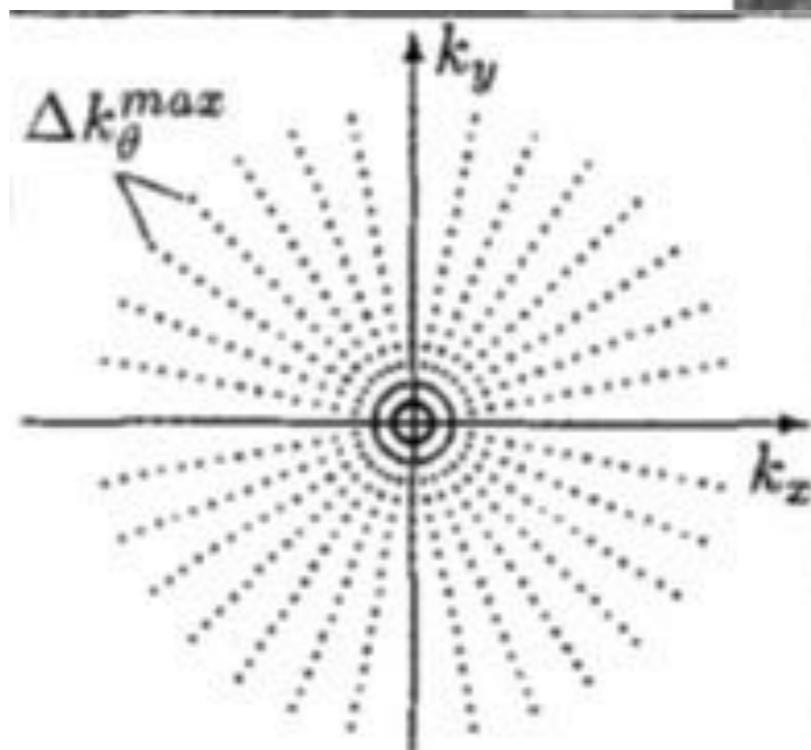
Projection-Reconstruction PSF / Undersampling

- PSF has a “ring” of aliasing (less coherent)
 - Intuition: No “preferred” direction for coherent peak
- Undersampling tends to result in streak artifacts

Fully-sampled PSF



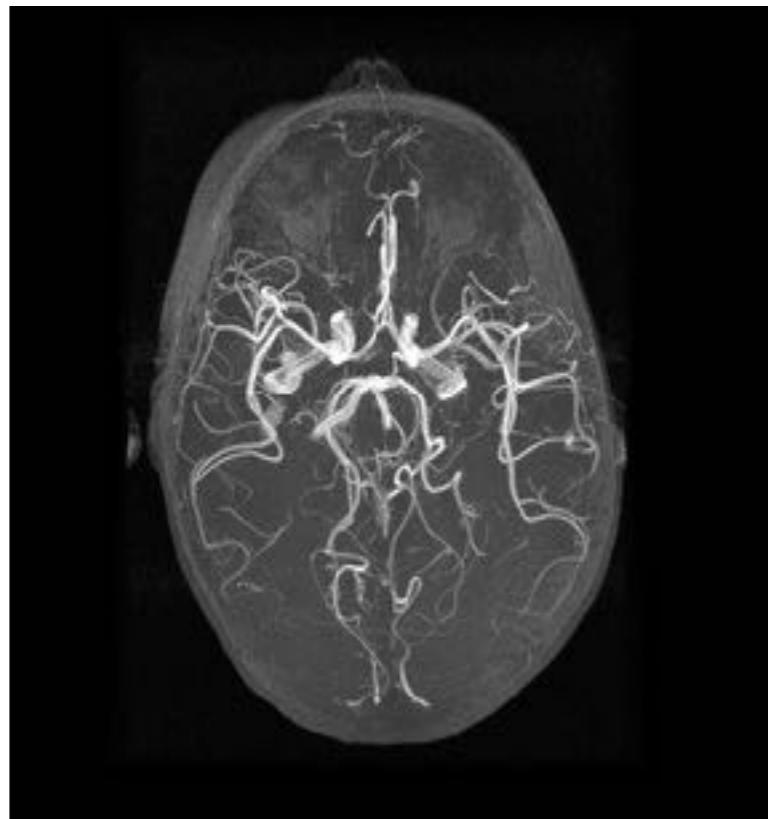
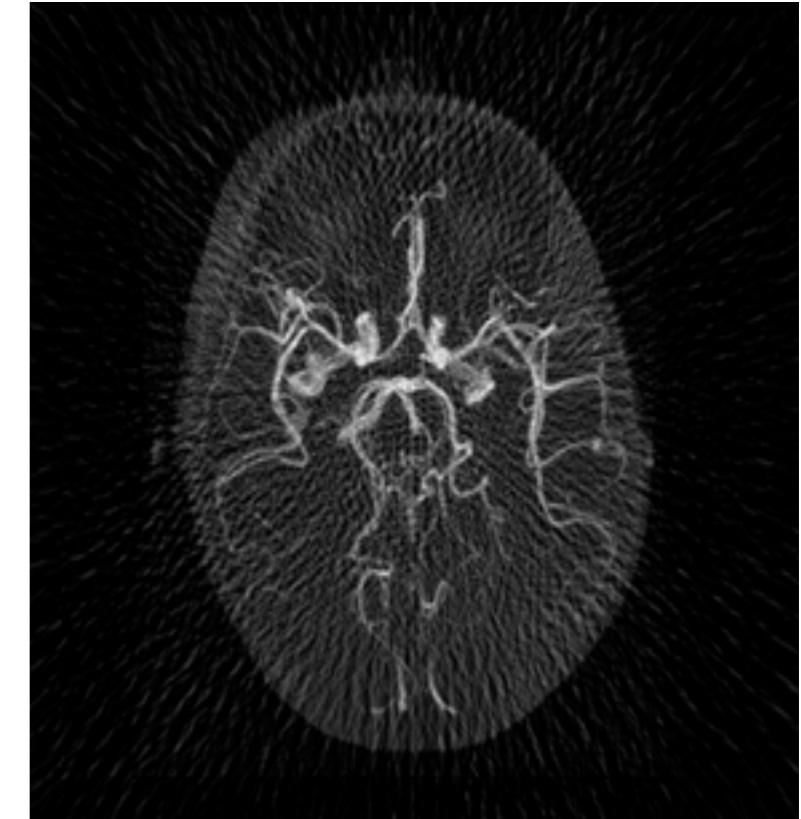
Undersampled PSF



