Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu

Lecture-01B — The Bloch Equations and Image Contrast Radiofrequency (B1) Pulses and the Rotating Frame

Daniel Ennis dbe@stanford.edu

Rad229 – MRI Signals and Sequences

Learning Objectives

- Explain the principal function of the RF (B1) field.
 - Describe the magnitude, spatial, and temporal characteristics of the B₁ field.
 - Define B_1 with a mathematical expression.
- Distinguish between spin, precession, and nutation.
- Differentiate between the lab and rotating frames.
- Remember an expression for a circular polarized RF field.
- Contrast the equation of motion in the lab and rotating frames.

Radiofrequency (B1) Fields

 $\vec{B}_1(t)$

 \otimes

Ð

I3 🔂

 $\bigoplus I_6$

ÐI

MRI Hardware

RF (B1) Field - Characteristics

- B₁ is a
 - radiofrequency (RF)
 - 42.58MHz/T for ¹H (63MHz at 1.5T)
 - short duration pulse (~0.1 to 10ms)
 - small amplitude
 - <25 µT
 - shaped by an envelope function
 - circularly polarized
 - rotates at Larmor frequency
 - magnetic field
 - perpendicular to B₀
- Principal use: excitation and refocusing.
 - Image contrast (inversion, saturation)
 - Signal spoiling

RF Excitation - Lab Frame

¹H has intrinsic Spin $\omega_0 = \gamma B_0$ Precession Combined with... $\omega_1 = \gamma B_1$ Nutation

RF (B₁) pulse impart forced precession.

B₀ causes precession about z-axis. B₁ causes forced precession (i.e. nutation). https://en.wikipedia.org/wiki/Nutation

RF Excitation - Lab Frame

Basic RF Pulse - Linear Polarized

Linear & Circular Polarized B1 Fields

Linear Polarization

 $\vec{B}_1(t) = 2B_1^e(t)\cos(\omega_{RF}t + \theta)\hat{i}'$

First Generation MRI Systems Used Linear Polarization; Simple and Cheaper, but higher RF power.

Arrow indicates direction of B-field

Linear & Circular Polarized B1 Fields

Linear & Circular Polarized B1 Fields

- Anara-

Even with circular polarization many pulse sequences are SAR limited at \geq 3T.

RF (B1) Field - Generation

- Birdcage coil
 - Most common design
 - Highly efficient
 - Nearly all of the fields produced contribute to imaging
- Very uniform field
 - Especially radially
 - Decays axially
 - Uniform sphere if $L \approx D$
- Generates a "quadrature" field
 - Circular polarization

Birdcage Body Tx/Rx Coil (B1)

CW (righthand)

CCW (lefthand)

Basic RF Pulse - Circular Polarized

$$ec{B_1}(t) = B_1^e(t) \begin{bmatrix} \cos(\omega_{RF}t)\hat{i}' - \sin(\omega_{RF}t)\hat{j}' \end{bmatrix} \begin{bmatrix} \text{Circular} & \text{Polarized} & \text{Polarized} & \text{RF Field} \end{bmatrix}$$

Lab vs. Rotating Frame

Laboratory Frame Coordinates

 $ec{\omega} = \gamma B_0 \hat{k}'$

Rotational Angular Velocity

mage Adapted From: http://www.ee.duke.edu/~jshorey

Lab vs. Rotating Frame Coordinates

• The rotating frame simplifies the mathematics; more intuitive understanding.

Rotating Frame Coordinates

- If the rotational frequency of the rotating frame is matched to the bulk magnetization's precessional frequency, then rotational motion of the bulk magnetization is "removed" or demodulated.
- The rotating frame's transverse xy-plane rotates clockwise (left-handed) at frequency ω relative to the scanners x'y'-plane.

The rotating frame simplifies the mathematical description of spin dynamics and affords a more intuitive understanding.

Equation of Motion

$$\begin{split} \frac{d\vec{M}}{dt} &= \vec{M} \times \gamma \vec{B} \\ \frac{d\vec{M}_{rot}}{dt} &= \vec{M} \times \gamma \vec{B} \\ \frac{d\vec{M}_{rot}}{dt} &= \vec{M}_{rot} \times \gamma \left(\frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \right)^{\text{Equation of motion for an ensemble of spins (isochromats).}}_{\text{[Rotating Frame]}} \\ \frac{d\vec{M}_{rot}}{dt} &= \vec{M}_{rot} \times \gamma \left(\frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \right)^{\text{Equation of motion for an ensemble of spins (isochromats).}}_{\text{[Rotating Frame]}} \\ \vec{B}_{eff} &\equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \\ \uparrow \\ \vec{F}_{rotating frame.} &\uparrow \\ \vec{h}_{rotating frame.} &\uparrow \\ \vec{h}_{rotating frame.} &\uparrow \\ \vec{h}_{rotating frame.} &\uparrow \\ \vec{h}_{rot} &\uparrow \\ \vec{h}_{rot} &\neq \gamma \vec{B}_{eff} \\ \frac{d\vec{M}_{rot}}{dt} &= \vec{M}_{rot} \times \gamma \vec{B}_{eff} \\ \vec{h}_{rotating frame.} \\ \vec{h}_{rotating frame.} &\downarrow \\ \vec{h}_{rotating frame.} \\ \vec{h}_{rotating frame.} &\downarrow \\ \vec{h}_{rotating frame.} &\downarrow \\ \vec{h}_{rot} &\neq \gamma \vec{B}_{eff} \\ \vec{h}_{rot} &= \vec{h}_{rot} \\ \vec{h}_{rot} &\neq \gamma \vec{H}_{eff} \\ \vec{h}_{rot} &= \vec{h}_{rot} \\ \vec{h}_{rot} &\neq \gamma \vec{H}_{eff} \\ \vec{h}_{rot} &= \vec{h}_{rot} \\ \vec{h}_{rot} &= \vec{h}_{rot} \\ \vec{h}_{rot} &= \vec{h}_{rot} \\ \vec{h}_{rot} &\neq \gamma \vec{H}_{eff} \\ \vec{h}_{rot} &= \vec{h}_{rot} \\ \vec{h}_{rot} \\ \vec{h}_{rot} &= \vec{h}_{rot$$

Rad229 Lec-01C Slide-19

Rotating Frame

Free Precession in the Rotating Frame w/o Relaxation

$$\vec{B}_{eff} = \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$$

$$= \frac{-\gamma B_0 \hat{k}'}{\gamma} + B_0 \hat{k}' \qquad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

$$= 0$$

$$M_x(t) = M_x^0 \qquad \frac{dM_x}{dt} = 0$$

$$M_y(t) = M_y^0 \qquad \frac{dM_y}{dt} = 0 \qquad \frac{d\vec{M}_{rot}}{dt} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ M_x & M_y & M_z \\ 0 & 0 & 0 \end{vmatrix}$$

$$M_z(t) = M_z^0 \qquad \frac{dM_z}{dt} = 0$$
onstant components

Constant components in the rotating frame without relaxation.

The bulk magnetization components in the rotating frame maintain the initial condition for all time in the absence of relaxation

How do RF pulses tip the magnetization?

Rad229 – MRI Signals and Sequences

Daniel Ennis & Brian Hargreaves dbe@stanford.edu –or– bah@stanford.edu