From Scheffler & Hennig, MRM 1998

Undersampled PR: Streak Artifacts

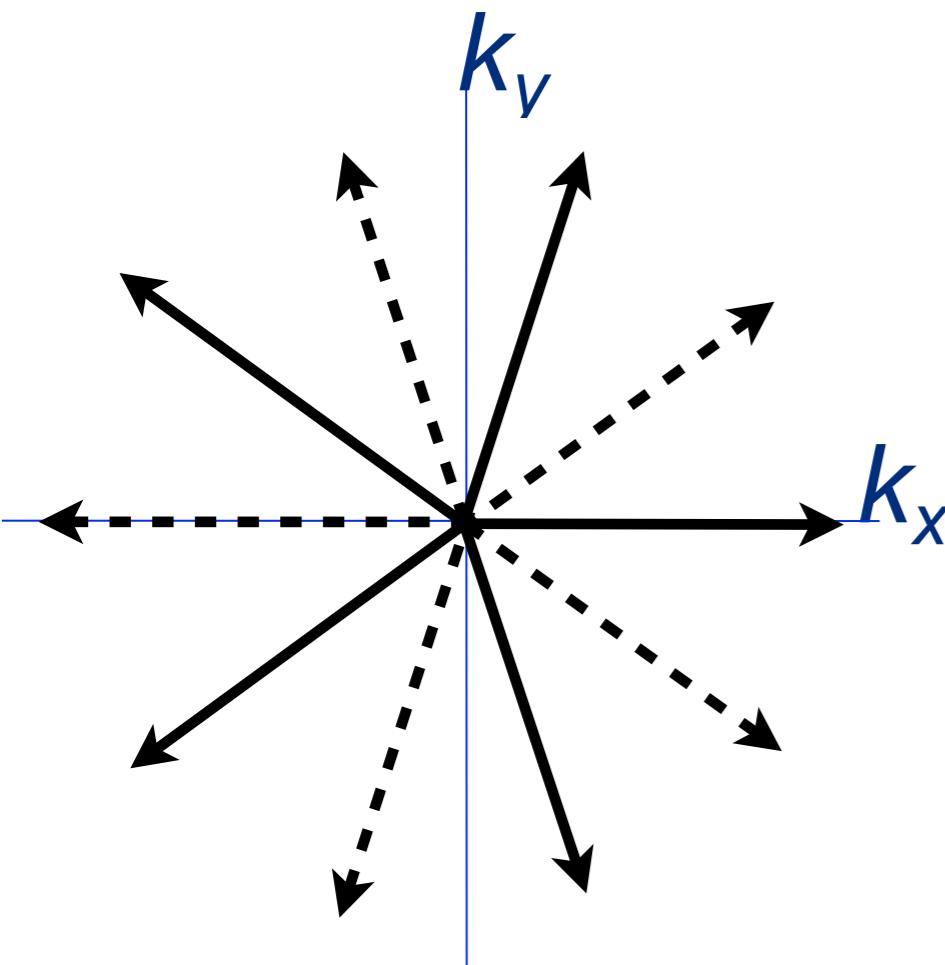
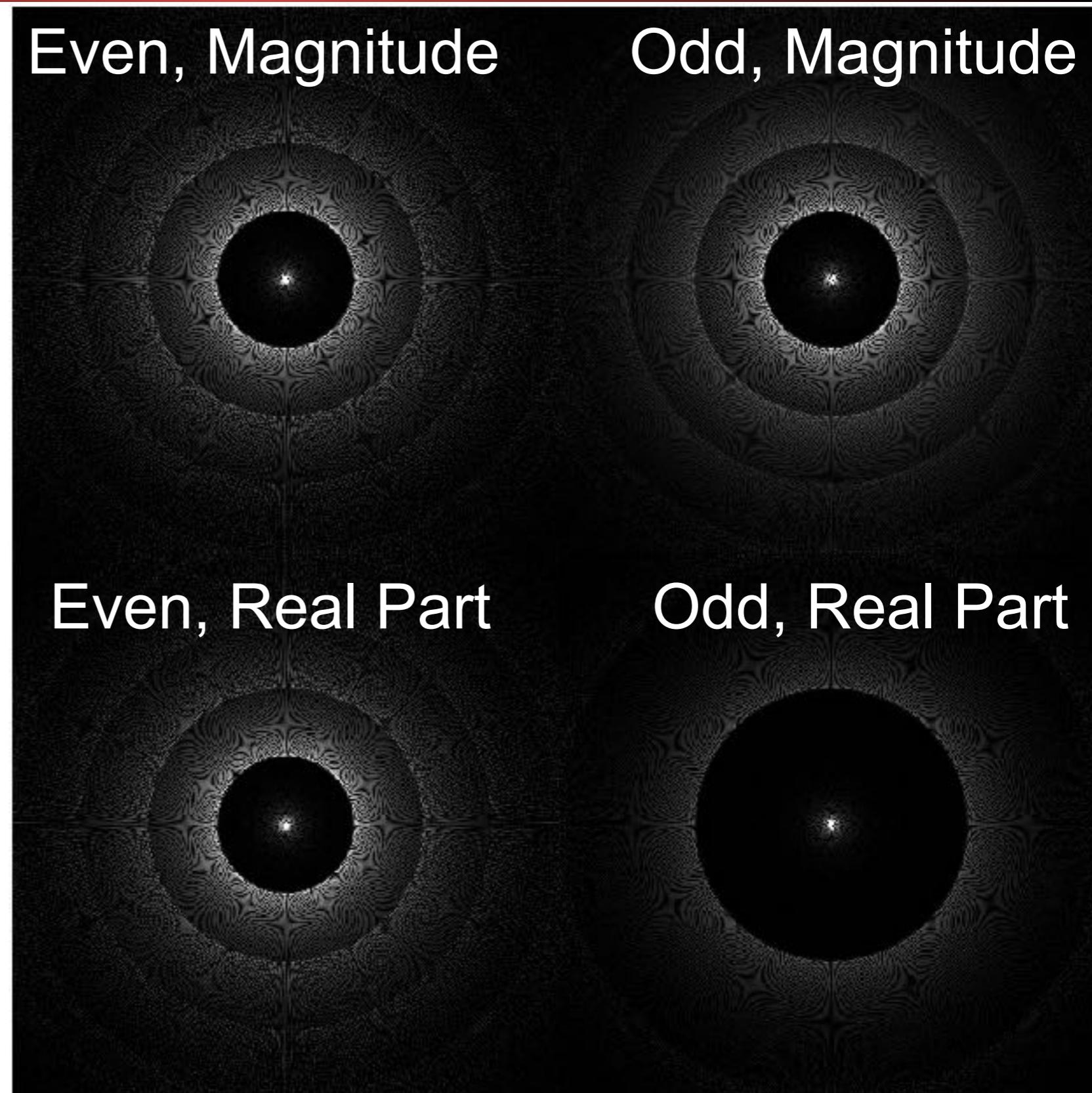
- Reduced sampling leads to streaks
- With reasonable undersampling the artifact is often benign



J.Liu, A.Lu, A.Alexander, J.Pipe, E.Brodsky, D.Seeber, T.Grist, W.Block, Univ Wisc.

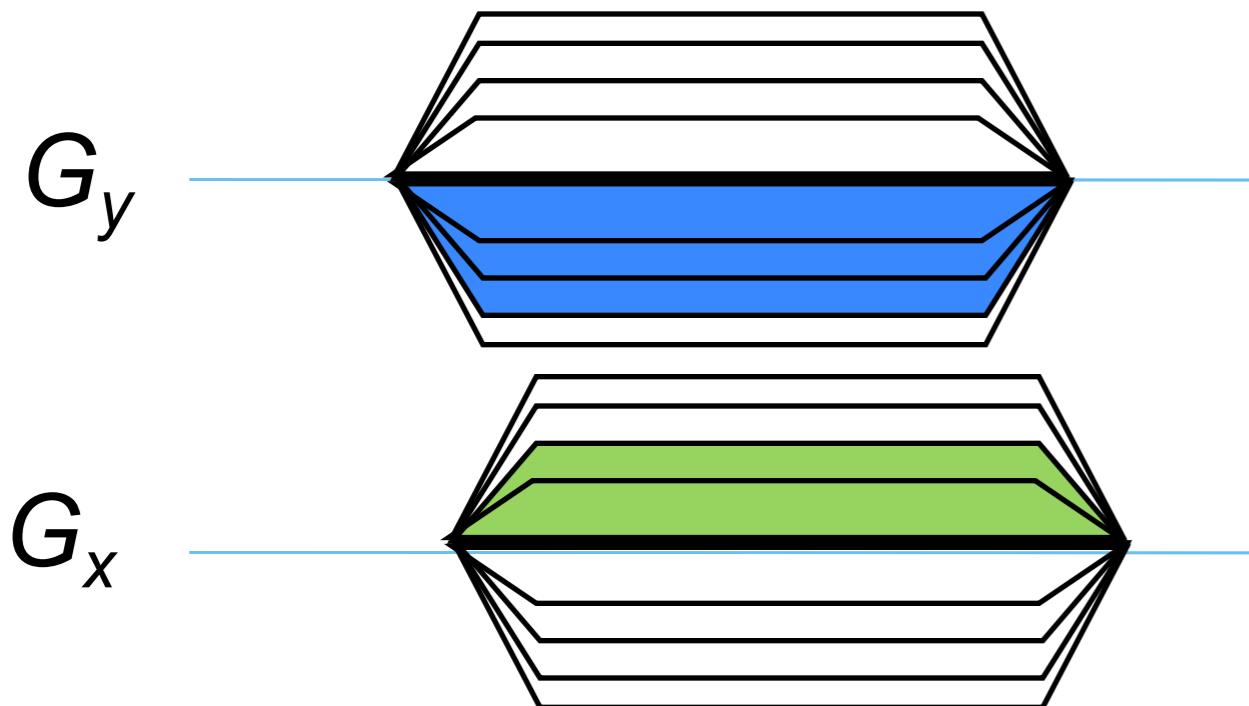
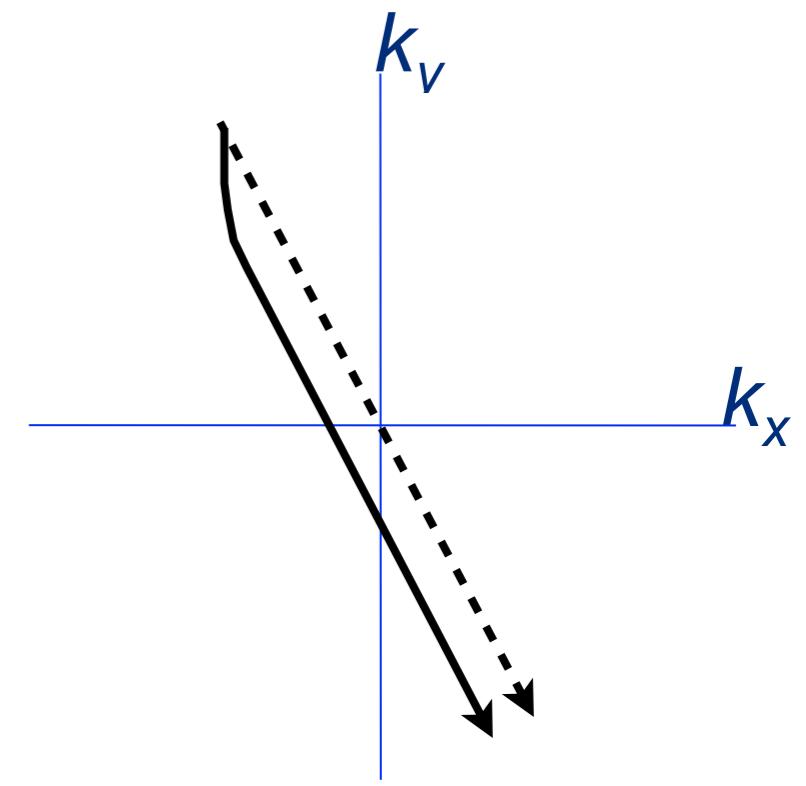
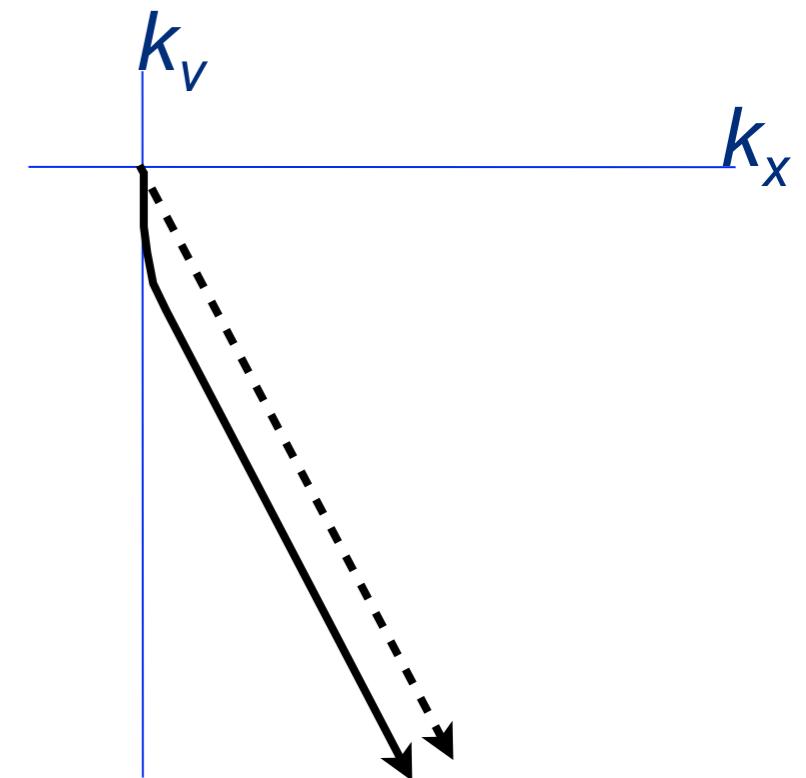
Radial Out - Odd vs Even #Spokes

- Odd N is a half-Fourier trajectory
- Difficult to do homodyne, but quadrature aliasing



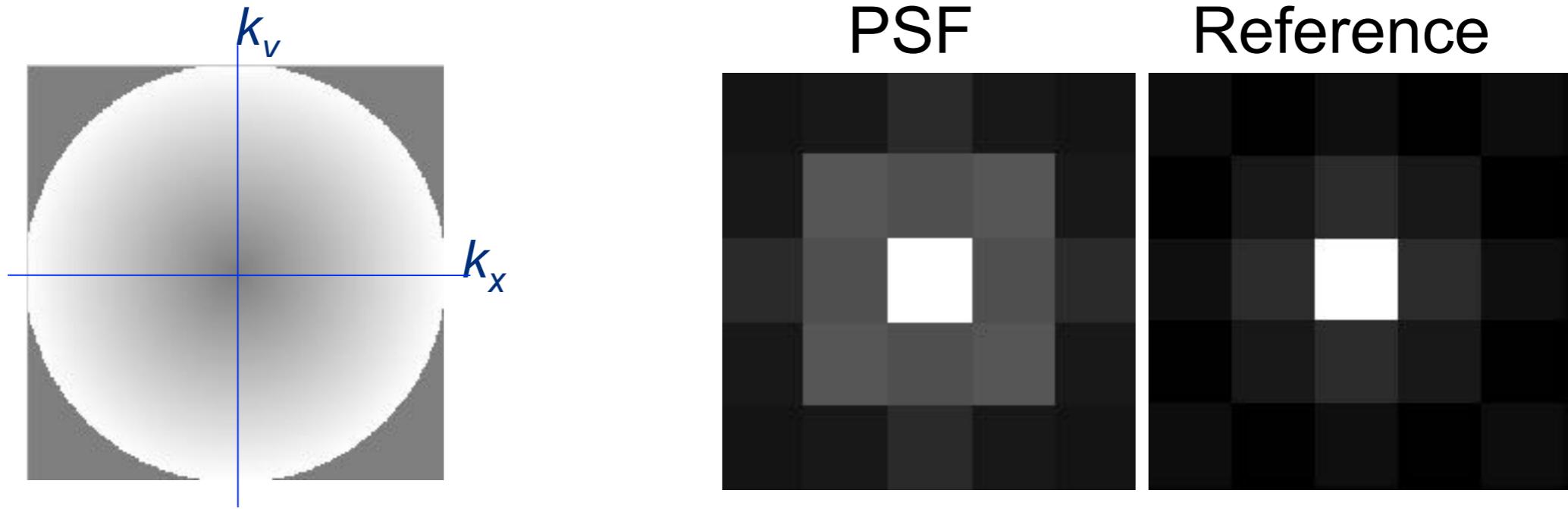
Gradient Delay Considerations

- Full projection
 - Global Delay: Shift center
 - Inter-axis: May miss center
- Radial out:
 - Global Delay: Shifts along traj.
 - Inter-axis: Warping of trajectory

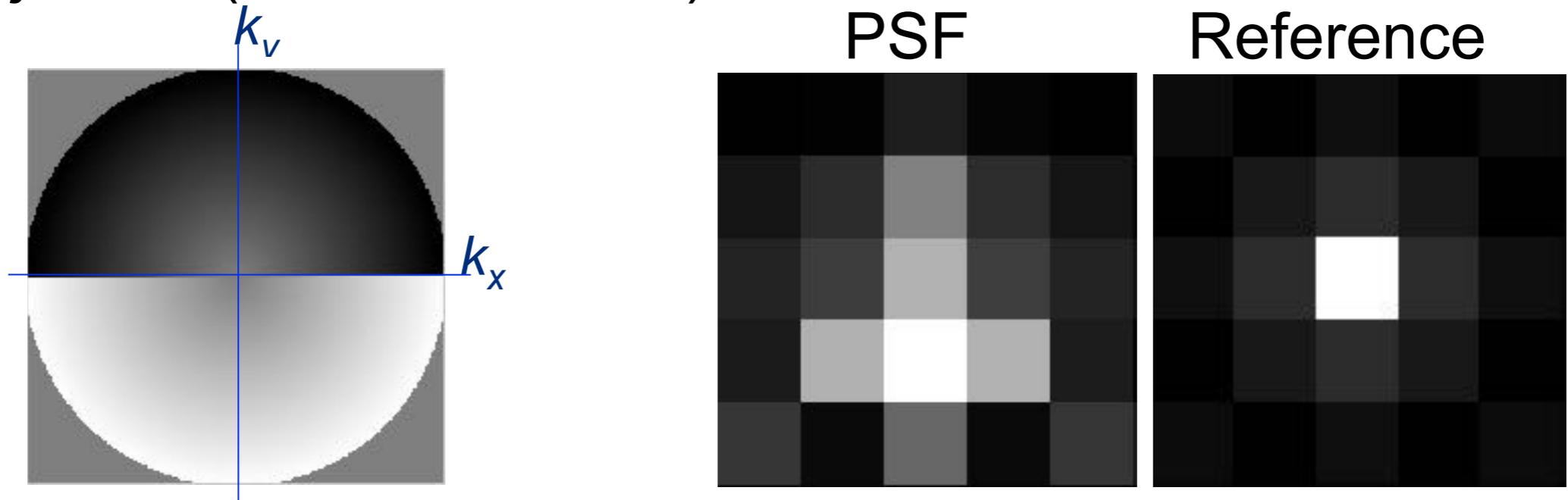


Off-Resonance Effects

Radial-out (0 to π variation)

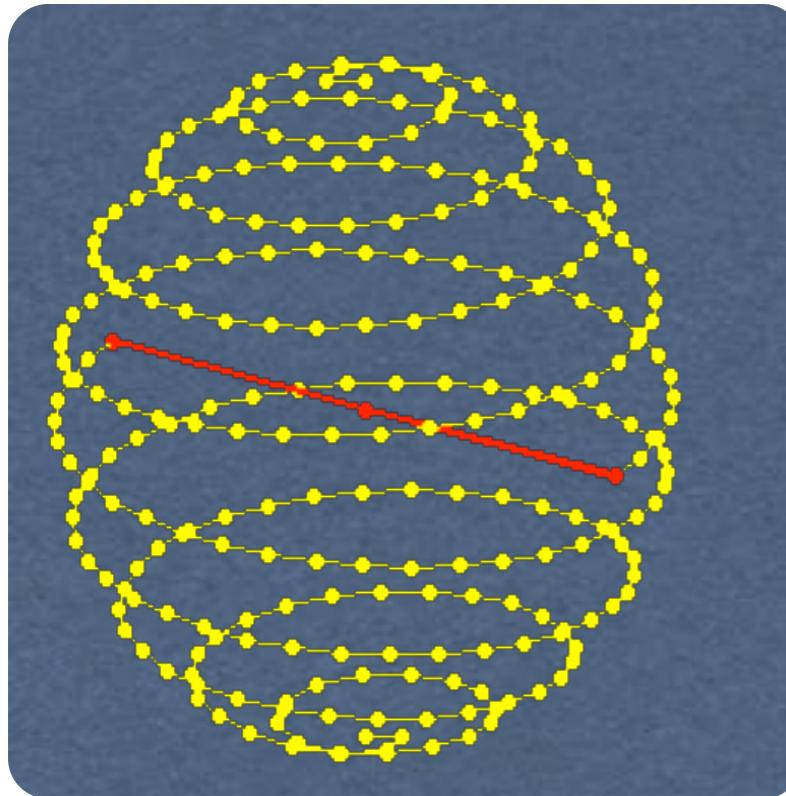


Full Projection (- π to π variation)



3D Projection-Reconstruction

- Encode in k_x, k_y, k_z (θ, φ end-point parameterization)
- Density $(1/k_r)^2$, compensate by multiplying by k_r^2
- SNR efficiency now 0.75
- Can undersample more though!



J.Liu, A.Lu, A.Alexander, J.Pipe, E.Brodsky, D.Seeber, T.Grist, W.Block, Univ Wisc.

3D Radial/Projection: SNR Efficiency (η)

- Radial density $D = (k_{max}/k_r)^2$, extent $[-1, 1]$

Quantity	Symbol	Cartesian	3D Radial
k-space volume	(V)	8	$4/3\pi$
#samples needed to cover volume	$\int_V D$	8	4π
Integrated density compensation	$\int_V 1/D$	8	$4\pi/5$
Efficiency	$\eta = \frac{V}{\sqrt{\int_V D \int_V 1/D}}$	1	$\sqrt{5}/3 = 0.75$

Temporal Radial Patterns

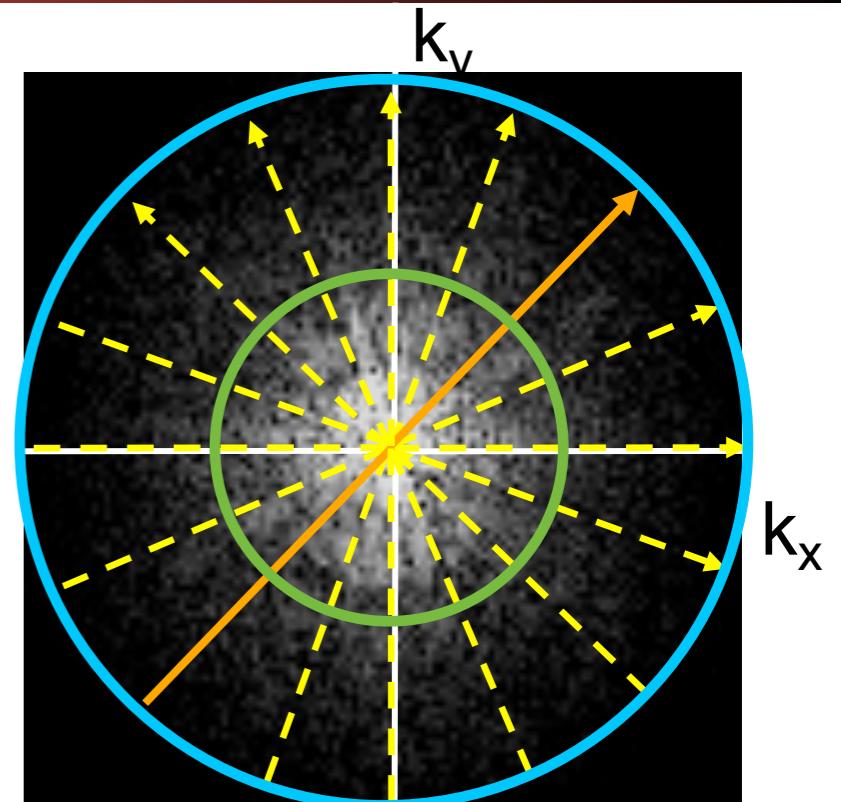
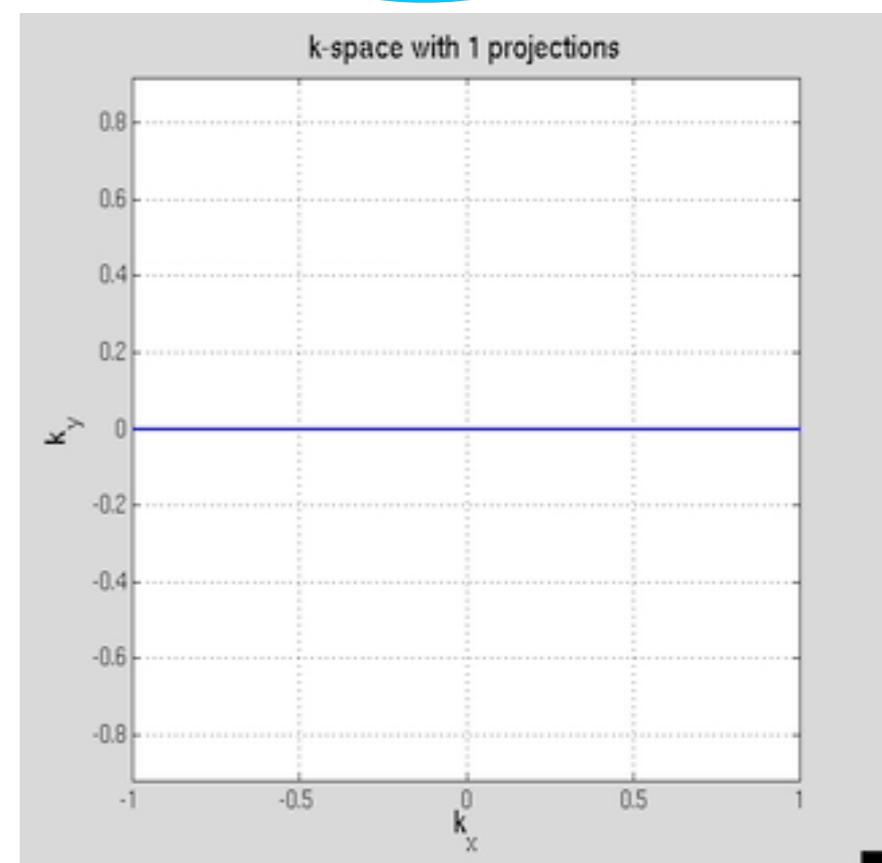
- Reduction R gives a fully-sampled image with R lower resolution
- Vary spatio-temporal resolution
 - “KWIC: k-space weighted image contrast”
 - Field map generation by delaying odd vs even lines
 - Golden-angle increment: 111.246°

$$180^\circ / 111.246^\circ = (\sqrt{5}+1)/2$$

- Arbitrary $N_s < N$ has “uniform” angular spacing

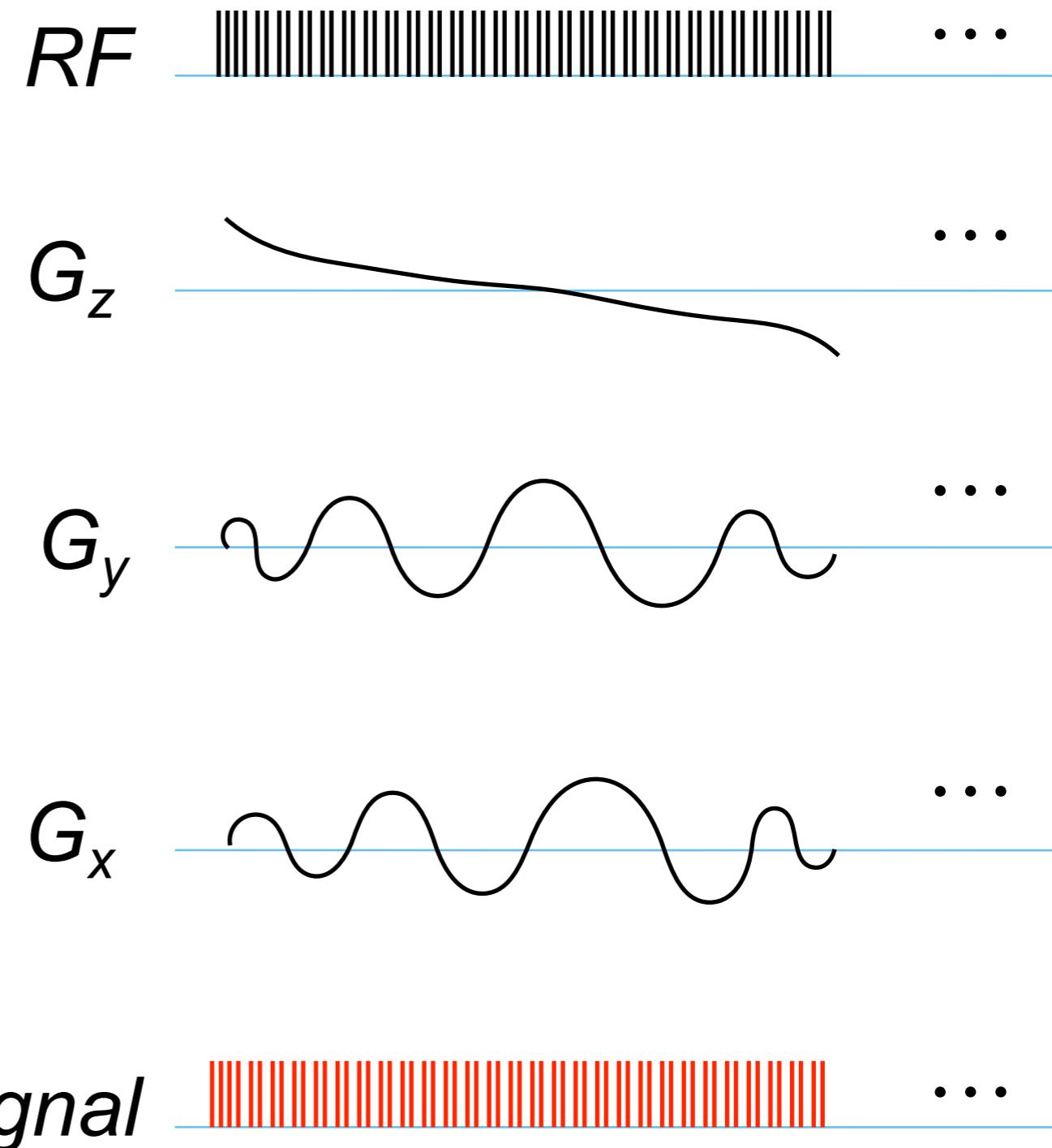
IEEE Trans Med Imaging. 2007 Jan;26(1):68-76.

An optimal radial profile order based on the Golden Ratio for time-resolved MRI.
Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O.



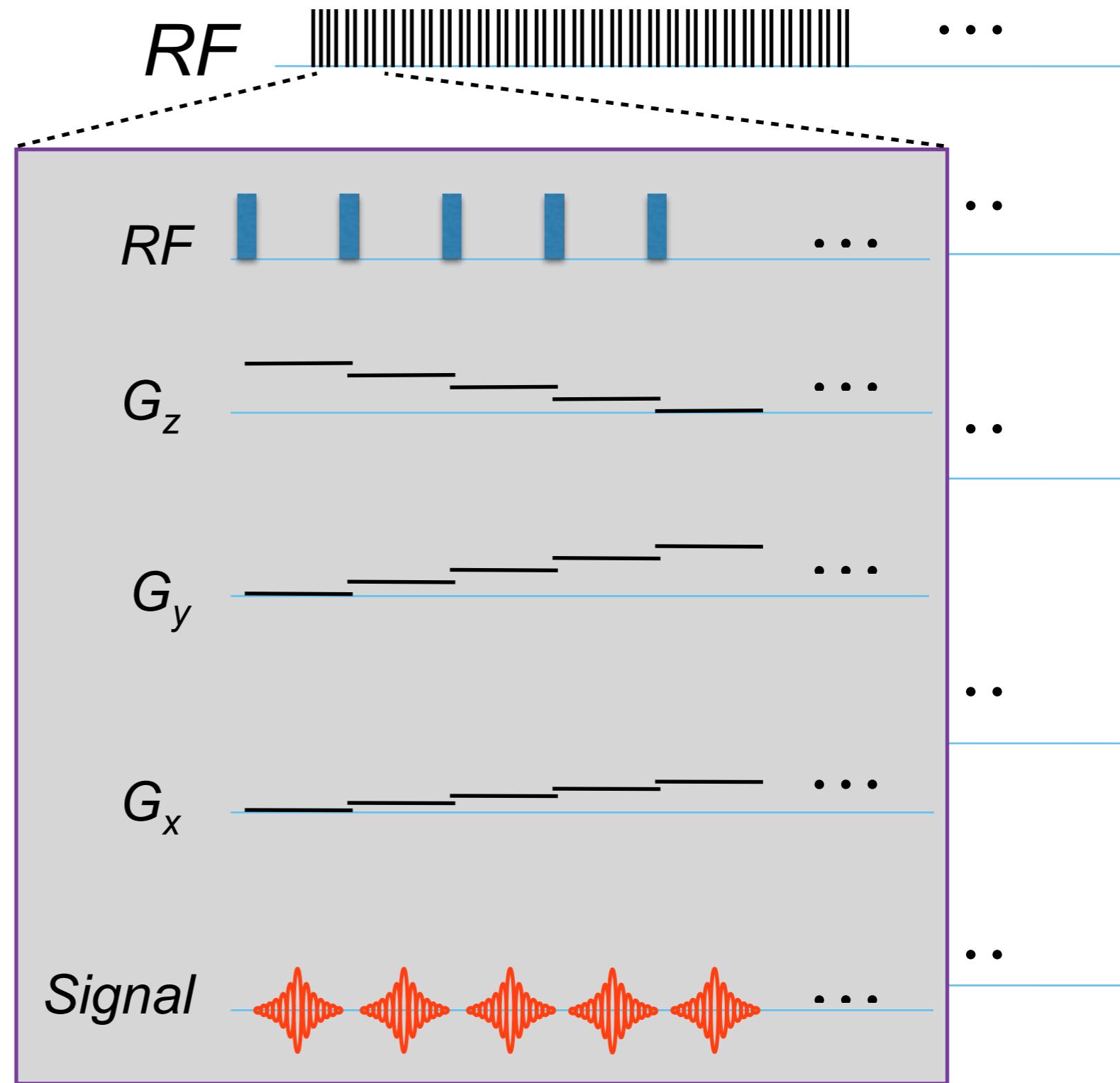
Zero Echo-Time (ZTE)

- Gradients always on!
- Radial sampling
- Very short RF
 - Low flip angle (SAR)
 - Actual RF excites slab with varying direction



Zero Echo-Time (ZTE)

- Gradients always on!
- Radial sampling
- Very short RF
 - Low flip angle (SAR)
 - Actual RF excites slab with varying direction

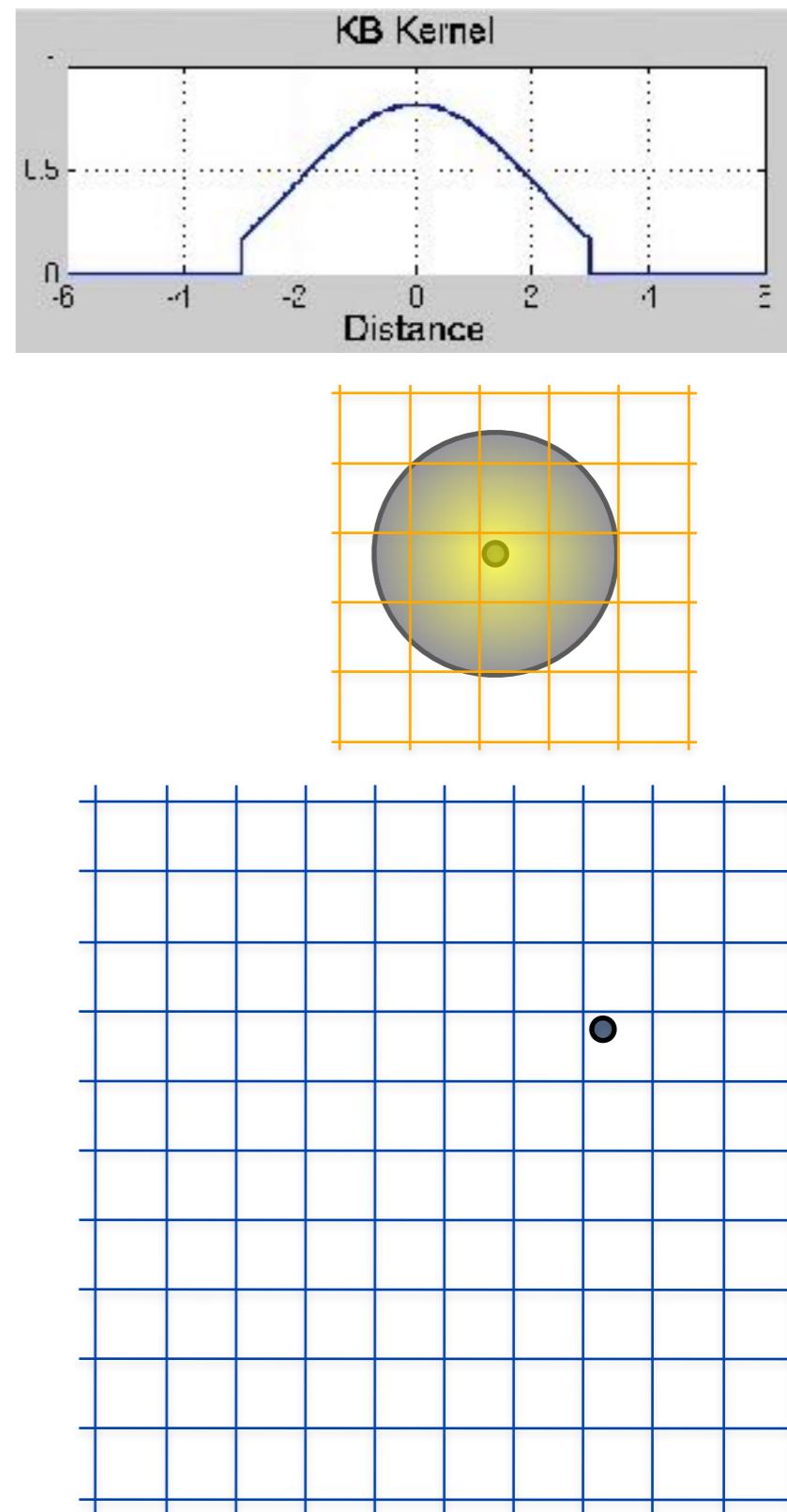


Radial and Projection: Summary

- Non-Cartesian, requires gridding reconstruction
- Incoherent undersampling artifact (similar to CS)
- Short TE (and UTE) imaging
- 2D and 3D options
- No phase-encoding ~ can be efficient
- Off-resonance causes blurring
- SNR efficiency loss due to high-density near center, but resampling the center can be advantageous

Gridding Code: gridmat.m

- Designed to be reasonably fast, but Matlab (readable)
- Uses Kaiser-Bessel interpolation kernel (precalculated)
- For each k-space sample $M(k)$:
 - Build a “neighborhood” of affected grid points k_{grid}
 - Calculate contribution at each grid point:
 - $M(k) \times \text{kernel}(k-k_{\text{grid}})$
 - Add the values to a full-size grid
 - No deapodization



gridmat.m

- Inputs:
 - k_{sp} = list of k-space locations, $k_x + ik_y$
 - k_{dat} = data samples, ie $M(k_x, k_y)$
 - dcf = density compensation factors at each k-space location
 - gridsize = size of grid
- Convention:
 - k is in “inverse reconstructed pixels”
 - $|k| < 0.5$
 - Larger gridsize zero-pads image (reduce apodization)
 - Scale k_{sp} smaller to “fill” FOV and interpolate pixels

